xref: /openbmc/linux/drivers/misc/sgi-xp/xpc_main.c (revision 1fa6ac37)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) support - standard version.
11  *
12  *	XPC provides a message passing capability that crosses partition
13  *	boundaries. This module is made up of two parts:
14  *
15  *	    partition	This part detects the presence/absence of other
16  *			partitions. It provides a heartbeat and monitors
17  *			the heartbeats of other partitions.
18  *
19  *	    channel	This part manages the channels and sends/receives
20  *			messages across them to/from other partitions.
21  *
22  *	There are a couple of additional functions residing in XP, which
23  *	provide an interface to XPC for its users.
24  *
25  *
26  *	Caveats:
27  *
28  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
29  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30  *	    followed by an IPI. The amo indicates where data is to be pulled
31  *	    from, so after the IPI arrives, the remote partition checks the amo
32  *	    word. The IPI can actually arrive before the amo however, so other
33  *	    code must periodically check for this case. Also, remote amo
34  *	    operations do not reliably time out. Thus we do a remote PIO read
35  *	    solely to know whether the remote partition is down and whether we
36  *	    should stop sending IPIs to it. This remote PIO read operation is
37  *	    set up in a special nofault region so SAL knows to ignore (and
38  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
39  *	    PIO write operations.
40  *
41  *	    If/when new hardware solves this IPI problem, we should abandon
42  *	    the current approach.
43  *
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/sysctl.h>
49 #include <linux/device.h>
50 #include <linux/delay.h>
51 #include <linux/reboot.h>
52 #include <linux/kdebug.h>
53 #include <linux/kthread.h>
54 #include "xpc.h"
55 
56 /* define two XPC debug device structures to be used with dev_dbg() et al */
57 
58 struct device_driver xpc_dbg_name = {
59 	.name = "xpc"
60 };
61 
62 struct device xpc_part_dbg_subname = {
63 	.init_name = "",	/* set to "part" at xpc_init() time */
64 	.driver = &xpc_dbg_name
65 };
66 
67 struct device xpc_chan_dbg_subname = {
68 	.init_name = "",	/* set to "chan" at xpc_init() time */
69 	.driver = &xpc_dbg_name
70 };
71 
72 struct device *xpc_part = &xpc_part_dbg_subname;
73 struct device *xpc_chan = &xpc_chan_dbg_subname;
74 
75 static int xpc_kdebug_ignore;
76 
77 /* systune related variables for /proc/sys directories */
78 
79 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
80 static int xpc_hb_min_interval = 1;
81 static int xpc_hb_max_interval = 10;
82 
83 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
84 static int xpc_hb_check_min_interval = 10;
85 static int xpc_hb_check_max_interval = 120;
86 
87 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
88 static int xpc_disengage_min_timelimit;	/* = 0 */
89 static int xpc_disengage_max_timelimit = 120;
90 
91 static ctl_table xpc_sys_xpc_hb_dir[] = {
92 	{
93 	 .procname = "hb_interval",
94 	 .data = &xpc_hb_interval,
95 	 .maxlen = sizeof(int),
96 	 .mode = 0644,
97 	 .proc_handler = proc_dointvec_minmax,
98 	 .extra1 = &xpc_hb_min_interval,
99 	 .extra2 = &xpc_hb_max_interval},
100 	{
101 	 .procname = "hb_check_interval",
102 	 .data = &xpc_hb_check_interval,
103 	 .maxlen = sizeof(int),
104 	 .mode = 0644,
105 	 .proc_handler = proc_dointvec_minmax,
106 	 .extra1 = &xpc_hb_check_min_interval,
107 	 .extra2 = &xpc_hb_check_max_interval},
108 	{}
109 };
110 static ctl_table xpc_sys_xpc_dir[] = {
111 	{
112 	 .procname = "hb",
113 	 .mode = 0555,
114 	 .child = xpc_sys_xpc_hb_dir},
115 	{
116 	 .procname = "disengage_timelimit",
117 	 .data = &xpc_disengage_timelimit,
118 	 .maxlen = sizeof(int),
119 	 .mode = 0644,
120 	 .proc_handler = proc_dointvec_minmax,
121 	 .extra1 = &xpc_disengage_min_timelimit,
122 	 .extra2 = &xpc_disengage_max_timelimit},
123 	{}
124 };
125 static ctl_table xpc_sys_dir[] = {
126 	{
127 	 .procname = "xpc",
128 	 .mode = 0555,
129 	 .child = xpc_sys_xpc_dir},
130 	{}
131 };
132 static struct ctl_table_header *xpc_sysctl;
133 
134 /* non-zero if any remote partition disengage was timed out */
135 int xpc_disengage_timedout;
136 
137 /* #of activate IRQs received and not yet processed */
138 int xpc_activate_IRQ_rcvd;
139 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
140 
141 /* IRQ handler notifies this wait queue on receipt of an IRQ */
142 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
143 
144 static unsigned long xpc_hb_check_timeout;
145 static struct timer_list xpc_hb_timer;
146 
147 /* notification that the xpc_hb_checker thread has exited */
148 static DECLARE_COMPLETION(xpc_hb_checker_exited);
149 
150 /* notification that the xpc_discovery thread has exited */
151 static DECLARE_COMPLETION(xpc_discovery_exited);
152 
153 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
154 
155 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
156 static struct notifier_block xpc_reboot_notifier = {
157 	.notifier_call = xpc_system_reboot,
158 };
159 
160 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
161 static struct notifier_block xpc_die_notifier = {
162 	.notifier_call = xpc_system_die,
163 };
164 
165 struct xpc_arch_operations xpc_arch_ops;
166 
167 /*
168  * Timer function to enforce the timelimit on the partition disengage.
169  */
170 static void
171 xpc_timeout_partition_disengage(unsigned long data)
172 {
173 	struct xpc_partition *part = (struct xpc_partition *)data;
174 
175 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
176 
177 	(void)xpc_partition_disengaged(part);
178 
179 	DBUG_ON(part->disengage_timeout != 0);
180 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
181 }
182 
183 /*
184  * Timer to produce the heartbeat.  The timer structures function is
185  * already set when this is initially called.  A tunable is used to
186  * specify when the next timeout should occur.
187  */
188 static void
189 xpc_hb_beater(unsigned long dummy)
190 {
191 	xpc_arch_ops.increment_heartbeat();
192 
193 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
194 		wake_up_interruptible(&xpc_activate_IRQ_wq);
195 
196 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
197 	add_timer(&xpc_hb_timer);
198 }
199 
200 static void
201 xpc_start_hb_beater(void)
202 {
203 	xpc_arch_ops.heartbeat_init();
204 	init_timer(&xpc_hb_timer);
205 	xpc_hb_timer.function = xpc_hb_beater;
206 	xpc_hb_beater(0);
207 }
208 
209 static void
210 xpc_stop_hb_beater(void)
211 {
212 	del_timer_sync(&xpc_hb_timer);
213 	xpc_arch_ops.heartbeat_exit();
214 }
215 
216 /*
217  * At periodic intervals, scan through all active partitions and ensure
218  * their heartbeat is still active.  If not, the partition is deactivated.
219  */
220 static void
221 xpc_check_remote_hb(void)
222 {
223 	struct xpc_partition *part;
224 	short partid;
225 	enum xp_retval ret;
226 
227 	for (partid = 0; partid < xp_max_npartitions; partid++) {
228 
229 		if (xpc_exiting)
230 			break;
231 
232 		if (partid == xp_partition_id)
233 			continue;
234 
235 		part = &xpc_partitions[partid];
236 
237 		if (part->act_state == XPC_P_AS_INACTIVE ||
238 		    part->act_state == XPC_P_AS_DEACTIVATING) {
239 			continue;
240 		}
241 
242 		ret = xpc_arch_ops.get_remote_heartbeat(part);
243 		if (ret != xpSuccess)
244 			XPC_DEACTIVATE_PARTITION(part, ret);
245 	}
246 }
247 
248 /*
249  * This thread is responsible for nearly all of the partition
250  * activation/deactivation.
251  */
252 static int
253 xpc_hb_checker(void *ignore)
254 {
255 	int force_IRQ = 0;
256 
257 	/* this thread was marked active by xpc_hb_init() */
258 
259 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
260 
261 	/* set our heartbeating to other partitions into motion */
262 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
263 	xpc_start_hb_beater();
264 
265 	while (!xpc_exiting) {
266 
267 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
268 			"been received\n",
269 			(int)(xpc_hb_check_timeout - jiffies),
270 			xpc_activate_IRQ_rcvd);
271 
272 		/* checking of remote heartbeats is skewed by IRQ handling */
273 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
274 			xpc_hb_check_timeout = jiffies +
275 			    (xpc_hb_check_interval * HZ);
276 
277 			dev_dbg(xpc_part, "checking remote heartbeats\n");
278 			xpc_check_remote_hb();
279 
280 			/*
281 			 * On sn2 we need to periodically recheck to ensure no
282 			 * IRQ/amo pairs have been missed.
283 			 */
284 			if (is_shub())
285 				force_IRQ = 1;
286 		}
287 
288 		/* check for outstanding IRQs */
289 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
290 			force_IRQ = 0;
291 			dev_dbg(xpc_part, "processing activate IRQs "
292 				"received\n");
293 			xpc_arch_ops.process_activate_IRQ_rcvd();
294 		}
295 
296 		/* wait for IRQ or timeout */
297 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
298 					       (time_is_before_eq_jiffies(
299 						xpc_hb_check_timeout) ||
300 						xpc_activate_IRQ_rcvd > 0 ||
301 						xpc_exiting));
302 	}
303 
304 	xpc_stop_hb_beater();
305 
306 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
307 
308 	/* mark this thread as having exited */
309 	complete(&xpc_hb_checker_exited);
310 	return 0;
311 }
312 
313 /*
314  * This thread will attempt to discover other partitions to activate
315  * based on info provided by SAL. This new thread is short lived and
316  * will exit once discovery is complete.
317  */
318 static int
319 xpc_initiate_discovery(void *ignore)
320 {
321 	xpc_discovery();
322 
323 	dev_dbg(xpc_part, "discovery thread is exiting\n");
324 
325 	/* mark this thread as having exited */
326 	complete(&xpc_discovery_exited);
327 	return 0;
328 }
329 
330 /*
331  * The first kthread assigned to a newly activated partition is the one
332  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
333  * that kthread until the partition is brought down, at which time that kthread
334  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
335  * that XPC has dismantled all communication infrastructure for the associated
336  * partition.) This kthread becomes the channel manager for that partition.
337  *
338  * Each active partition has a channel manager, who, besides connecting and
339  * disconnecting channels, will ensure that each of the partition's connected
340  * channels has the required number of assigned kthreads to get the work done.
341  */
342 static void
343 xpc_channel_mgr(struct xpc_partition *part)
344 {
345 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
346 	       atomic_read(&part->nchannels_active) > 0 ||
347 	       !xpc_partition_disengaged(part)) {
348 
349 		xpc_process_sent_chctl_flags(part);
350 
351 		/*
352 		 * Wait until we've been requested to activate kthreads or
353 		 * all of the channel's message queues have been torn down or
354 		 * a signal is pending.
355 		 *
356 		 * The channel_mgr_requests is set to 1 after being awakened,
357 		 * This is done to prevent the channel mgr from making one pass
358 		 * through the loop for each request, since he will
359 		 * be servicing all the requests in one pass. The reason it's
360 		 * set to 1 instead of 0 is so that other kthreads will know
361 		 * that the channel mgr is running and won't bother trying to
362 		 * wake him up.
363 		 */
364 		atomic_dec(&part->channel_mgr_requests);
365 		(void)wait_event_interruptible(part->channel_mgr_wq,
366 				(atomic_read(&part->channel_mgr_requests) > 0 ||
367 				 part->chctl.all_flags != 0 ||
368 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
369 				 atomic_read(&part->nchannels_active) == 0 &&
370 				 xpc_partition_disengaged(part))));
371 		atomic_set(&part->channel_mgr_requests, 1);
372 	}
373 }
374 
375 /*
376  * Guarantee that the kzalloc'd memory is cacheline aligned.
377  */
378 void *
379 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
380 {
381 	/* see if kzalloc will give us cachline aligned memory by default */
382 	*base = kzalloc(size, flags);
383 	if (*base == NULL)
384 		return NULL;
385 
386 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
387 		return *base;
388 
389 	kfree(*base);
390 
391 	/* nope, we'll have to do it ourselves */
392 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
393 	if (*base == NULL)
394 		return NULL;
395 
396 	return (void *)L1_CACHE_ALIGN((u64)*base);
397 }
398 
399 /*
400  * Setup the channel structures necessary to support XPartition Communication
401  * between the specified remote partition and the local one.
402  */
403 static enum xp_retval
404 xpc_setup_ch_structures(struct xpc_partition *part)
405 {
406 	enum xp_retval ret;
407 	int ch_number;
408 	struct xpc_channel *ch;
409 	short partid = XPC_PARTID(part);
410 
411 	/*
412 	 * Allocate all of the channel structures as a contiguous chunk of
413 	 * memory.
414 	 */
415 	DBUG_ON(part->channels != NULL);
416 	part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
417 				 GFP_KERNEL);
418 	if (part->channels == NULL) {
419 		dev_err(xpc_chan, "can't get memory for channels\n");
420 		return xpNoMemory;
421 	}
422 
423 	/* allocate the remote open and close args */
424 
425 	part->remote_openclose_args =
426 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
427 					  GFP_KERNEL, &part->
428 					  remote_openclose_args_base);
429 	if (part->remote_openclose_args == NULL) {
430 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
431 		ret = xpNoMemory;
432 		goto out_1;
433 	}
434 
435 	part->chctl.all_flags = 0;
436 	spin_lock_init(&part->chctl_lock);
437 
438 	atomic_set(&part->channel_mgr_requests, 1);
439 	init_waitqueue_head(&part->channel_mgr_wq);
440 
441 	part->nchannels = XPC_MAX_NCHANNELS;
442 
443 	atomic_set(&part->nchannels_active, 0);
444 	atomic_set(&part->nchannels_engaged, 0);
445 
446 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
447 		ch = &part->channels[ch_number];
448 
449 		ch->partid = partid;
450 		ch->number = ch_number;
451 		ch->flags = XPC_C_DISCONNECTED;
452 
453 		atomic_set(&ch->kthreads_assigned, 0);
454 		atomic_set(&ch->kthreads_idle, 0);
455 		atomic_set(&ch->kthreads_active, 0);
456 
457 		atomic_set(&ch->references, 0);
458 		atomic_set(&ch->n_to_notify, 0);
459 
460 		spin_lock_init(&ch->lock);
461 		init_completion(&ch->wdisconnect_wait);
462 
463 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
464 		init_waitqueue_head(&ch->msg_allocate_wq);
465 		init_waitqueue_head(&ch->idle_wq);
466 	}
467 
468 	ret = xpc_arch_ops.setup_ch_structures(part);
469 	if (ret != xpSuccess)
470 		goto out_2;
471 
472 	/*
473 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
474 	 * we're declaring that this partition is ready to go.
475 	 */
476 	part->setup_state = XPC_P_SS_SETUP;
477 
478 	return xpSuccess;
479 
480 	/* setup of ch structures failed */
481 out_2:
482 	kfree(part->remote_openclose_args_base);
483 	part->remote_openclose_args = NULL;
484 out_1:
485 	kfree(part->channels);
486 	part->channels = NULL;
487 	return ret;
488 }
489 
490 /*
491  * Teardown the channel structures necessary to support XPartition Communication
492  * between the specified remote partition and the local one.
493  */
494 static void
495 xpc_teardown_ch_structures(struct xpc_partition *part)
496 {
497 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
498 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
499 
500 	/*
501 	 * Make this partition inaccessible to local processes by marking it
502 	 * as no longer setup. Then wait before proceeding with the teardown
503 	 * until all existing references cease.
504 	 */
505 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
506 	part->setup_state = XPC_P_SS_WTEARDOWN;
507 
508 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
509 
510 	/* now we can begin tearing down the infrastructure */
511 
512 	xpc_arch_ops.teardown_ch_structures(part);
513 
514 	kfree(part->remote_openclose_args_base);
515 	part->remote_openclose_args = NULL;
516 	kfree(part->channels);
517 	part->channels = NULL;
518 
519 	part->setup_state = XPC_P_SS_TORNDOWN;
520 }
521 
522 /*
523  * When XPC HB determines that a partition has come up, it will create a new
524  * kthread and that kthread will call this function to attempt to set up the
525  * basic infrastructure used for Cross Partition Communication with the newly
526  * upped partition.
527  *
528  * The kthread that was created by XPC HB and which setup the XPC
529  * infrastructure will remain assigned to the partition becoming the channel
530  * manager for that partition until the partition is deactivating, at which
531  * time the kthread will teardown the XPC infrastructure and then exit.
532  */
533 static int
534 xpc_activating(void *__partid)
535 {
536 	short partid = (u64)__partid;
537 	struct xpc_partition *part = &xpc_partitions[partid];
538 	unsigned long irq_flags;
539 
540 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
541 
542 	spin_lock_irqsave(&part->act_lock, irq_flags);
543 
544 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
545 		part->act_state = XPC_P_AS_INACTIVE;
546 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
547 		part->remote_rp_pa = 0;
548 		return 0;
549 	}
550 
551 	/* indicate the thread is activating */
552 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
553 	part->act_state = XPC_P_AS_ACTIVATING;
554 
555 	XPC_SET_REASON(part, 0, 0);
556 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
557 
558 	dev_dbg(xpc_part, "activating partition %d\n", partid);
559 
560 	xpc_arch_ops.allow_hb(partid);
561 
562 	if (xpc_setup_ch_structures(part) == xpSuccess) {
563 		(void)xpc_part_ref(part);	/* this will always succeed */
564 
565 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
566 			xpc_mark_partition_active(part);
567 			xpc_channel_mgr(part);
568 			/* won't return until partition is deactivating */
569 		}
570 
571 		xpc_part_deref(part);
572 		xpc_teardown_ch_structures(part);
573 	}
574 
575 	xpc_arch_ops.disallow_hb(partid);
576 	xpc_mark_partition_inactive(part);
577 
578 	if (part->reason == xpReactivating) {
579 		/* interrupting ourselves results in activating partition */
580 		xpc_arch_ops.request_partition_reactivation(part);
581 	}
582 
583 	return 0;
584 }
585 
586 void
587 xpc_activate_partition(struct xpc_partition *part)
588 {
589 	short partid = XPC_PARTID(part);
590 	unsigned long irq_flags;
591 	struct task_struct *kthread;
592 
593 	spin_lock_irqsave(&part->act_lock, irq_flags);
594 
595 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
596 
597 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
598 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
599 
600 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
601 
602 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
603 			      partid);
604 	if (IS_ERR(kthread)) {
605 		spin_lock_irqsave(&part->act_lock, irq_flags);
606 		part->act_state = XPC_P_AS_INACTIVE;
607 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
608 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
609 	}
610 }
611 
612 void
613 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
614 {
615 	int idle = atomic_read(&ch->kthreads_idle);
616 	int assigned = atomic_read(&ch->kthreads_assigned);
617 	int wakeup;
618 
619 	DBUG_ON(needed <= 0);
620 
621 	if (idle > 0) {
622 		wakeup = (needed > idle) ? idle : needed;
623 		needed -= wakeup;
624 
625 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
626 			"channel=%d\n", wakeup, ch->partid, ch->number);
627 
628 		/* only wakeup the requested number of kthreads */
629 		wake_up_nr(&ch->idle_wq, wakeup);
630 	}
631 
632 	if (needed <= 0)
633 		return;
634 
635 	if (needed + assigned > ch->kthreads_assigned_limit) {
636 		needed = ch->kthreads_assigned_limit - assigned;
637 		if (needed <= 0)
638 			return;
639 	}
640 
641 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
642 		needed, ch->partid, ch->number);
643 
644 	xpc_create_kthreads(ch, needed, 0);
645 }
646 
647 /*
648  * This function is where XPC's kthreads wait for messages to deliver.
649  */
650 static void
651 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
652 {
653 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
654 		xpc_arch_ops.n_of_deliverable_payloads;
655 
656 	do {
657 		/* deliver messages to their intended recipients */
658 
659 		while (n_of_deliverable_payloads(ch) > 0 &&
660 		       !(ch->flags & XPC_C_DISCONNECTING)) {
661 			xpc_deliver_payload(ch);
662 		}
663 
664 		if (atomic_inc_return(&ch->kthreads_idle) >
665 		    ch->kthreads_idle_limit) {
666 			/* too many idle kthreads on this channel */
667 			atomic_dec(&ch->kthreads_idle);
668 			break;
669 		}
670 
671 		dev_dbg(xpc_chan, "idle kthread calling "
672 			"wait_event_interruptible_exclusive()\n");
673 
674 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
675 				(n_of_deliverable_payloads(ch) > 0 ||
676 				 (ch->flags & XPC_C_DISCONNECTING)));
677 
678 		atomic_dec(&ch->kthreads_idle);
679 
680 	} while (!(ch->flags & XPC_C_DISCONNECTING));
681 }
682 
683 static int
684 xpc_kthread_start(void *args)
685 {
686 	short partid = XPC_UNPACK_ARG1(args);
687 	u16 ch_number = XPC_UNPACK_ARG2(args);
688 	struct xpc_partition *part = &xpc_partitions[partid];
689 	struct xpc_channel *ch;
690 	int n_needed;
691 	unsigned long irq_flags;
692 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
693 		xpc_arch_ops.n_of_deliverable_payloads;
694 
695 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
696 		partid, ch_number);
697 
698 	ch = &part->channels[ch_number];
699 
700 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
701 
702 		/* let registerer know that connection has been established */
703 
704 		spin_lock_irqsave(&ch->lock, irq_flags);
705 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
706 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
707 			spin_unlock_irqrestore(&ch->lock, irq_flags);
708 
709 			xpc_connected_callout(ch);
710 
711 			spin_lock_irqsave(&ch->lock, irq_flags);
712 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
713 			spin_unlock_irqrestore(&ch->lock, irq_flags);
714 
715 			/*
716 			 * It is possible that while the callout was being
717 			 * made that the remote partition sent some messages.
718 			 * If that is the case, we may need to activate
719 			 * additional kthreads to help deliver them. We only
720 			 * need one less than total #of messages to deliver.
721 			 */
722 			n_needed = n_of_deliverable_payloads(ch) - 1;
723 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
724 				xpc_activate_kthreads(ch, n_needed);
725 
726 		} else {
727 			spin_unlock_irqrestore(&ch->lock, irq_flags);
728 		}
729 
730 		xpc_kthread_waitmsgs(part, ch);
731 	}
732 
733 	/* let registerer know that connection is disconnecting */
734 
735 	spin_lock_irqsave(&ch->lock, irq_flags);
736 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
737 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
738 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
739 		spin_unlock_irqrestore(&ch->lock, irq_flags);
740 
741 		xpc_disconnect_callout(ch, xpDisconnecting);
742 
743 		spin_lock_irqsave(&ch->lock, irq_flags);
744 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
745 	}
746 	spin_unlock_irqrestore(&ch->lock, irq_flags);
747 
748 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
749 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
750 		xpc_arch_ops.indicate_partition_disengaged(part);
751 	}
752 
753 	xpc_msgqueue_deref(ch);
754 
755 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
756 		partid, ch_number);
757 
758 	xpc_part_deref(part);
759 	return 0;
760 }
761 
762 /*
763  * For each partition that XPC has established communications with, there is
764  * a minimum of one kernel thread assigned to perform any operation that
765  * may potentially sleep or block (basically the callouts to the asynchronous
766  * functions registered via xpc_connect()).
767  *
768  * Additional kthreads are created and destroyed by XPC as the workload
769  * demands.
770  *
771  * A kthread is assigned to one of the active channels that exists for a given
772  * partition.
773  */
774 void
775 xpc_create_kthreads(struct xpc_channel *ch, int needed,
776 		    int ignore_disconnecting)
777 {
778 	unsigned long irq_flags;
779 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
780 	struct xpc_partition *part = &xpc_partitions[ch->partid];
781 	struct task_struct *kthread;
782 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
783 		xpc_arch_ops.indicate_partition_disengaged;
784 
785 	while (needed-- > 0) {
786 
787 		/*
788 		 * The following is done on behalf of the newly created
789 		 * kthread. That kthread is responsible for doing the
790 		 * counterpart to the following before it exits.
791 		 */
792 		if (ignore_disconnecting) {
793 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
794 				/* kthreads assigned had gone to zero */
795 				BUG_ON(!(ch->flags &
796 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
797 				break;
798 			}
799 
800 		} else if (ch->flags & XPC_C_DISCONNECTING) {
801 			break;
802 
803 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
804 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
805 			xpc_arch_ops.indicate_partition_engaged(part);
806 		}
807 		(void)xpc_part_ref(part);
808 		xpc_msgqueue_ref(ch);
809 
810 		kthread = kthread_run(xpc_kthread_start, (void *)args,
811 				      "xpc%02dc%d", ch->partid, ch->number);
812 		if (IS_ERR(kthread)) {
813 			/* the fork failed */
814 
815 			/*
816 			 * NOTE: if (ignore_disconnecting &&
817 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
818 			 * then we'll deadlock if all other kthreads assigned
819 			 * to this channel are blocked in the channel's
820 			 * registerer, because the only thing that will unblock
821 			 * them is the xpDisconnecting callout that this
822 			 * failed kthread_run() would have made.
823 			 */
824 
825 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
826 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
827 				indicate_partition_disengaged(part);
828 			}
829 			xpc_msgqueue_deref(ch);
830 			xpc_part_deref(part);
831 
832 			if (atomic_read(&ch->kthreads_assigned) <
833 			    ch->kthreads_idle_limit) {
834 				/*
835 				 * Flag this as an error only if we have an
836 				 * insufficient #of kthreads for the channel
837 				 * to function.
838 				 */
839 				spin_lock_irqsave(&ch->lock, irq_flags);
840 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
841 						       &irq_flags);
842 				spin_unlock_irqrestore(&ch->lock, irq_flags);
843 			}
844 			break;
845 		}
846 	}
847 }
848 
849 void
850 xpc_disconnect_wait(int ch_number)
851 {
852 	unsigned long irq_flags;
853 	short partid;
854 	struct xpc_partition *part;
855 	struct xpc_channel *ch;
856 	int wakeup_channel_mgr;
857 
858 	/* now wait for all callouts to the caller's function to cease */
859 	for (partid = 0; partid < xp_max_npartitions; partid++) {
860 		part = &xpc_partitions[partid];
861 
862 		if (!xpc_part_ref(part))
863 			continue;
864 
865 		ch = &part->channels[ch_number];
866 
867 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
868 			xpc_part_deref(part);
869 			continue;
870 		}
871 
872 		wait_for_completion(&ch->wdisconnect_wait);
873 
874 		spin_lock_irqsave(&ch->lock, irq_flags);
875 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
876 		wakeup_channel_mgr = 0;
877 
878 		if (ch->delayed_chctl_flags) {
879 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
880 				spin_lock(&part->chctl_lock);
881 				part->chctl.flags[ch->number] |=
882 				    ch->delayed_chctl_flags;
883 				spin_unlock(&part->chctl_lock);
884 				wakeup_channel_mgr = 1;
885 			}
886 			ch->delayed_chctl_flags = 0;
887 		}
888 
889 		ch->flags &= ~XPC_C_WDISCONNECT;
890 		spin_unlock_irqrestore(&ch->lock, irq_flags);
891 
892 		if (wakeup_channel_mgr)
893 			xpc_wakeup_channel_mgr(part);
894 
895 		xpc_part_deref(part);
896 	}
897 }
898 
899 static int
900 xpc_setup_partitions(void)
901 {
902 	short partid;
903 	struct xpc_partition *part;
904 
905 	xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
906 				 xp_max_npartitions, GFP_KERNEL);
907 	if (xpc_partitions == NULL) {
908 		dev_err(xpc_part, "can't get memory for partition structure\n");
909 		return -ENOMEM;
910 	}
911 
912 	/*
913 	 * The first few fields of each entry of xpc_partitions[] need to
914 	 * be initialized now so that calls to xpc_connect() and
915 	 * xpc_disconnect() can be made prior to the activation of any remote
916 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
917 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
918 	 * PARTITION HAS BEEN ACTIVATED.
919 	 */
920 	for (partid = 0; partid < xp_max_npartitions; partid++) {
921 		part = &xpc_partitions[partid];
922 
923 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
924 
925 		part->activate_IRQ_rcvd = 0;
926 		spin_lock_init(&part->act_lock);
927 		part->act_state = XPC_P_AS_INACTIVE;
928 		XPC_SET_REASON(part, 0, 0);
929 
930 		init_timer(&part->disengage_timer);
931 		part->disengage_timer.function =
932 		    xpc_timeout_partition_disengage;
933 		part->disengage_timer.data = (unsigned long)part;
934 
935 		part->setup_state = XPC_P_SS_UNSET;
936 		init_waitqueue_head(&part->teardown_wq);
937 		atomic_set(&part->references, 0);
938 	}
939 
940 	return xpc_arch_ops.setup_partitions();
941 }
942 
943 static void
944 xpc_teardown_partitions(void)
945 {
946 	xpc_arch_ops.teardown_partitions();
947 	kfree(xpc_partitions);
948 }
949 
950 static void
951 xpc_do_exit(enum xp_retval reason)
952 {
953 	short partid;
954 	int active_part_count, printed_waiting_msg = 0;
955 	struct xpc_partition *part;
956 	unsigned long printmsg_time, disengage_timeout = 0;
957 
958 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
959 	DBUG_ON(xpc_exiting == 1);
960 
961 	/*
962 	 * Let the heartbeat checker thread and the discovery thread
963 	 * (if one is running) know that they should exit. Also wake up
964 	 * the heartbeat checker thread in case it's sleeping.
965 	 */
966 	xpc_exiting = 1;
967 	wake_up_interruptible(&xpc_activate_IRQ_wq);
968 
969 	/* wait for the discovery thread to exit */
970 	wait_for_completion(&xpc_discovery_exited);
971 
972 	/* wait for the heartbeat checker thread to exit */
973 	wait_for_completion(&xpc_hb_checker_exited);
974 
975 	/* sleep for a 1/3 of a second or so */
976 	(void)msleep_interruptible(300);
977 
978 	/* wait for all partitions to become inactive */
979 
980 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
981 	xpc_disengage_timedout = 0;
982 
983 	do {
984 		active_part_count = 0;
985 
986 		for (partid = 0; partid < xp_max_npartitions; partid++) {
987 			part = &xpc_partitions[partid];
988 
989 			if (xpc_partition_disengaged(part) &&
990 			    part->act_state == XPC_P_AS_INACTIVE) {
991 				continue;
992 			}
993 
994 			active_part_count++;
995 
996 			XPC_DEACTIVATE_PARTITION(part, reason);
997 
998 			if (part->disengage_timeout > disengage_timeout)
999 				disengage_timeout = part->disengage_timeout;
1000 		}
1001 
1002 		if (xpc_arch_ops.any_partition_engaged()) {
1003 			if (time_is_before_jiffies(printmsg_time)) {
1004 				dev_info(xpc_part, "waiting for remote "
1005 					 "partitions to deactivate, timeout in "
1006 					 "%ld seconds\n", (disengage_timeout -
1007 					 jiffies) / HZ);
1008 				printmsg_time = jiffies +
1009 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1010 				printed_waiting_msg = 1;
1011 			}
1012 
1013 		} else if (active_part_count > 0) {
1014 			if (printed_waiting_msg) {
1015 				dev_info(xpc_part, "waiting for local partition"
1016 					 " to deactivate\n");
1017 				printed_waiting_msg = 0;
1018 			}
1019 
1020 		} else {
1021 			if (!xpc_disengage_timedout) {
1022 				dev_info(xpc_part, "all partitions have "
1023 					 "deactivated\n");
1024 			}
1025 			break;
1026 		}
1027 
1028 		/* sleep for a 1/3 of a second or so */
1029 		(void)msleep_interruptible(300);
1030 
1031 	} while (1);
1032 
1033 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1034 
1035 	xpc_teardown_rsvd_page();
1036 
1037 	if (reason == xpUnloading) {
1038 		(void)unregister_die_notifier(&xpc_die_notifier);
1039 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1040 	}
1041 
1042 	/* clear the interface to XPC's functions */
1043 	xpc_clear_interface();
1044 
1045 	if (xpc_sysctl)
1046 		unregister_sysctl_table(xpc_sysctl);
1047 
1048 	xpc_teardown_partitions();
1049 
1050 	if (is_shub())
1051 		xpc_exit_sn2();
1052 	else if (is_uv())
1053 		xpc_exit_uv();
1054 }
1055 
1056 /*
1057  * This function is called when the system is being rebooted.
1058  */
1059 static int
1060 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1061 {
1062 	enum xp_retval reason;
1063 
1064 	switch (event) {
1065 	case SYS_RESTART:
1066 		reason = xpSystemReboot;
1067 		break;
1068 	case SYS_HALT:
1069 		reason = xpSystemHalt;
1070 		break;
1071 	case SYS_POWER_OFF:
1072 		reason = xpSystemPoweroff;
1073 		break;
1074 	default:
1075 		reason = xpSystemGoingDown;
1076 	}
1077 
1078 	xpc_do_exit(reason);
1079 	return NOTIFY_DONE;
1080 }
1081 
1082 /*
1083  * Notify other partitions to deactivate from us by first disengaging from all
1084  * references to our memory.
1085  */
1086 static void
1087 xpc_die_deactivate(void)
1088 {
1089 	struct xpc_partition *part;
1090 	short partid;
1091 	int any_engaged;
1092 	long keep_waiting;
1093 	long wait_to_print;
1094 
1095 	/* keep xpc_hb_checker thread from doing anything (just in case) */
1096 	xpc_exiting = 1;
1097 
1098 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1099 
1100 	for (partid = 0; partid < xp_max_npartitions; partid++) {
1101 		part = &xpc_partitions[partid];
1102 
1103 		if (xpc_arch_ops.partition_engaged(partid) ||
1104 		    part->act_state != XPC_P_AS_INACTIVE) {
1105 			xpc_arch_ops.request_partition_deactivation(part);
1106 			xpc_arch_ops.indicate_partition_disengaged(part);
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Though we requested that all other partitions deactivate from us,
1112 	 * we only wait until they've all disengaged or we've reached the
1113 	 * defined timelimit.
1114 	 *
1115 	 * Given that one iteration through the following while-loop takes
1116 	 * approximately 200 microseconds, calculate the #of loops to take
1117 	 * before bailing and the #of loops before printing a waiting message.
1118 	 */
1119 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1120 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1121 
1122 	while (1) {
1123 		any_engaged = xpc_arch_ops.any_partition_engaged();
1124 		if (!any_engaged) {
1125 			dev_info(xpc_part, "all partitions have deactivated\n");
1126 			break;
1127 		}
1128 
1129 		if (!keep_waiting--) {
1130 			for (partid = 0; partid < xp_max_npartitions;
1131 			     partid++) {
1132 				if (xpc_arch_ops.partition_engaged(partid)) {
1133 					dev_info(xpc_part, "deactivate from "
1134 						 "remote partition %d timed "
1135 						 "out\n", partid);
1136 				}
1137 			}
1138 			break;
1139 		}
1140 
1141 		if (!wait_to_print--) {
1142 			dev_info(xpc_part, "waiting for remote partitions to "
1143 				 "deactivate, timeout in %ld seconds\n",
1144 				 keep_waiting / (1000 * 5));
1145 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1146 			    1000 * 5;
1147 		}
1148 
1149 		udelay(200);
1150 	}
1151 }
1152 
1153 /*
1154  * This function is called when the system is being restarted or halted due
1155  * to some sort of system failure. If this is the case we need to notify the
1156  * other partitions to disengage from all references to our memory.
1157  * This function can also be called when our heartbeater could be offlined
1158  * for a time. In this case we need to notify other partitions to not worry
1159  * about the lack of a heartbeat.
1160  */
1161 static int
1162 xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
1163 {
1164 #ifdef CONFIG_IA64		/* !!! temporary kludge */
1165 	switch (event) {
1166 	case DIE_MACHINE_RESTART:
1167 	case DIE_MACHINE_HALT:
1168 		xpc_die_deactivate();
1169 		break;
1170 
1171 	case DIE_KDEBUG_ENTER:
1172 		/* Should lack of heartbeat be ignored by other partitions? */
1173 		if (!xpc_kdebug_ignore)
1174 			break;
1175 
1176 		/* fall through */
1177 	case DIE_MCA_MONARCH_ENTER:
1178 	case DIE_INIT_MONARCH_ENTER:
1179 		xpc_arch_ops.offline_heartbeat();
1180 		break;
1181 
1182 	case DIE_KDEBUG_LEAVE:
1183 		/* Is lack of heartbeat being ignored by other partitions? */
1184 		if (!xpc_kdebug_ignore)
1185 			break;
1186 
1187 		/* fall through */
1188 	case DIE_MCA_MONARCH_LEAVE:
1189 	case DIE_INIT_MONARCH_LEAVE:
1190 		xpc_arch_ops.online_heartbeat();
1191 		break;
1192 	}
1193 #else
1194 	xpc_die_deactivate();
1195 #endif
1196 
1197 	return NOTIFY_DONE;
1198 }
1199 
1200 int __init
1201 xpc_init(void)
1202 {
1203 	int ret;
1204 	struct task_struct *kthread;
1205 
1206 	dev_set_name(xpc_part, "part");
1207 	dev_set_name(xpc_chan, "chan");
1208 
1209 	if (is_shub()) {
1210 		/*
1211 		 * The ia64-sn2 architecture supports at most 64 partitions.
1212 		 * And the inability to unregister remote amos restricts us
1213 		 * further to only support exactly 64 partitions on this
1214 		 * architecture, no less.
1215 		 */
1216 		if (xp_max_npartitions != 64) {
1217 			dev_err(xpc_part, "max #of partitions not set to 64\n");
1218 			ret = -EINVAL;
1219 		} else {
1220 			ret = xpc_init_sn2();
1221 		}
1222 
1223 	} else if (is_uv()) {
1224 		ret = xpc_init_uv();
1225 
1226 	} else {
1227 		ret = -ENODEV;
1228 	}
1229 
1230 	if (ret != 0)
1231 		return ret;
1232 
1233 	ret = xpc_setup_partitions();
1234 	if (ret != 0) {
1235 		dev_err(xpc_part, "can't get memory for partition structure\n");
1236 		goto out_1;
1237 	}
1238 
1239 	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1240 
1241 	/*
1242 	 * Fill the partition reserved page with the information needed by
1243 	 * other partitions to discover we are alive and establish initial
1244 	 * communications.
1245 	 */
1246 	ret = xpc_setup_rsvd_page();
1247 	if (ret != 0) {
1248 		dev_err(xpc_part, "can't setup our reserved page\n");
1249 		goto out_2;
1250 	}
1251 
1252 	/* add ourselves to the reboot_notifier_list */
1253 	ret = register_reboot_notifier(&xpc_reboot_notifier);
1254 	if (ret != 0)
1255 		dev_warn(xpc_part, "can't register reboot notifier\n");
1256 
1257 	/* add ourselves to the die_notifier list */
1258 	ret = register_die_notifier(&xpc_die_notifier);
1259 	if (ret != 0)
1260 		dev_warn(xpc_part, "can't register die notifier\n");
1261 
1262 	/*
1263 	 * The real work-horse behind xpc.  This processes incoming
1264 	 * interrupts and monitors remote heartbeats.
1265 	 */
1266 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1267 	if (IS_ERR(kthread)) {
1268 		dev_err(xpc_part, "failed while forking hb check thread\n");
1269 		ret = -EBUSY;
1270 		goto out_3;
1271 	}
1272 
1273 	/*
1274 	 * Startup a thread that will attempt to discover other partitions to
1275 	 * activate based on info provided by SAL. This new thread is short
1276 	 * lived and will exit once discovery is complete.
1277 	 */
1278 	kthread = kthread_run(xpc_initiate_discovery, NULL,
1279 			      XPC_DISCOVERY_THREAD_NAME);
1280 	if (IS_ERR(kthread)) {
1281 		dev_err(xpc_part, "failed while forking discovery thread\n");
1282 
1283 		/* mark this new thread as a non-starter */
1284 		complete(&xpc_discovery_exited);
1285 
1286 		xpc_do_exit(xpUnloading);
1287 		return -EBUSY;
1288 	}
1289 
1290 	/* set the interface to point at XPC's functions */
1291 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1292 			  xpc_initiate_send, xpc_initiate_send_notify,
1293 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1294 
1295 	return 0;
1296 
1297 	/* initialization was not successful */
1298 out_3:
1299 	xpc_teardown_rsvd_page();
1300 
1301 	(void)unregister_die_notifier(&xpc_die_notifier);
1302 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1303 out_2:
1304 	if (xpc_sysctl)
1305 		unregister_sysctl_table(xpc_sysctl);
1306 
1307 	xpc_teardown_partitions();
1308 out_1:
1309 	if (is_shub())
1310 		xpc_exit_sn2();
1311 	else if (is_uv())
1312 		xpc_exit_uv();
1313 	return ret;
1314 }
1315 
1316 module_init(xpc_init);
1317 
1318 void __exit
1319 xpc_exit(void)
1320 {
1321 	xpc_do_exit(xpUnloading);
1322 }
1323 
1324 module_exit(xpc_exit);
1325 
1326 MODULE_AUTHOR("Silicon Graphics, Inc.");
1327 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1328 MODULE_LICENSE("GPL");
1329 
1330 module_param(xpc_hb_interval, int, 0);
1331 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1332 		 "heartbeat increments.");
1333 
1334 module_param(xpc_hb_check_interval, int, 0);
1335 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1336 		 "heartbeat checks.");
1337 
1338 module_param(xpc_disengage_timelimit, int, 0);
1339 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1340 		 "for disengage to complete.");
1341 
1342 module_param(xpc_kdebug_ignore, int, 0);
1343 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1344 		 "other partitions when dropping into kdebug.");
1345