xref: /openbmc/linux/drivers/misc/sgi-gru/grutlbpurge.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SN Platform GRU Driver
4  *
5  * 		MMUOPS callbacks  + TLB flushing
6  *
7  * This file handles emu notifier callbacks from the core kernel. The callbacks
8  * are used to update the TLB in the GRU as a result of changes in the
9  * state of a process address space. This file also handles TLB invalidates
10  * from the GRU driver.
11  *
12  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/hugetlb.h>
22 #include <linux/delay.h>
23 #include <linux/timex.h>
24 #include <linux/srcu.h>
25 #include <asm/processor.h>
26 #include "gru.h"
27 #include "grutables.h"
28 #include <asm/uv/uv_hub.h>
29 
30 #define gru_random()	get_cycles()
31 
32 /* ---------------------------------- TLB Invalidation functions --------
33  * get_tgh_handle
34  *
35  * Find a TGH to use for issuing a TLB invalidate. For GRUs that are on the
36  * local blade, use a fixed TGH that is a function of the blade-local cpu
37  * number. Normally, this TGH is private to the cpu & no contention occurs for
38  * the TGH. For offblade GRUs, select a random TGH in the range above the
39  * private TGHs. A spinlock is required to access this TGH & the lock must be
40  * released when the invalidate is completes. This sucks, but it is the best we
41  * can do.
42  *
43  * Note that the spinlock is IN the TGH handle so locking does not involve
44  * additional cache lines.
45  *
46  */
47 static inline int get_off_blade_tgh(struct gru_state *gru)
48 {
49 	int n;
50 
51 	n = GRU_NUM_TGH - gru->gs_tgh_first_remote;
52 	n = gru_random() % n;
53 	n += gru->gs_tgh_first_remote;
54 	return n;
55 }
56 
57 static inline int get_on_blade_tgh(struct gru_state *gru)
58 {
59 	return uv_blade_processor_id() >> gru->gs_tgh_local_shift;
60 }
61 
62 static struct gru_tlb_global_handle *get_lock_tgh_handle(struct gru_state
63 							 *gru)
64 {
65 	struct gru_tlb_global_handle *tgh;
66 	int n;
67 
68 	preempt_disable();
69 	if (uv_numa_blade_id() == gru->gs_blade_id)
70 		n = get_on_blade_tgh(gru);
71 	else
72 		n = get_off_blade_tgh(gru);
73 	tgh = get_tgh_by_index(gru, n);
74 	lock_tgh_handle(tgh);
75 
76 	return tgh;
77 }
78 
79 static void get_unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
80 {
81 	unlock_tgh_handle(tgh);
82 	preempt_enable();
83 }
84 
85 /*
86  * gru_flush_tlb_range
87  *
88  * General purpose TLB invalidation function. This function scans every GRU in
89  * the ENTIRE system (partition) looking for GRUs where the specified MM has
90  * been accessed by the GRU. For each GRU found, the TLB must be invalidated OR
91  * the ASID invalidated. Invalidating an ASID causes a new ASID to be assigned
92  * on the next fault. This effectively flushes the ENTIRE TLB for the MM at the
93  * cost of (possibly) a large number of future TLBmisses.
94  *
95  * The current algorithm is optimized based on the following (somewhat true)
96  * assumptions:
97  * 	- GRU contexts are not loaded into a GRU unless a reference is made to
98  * 	  the data segment or control block (this is true, not an assumption).
99  * 	  If a DS/CB is referenced, the user will also issue instructions that
100  * 	  cause TLBmisses. It is not necessary to optimize for the case where
101  * 	  contexts are loaded but no instructions cause TLB misses. (I know
102  * 	  this will happen but I'm not optimizing for it).
103  * 	- GRU instructions to invalidate TLB entries are SLOOOOWWW - normally
104  * 	  a few usec but in unusual cases, it could be longer. Avoid if
105  * 	  possible.
106  * 	- intrablade process migration between cpus is not frequent but is
107  * 	  common.
108  * 	- a GRU context is not typically migrated to a different GRU on the
109  * 	  blade because of intrablade migration
110  *	- interblade migration is rare. Processes migrate their GRU context to
111  *	  the new blade.
112  *	- if interblade migration occurs, migration back to the original blade
113  *	  is very very rare (ie., no optimization for this case)
114  *	- most GRU instruction operate on a subset of the user REGIONS. Code
115  *	  & shared library regions are not likely targets of GRU instructions.
116  *
117  * To help improve the efficiency of TLB invalidation, the GMS data
118  * structure is maintained for EACH address space (MM struct). The GMS is
119  * also the structure that contains the pointer to the mmu callout
120  * functions. This structure is linked to the mm_struct for the address space
121  * using the mmu "register" function. The mmu interfaces are used to
122  * provide the callbacks for TLB invalidation. The GMS contains:
123  *
124  * 	- asid[maxgrus] array. ASIDs are assigned to a GRU when a context is
125  * 	  loaded into the GRU.
126  * 	- asidmap[maxgrus]. bitmap to make it easier to find non-zero asids in
127  * 	  the above array
128  *	- ctxbitmap[maxgrus]. Indicates the contexts that are currently active
129  *	  in the GRU for the address space. This bitmap must be passed to the
130  *	  GRU to do an invalidate.
131  *
132  * The current algorithm for invalidating TLBs is:
133  * 	- scan the asidmap for GRUs where the context has been loaded, ie,
134  * 	  asid is non-zero.
135  * 	- for each gru found:
136  * 		- if the ctxtmap is non-zero, there are active contexts in the
137  * 		  GRU. TLB invalidate instructions must be issued to the GRU.
138  *		- if the ctxtmap is zero, no context is active. Set the ASID to
139  *		  zero to force a full TLB invalidation. This is fast but will
140  *		  cause a lot of TLB misses if the context is reloaded onto the
141  *		  GRU
142  *
143  */
144 
145 void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
146 			 unsigned long len)
147 {
148 	struct gru_state *gru;
149 	struct gru_mm_tracker *asids;
150 	struct gru_tlb_global_handle *tgh;
151 	unsigned long num;
152 	int grupagesize, pagesize, pageshift, gid, asid;
153 
154 	/* ZZZ TODO - handle huge pages */
155 	pageshift = PAGE_SHIFT;
156 	pagesize = (1UL << pageshift);
157 	grupagesize = GRU_PAGESIZE(pageshift);
158 	num = min(((len + pagesize - 1) >> pageshift), GRUMAXINVAL);
159 
160 	STAT(flush_tlb);
161 	gru_dbg(grudev, "gms %p, start 0x%lx, len 0x%lx, asidmap 0x%lx\n", gms,
162 		start, len, gms->ms_asidmap[0]);
163 
164 	spin_lock(&gms->ms_asid_lock);
165 	for_each_gru_in_bitmap(gid, gms->ms_asidmap) {
166 		STAT(flush_tlb_gru);
167 		gru = GID_TO_GRU(gid);
168 		asids = gms->ms_asids + gid;
169 		asid = asids->mt_asid;
170 		if (asids->mt_ctxbitmap && asid) {
171 			STAT(flush_tlb_gru_tgh);
172 			asid = GRUASID(asid, start);
173 			gru_dbg(grudev,
174 	"  FLUSH gruid %d, asid 0x%x, vaddr 0x%lx, vamask 0x%x, num %ld, cbmap 0x%x\n",
175 			      gid, asid, start, grupagesize, num, asids->mt_ctxbitmap);
176 			tgh = get_lock_tgh_handle(gru);
177 			tgh_invalidate(tgh, start, ~0, asid, grupagesize, 0,
178 				       num - 1, asids->mt_ctxbitmap);
179 			get_unlock_tgh_handle(tgh);
180 		} else {
181 			STAT(flush_tlb_gru_zero_asid);
182 			asids->mt_asid = 0;
183 			__clear_bit(gru->gs_gid, gms->ms_asidmap);
184 			gru_dbg(grudev,
185 	"  CLEARASID gruid %d, asid 0x%x, cbtmap 0x%x, asidmap 0x%lx\n",
186 				gid, asid, asids->mt_ctxbitmap,
187 				gms->ms_asidmap[0]);
188 		}
189 	}
190 	spin_unlock(&gms->ms_asid_lock);
191 }
192 
193 /*
194  * Flush the entire TLB on a chiplet.
195  */
196 void gru_flush_all_tlb(struct gru_state *gru)
197 {
198 	struct gru_tlb_global_handle *tgh;
199 
200 	gru_dbg(grudev, "gid %d\n", gru->gs_gid);
201 	tgh = get_lock_tgh_handle(gru);
202 	tgh_invalidate(tgh, 0, ~0, 0, 1, 1, GRUMAXINVAL - 1, 0xffff);
203 	get_unlock_tgh_handle(tgh);
204 }
205 
206 /*
207  * MMUOPS notifier callout functions
208  */
209 static int gru_invalidate_range_start(struct mmu_notifier *mn,
210 			const struct mmu_notifier_range *range)
211 {
212 	struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
213 						 ms_notifier);
214 
215 	STAT(mmu_invalidate_range);
216 	atomic_inc(&gms->ms_range_active);
217 	gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx, act %d\n", gms,
218 		range->start, range->end, atomic_read(&gms->ms_range_active));
219 	gru_flush_tlb_range(gms, range->start, range->end - range->start);
220 
221 	return 0;
222 }
223 
224 static void gru_invalidate_range_end(struct mmu_notifier *mn,
225 			const struct mmu_notifier_range *range)
226 {
227 	struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
228 						 ms_notifier);
229 
230 	/* ..._and_test() provides needed barrier */
231 	(void)atomic_dec_and_test(&gms->ms_range_active);
232 
233 	wake_up_all(&gms->ms_wait_queue);
234 	gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx\n",
235 		gms, range->start, range->end);
236 }
237 
238 static struct mmu_notifier *gru_alloc_notifier(struct mm_struct *mm)
239 {
240 	struct gru_mm_struct *gms;
241 
242 	gms = kzalloc(sizeof(*gms), GFP_KERNEL);
243 	if (!gms)
244 		return ERR_PTR(-ENOMEM);
245 	STAT(gms_alloc);
246 	spin_lock_init(&gms->ms_asid_lock);
247 	init_waitqueue_head(&gms->ms_wait_queue);
248 
249 	return &gms->ms_notifier;
250 }
251 
252 static void gru_free_notifier(struct mmu_notifier *mn)
253 {
254 	kfree(container_of(mn, struct gru_mm_struct, ms_notifier));
255 	STAT(gms_free);
256 }
257 
258 static const struct mmu_notifier_ops gru_mmuops = {
259 	.invalidate_range_start	= gru_invalidate_range_start,
260 	.invalidate_range_end	= gru_invalidate_range_end,
261 	.alloc_notifier		= gru_alloc_notifier,
262 	.free_notifier		= gru_free_notifier,
263 };
264 
265 struct gru_mm_struct *gru_register_mmu_notifier(void)
266 {
267 	struct mmu_notifier *mn;
268 
269 	mn = mmu_notifier_get_locked(&gru_mmuops, current->mm);
270 	if (IS_ERR(mn))
271 		return ERR_CAST(mn);
272 
273 	return container_of(mn, struct gru_mm_struct, ms_notifier);
274 }
275 
276 void gru_drop_mmu_notifier(struct gru_mm_struct *gms)
277 {
278 	mmu_notifier_put(&gms->ms_notifier);
279 }
280 
281 /*
282  * Setup TGH parameters. There are:
283  * 	- 24 TGH handles per GRU chiplet
284  * 	- a portion (MAX_LOCAL_TGH) of the handles are reserved for
285  * 	  use by blade-local cpus
286  * 	- the rest are used by off-blade cpus. This usage is
287  * 	  less frequent than blade-local usage.
288  *
289  * For now, use 16 handles for local flushes, 8 for remote flushes. If the blade
290  * has less tan or equal to 16 cpus, each cpu has a unique handle that it can
291  * use.
292  */
293 #define MAX_LOCAL_TGH	16
294 
295 void gru_tgh_flush_init(struct gru_state *gru)
296 {
297 	int cpus, shift = 0, n;
298 
299 	cpus = uv_blade_nr_possible_cpus(gru->gs_blade_id);
300 
301 	/* n = cpus rounded up to next power of 2 */
302 	if (cpus) {
303 		n = 1 << fls(cpus - 1);
304 
305 		/*
306 		 * shift count for converting local cpu# to TGH index
307 		 *      0 if cpus <= MAX_LOCAL_TGH,
308 		 *      1 if cpus <= 2*MAX_LOCAL_TGH,
309 		 *      etc
310 		 */
311 		shift = max(0, fls(n - 1) - fls(MAX_LOCAL_TGH - 1));
312 	}
313 	gru->gs_tgh_local_shift = shift;
314 
315 	/* first starting TGH index to use for remote purges */
316 	gru->gs_tgh_first_remote = (cpus + (1 << shift) - 1) >> shift;
317 
318 }
319