1 /* 2 * SN Platform GRU Driver 3 * 4 * GRU DRIVER TABLES, MACROS, externs, etc 5 * 6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #ifndef __GRUTABLES_H__ 24 #define __GRUTABLES_H__ 25 26 /* 27 * GRU Chiplet: 28 * The GRU is a user addressible memory accelerator. It provides 29 * several forms of load, store, memset, bcopy instructions. In addition, it 30 * contains special instructions for AMOs, sending messages to message 31 * queues, etc. 32 * 33 * The GRU is an integral part of the node controller. It connects 34 * directly to the cpu socket. In its current implementation, there are 2 35 * GRU chiplets in the node controller on each blade (~node). 36 * 37 * The entire GRU memory space is fully coherent and cacheable by the cpus. 38 * 39 * Each GRU chiplet has a physical memory map that looks like the following: 40 * 41 * +-----------------+ 42 * |/////////////////| 43 * |/////////////////| 44 * |/////////////////| 45 * |/////////////////| 46 * |/////////////////| 47 * |/////////////////| 48 * |/////////////////| 49 * |/////////////////| 50 * +-----------------+ 51 * | system control | 52 * +-----------------+ _______ +-------------+ 53 * |/////////////////| / | | 54 * |/////////////////| / | | 55 * |/////////////////| / | instructions| 56 * |/////////////////| / | | 57 * |/////////////////| / | | 58 * |/////////////////| / |-------------| 59 * |/////////////////| / | | 60 * +-----------------+ | | 61 * | context 15 | | data | 62 * +-----------------+ | | 63 * | ...... | \ | | 64 * +-----------------+ \____________ +-------------+ 65 * | context 1 | 66 * +-----------------+ 67 * | context 0 | 68 * +-----------------+ 69 * 70 * Each of the "contexts" is a chunk of memory that can be mmaped into user 71 * space. The context consists of 2 parts: 72 * 73 * - an instruction space that can be directly accessed by the user 74 * to issue GRU instructions and to check instruction status. 75 * 76 * - a data area that acts as normal RAM. 77 * 78 * User instructions contain virtual addresses of data to be accessed by the 79 * GRU. The GRU contains a TLB that is used to convert these user virtual 80 * addresses to physical addresses. 81 * 82 * The "system control" area of the GRU chiplet is used by the kernel driver 83 * to manage user contexts and to perform functions such as TLB dropin and 84 * purging. 85 * 86 * One context may be reserved for the kernel and used for cross-partition 87 * communication. The GRU will also be used to asynchronously zero out 88 * large blocks of memory (not currently implemented). 89 * 90 * 91 * Tables: 92 * 93 * VDATA-VMA Data - Holds a few parameters. Head of linked list of 94 * GTS tables for threads using the GSEG 95 * GTS - Gru Thread State - contains info for managing a GSEG context. A 96 * GTS is allocated for each thread accessing a 97 * GSEG. 98 * GTD - GRU Thread Data - contains shadow copy of GRU data when GSEG is 99 * not loaded into a GRU 100 * GMS - GRU Memory Struct - Used to manage TLB shootdowns. Tracks GRUs 101 * where a GSEG has been loaded. Similar to 102 * an mm_struct but for GRU. 103 * 104 * GS - GRU State - Used to manage the state of a GRU chiplet 105 * BS - Blade State - Used to manage state of all GRU chiplets 106 * on a blade 107 * 108 * 109 * Normal task tables for task using GRU. 110 * - 2 threads in process 111 * - 2 GSEGs open in process 112 * - GSEG1 is being used by both threads 113 * - GSEG2 is used only by thread 2 114 * 115 * task -->| 116 * task ---+---> mm ->------ (notifier) -------+-> gms 117 * | | 118 * |--> vma -> vdata ---> gts--->| GSEG1 (thread1) 119 * | | | 120 * | +-> gts--->| GSEG1 (thread2) 121 * | | 122 * |--> vma -> vdata ---> gts--->| GSEG2 (thread2) 123 * . 124 * . 125 * 126 * GSEGs are marked DONTCOPY on fork 127 * 128 * At open 129 * file.private_data -> NULL 130 * 131 * At mmap, 132 * vma -> vdata 133 * 134 * After gseg reference 135 * vma -> vdata ->gts 136 * 137 * After fork 138 * parent 139 * vma -> vdata -> gts 140 * child 141 * (vma is not copied) 142 * 143 */ 144 145 #include <linux/rmap.h> 146 #include <linux/interrupt.h> 147 #include <linux/mutex.h> 148 #include <linux/wait.h> 149 #include <linux/mmu_notifier.h> 150 #include "gru.h" 151 #include "grulib.h" 152 #include "gruhandles.h" 153 154 extern struct gru_stats_s gru_stats; 155 extern struct gru_blade_state *gru_base[]; 156 extern unsigned long gru_start_paddr, gru_end_paddr; 157 extern void *gru_start_vaddr; 158 extern unsigned int gru_max_gids; 159 160 #define GRU_MAX_BLADES MAX_NUMNODES 161 #define GRU_MAX_GRUS (GRU_MAX_BLADES * GRU_CHIPLETS_PER_BLADE) 162 163 #define GRU_DRIVER_ID_STR "SGI GRU Device Driver" 164 #define GRU_DRIVER_VERSION_STR "0.80" 165 166 /* 167 * GRU statistics. 168 */ 169 struct gru_stats_s { 170 atomic_long_t vdata_alloc; 171 atomic_long_t vdata_free; 172 atomic_long_t gts_alloc; 173 atomic_long_t gts_free; 174 atomic_long_t vdata_double_alloc; 175 atomic_long_t gts_double_allocate; 176 atomic_long_t assign_context; 177 atomic_long_t assign_context_failed; 178 atomic_long_t free_context; 179 atomic_long_t load_user_context; 180 atomic_long_t load_kernel_context; 181 atomic_long_t lock_kernel_context; 182 atomic_long_t unlock_kernel_context; 183 atomic_long_t steal_user_context; 184 atomic_long_t steal_kernel_context; 185 atomic_long_t steal_context_failed; 186 atomic_long_t nopfn; 187 atomic_long_t break_cow; 188 atomic_long_t asid_new; 189 atomic_long_t asid_next; 190 atomic_long_t asid_wrap; 191 atomic_long_t asid_reuse; 192 atomic_long_t intr; 193 atomic_long_t intr_mm_lock_failed; 194 atomic_long_t call_os; 195 atomic_long_t call_os_offnode_reference; 196 atomic_long_t call_os_check_for_bug; 197 atomic_long_t call_os_wait_queue; 198 atomic_long_t user_flush_tlb; 199 atomic_long_t user_unload_context; 200 atomic_long_t user_exception; 201 atomic_long_t set_context_option; 202 atomic_long_t migrate_check; 203 atomic_long_t migrated_retarget; 204 atomic_long_t migrated_unload; 205 atomic_long_t migrated_unload_delay; 206 atomic_long_t migrated_nopfn_retarget; 207 atomic_long_t migrated_nopfn_unload; 208 atomic_long_t tlb_dropin; 209 atomic_long_t tlb_dropin_fail_no_asid; 210 atomic_long_t tlb_dropin_fail_upm; 211 atomic_long_t tlb_dropin_fail_invalid; 212 atomic_long_t tlb_dropin_fail_range_active; 213 atomic_long_t tlb_dropin_fail_idle; 214 atomic_long_t tlb_dropin_fail_fmm; 215 atomic_long_t tlb_dropin_fail_no_exception; 216 atomic_long_t tlb_dropin_fail_no_exception_war; 217 atomic_long_t tfh_stale_on_fault; 218 atomic_long_t mmu_invalidate_range; 219 atomic_long_t mmu_invalidate_page; 220 atomic_long_t mmu_clear_flush_young; 221 atomic_long_t flush_tlb; 222 atomic_long_t flush_tlb_gru; 223 atomic_long_t flush_tlb_gru_tgh; 224 atomic_long_t flush_tlb_gru_zero_asid; 225 226 atomic_long_t copy_gpa; 227 228 atomic_long_t mesq_receive; 229 atomic_long_t mesq_receive_none; 230 atomic_long_t mesq_send; 231 atomic_long_t mesq_send_failed; 232 atomic_long_t mesq_noop; 233 atomic_long_t mesq_send_unexpected_error; 234 atomic_long_t mesq_send_lb_overflow; 235 atomic_long_t mesq_send_qlimit_reached; 236 atomic_long_t mesq_send_amo_nacked; 237 atomic_long_t mesq_send_put_nacked; 238 atomic_long_t mesq_qf_not_full; 239 atomic_long_t mesq_qf_locked; 240 atomic_long_t mesq_qf_noop_not_full; 241 atomic_long_t mesq_qf_switch_head_failed; 242 atomic_long_t mesq_qf_unexpected_error; 243 atomic_long_t mesq_noop_unexpected_error; 244 atomic_long_t mesq_noop_lb_overflow; 245 atomic_long_t mesq_noop_qlimit_reached; 246 atomic_long_t mesq_noop_amo_nacked; 247 atomic_long_t mesq_noop_put_nacked; 248 249 }; 250 251 enum mcs_op {cchop_allocate, cchop_start, cchop_interrupt, cchop_interrupt_sync, 252 cchop_deallocate, tghop_invalidate, mcsop_last}; 253 254 struct mcs_op_statistic { 255 atomic_long_t count; 256 atomic_long_t total; 257 unsigned long max; 258 }; 259 260 extern struct mcs_op_statistic mcs_op_statistics[mcsop_last]; 261 262 #define OPT_DPRINT 1 263 #define OPT_STATS 2 264 265 266 #define IRQ_GRU 110 /* Starting IRQ number for interrupts */ 267 268 /* Delay in jiffies between attempts to assign a GRU context */ 269 #define GRU_ASSIGN_DELAY ((HZ * 20) / 1000) 270 271 /* 272 * If a process has it's context stolen, min delay in jiffies before trying to 273 * steal a context from another process. 274 */ 275 #define GRU_STEAL_DELAY ((HZ * 200) / 1000) 276 277 #define STAT(id) do { \ 278 if (gru_options & OPT_STATS) \ 279 atomic_long_inc(&gru_stats.id); \ 280 } while (0) 281 282 #ifdef CONFIG_SGI_GRU_DEBUG 283 #define gru_dbg(dev, fmt, x...) \ 284 do { \ 285 if (gru_options & OPT_DPRINT) \ 286 dev_dbg(dev, "%s: " fmt, __func__, x); \ 287 } while (0) 288 #else 289 #define gru_dbg(x...) 290 #endif 291 292 /*----------------------------------------------------------------------------- 293 * ASID management 294 */ 295 #define MAX_ASID 0xfffff0 296 #define MIN_ASID 8 297 #define ASID_INC 8 /* number of regions */ 298 299 /* Generate a GRU asid value from a GRU base asid & a virtual address. */ 300 #if defined CONFIG_IA64 301 #define VADDR_HI_BIT 64 302 #elif defined CONFIG_X86_64 303 #define VADDR_HI_BIT 48 304 #else 305 #error "Unsupported architecture" 306 #endif 307 #define GRUREGION(addr) ((addr) >> (VADDR_HI_BIT - 3) & 3) 308 #define GRUASID(asid, addr) ((asid) + GRUREGION(addr)) 309 310 /*------------------------------------------------------------------------------ 311 * File & VMS Tables 312 */ 313 314 struct gru_state; 315 316 /* 317 * This structure is pointed to from the mmstruct via the notifier pointer. 318 * There is one of these per address space. 319 */ 320 struct gru_mm_tracker { /* pack to reduce size */ 321 unsigned int mt_asid_gen:24; /* ASID wrap count */ 322 unsigned int mt_asid:24; /* current base ASID for gru */ 323 unsigned short mt_ctxbitmap:16;/* bitmap of contexts using 324 asid */ 325 } __attribute__ ((packed)); 326 327 struct gru_mm_struct { 328 struct mmu_notifier ms_notifier; 329 atomic_t ms_refcnt; 330 spinlock_t ms_asid_lock; /* protects ASID assignment */ 331 atomic_t ms_range_active;/* num range_invals active */ 332 char ms_released; 333 wait_queue_head_t ms_wait_queue; 334 DECLARE_BITMAP(ms_asidmap, GRU_MAX_GRUS); 335 struct gru_mm_tracker ms_asids[GRU_MAX_GRUS]; 336 }; 337 338 /* 339 * One of these structures is allocated when a GSEG is mmaped. The 340 * structure is pointed to by the vma->vm_private_data field in the vma struct. 341 */ 342 struct gru_vma_data { 343 spinlock_t vd_lock; /* Serialize access to vma */ 344 struct list_head vd_head; /* head of linked list of gts */ 345 long vd_user_options;/* misc user option flags */ 346 int vd_cbr_au_count; 347 int vd_dsr_au_count; 348 }; 349 350 /* 351 * One of these is allocated for each thread accessing a mmaped GRU. A linked 352 * list of these structure is hung off the struct gru_vma_data in the mm_struct. 353 */ 354 struct gru_thread_state { 355 struct list_head ts_next; /* list - head at vma-private */ 356 struct mutex ts_ctxlock; /* load/unload CTX lock */ 357 struct mm_struct *ts_mm; /* mm currently mapped to 358 context */ 359 struct vm_area_struct *ts_vma; /* vma of GRU context */ 360 struct gru_state *ts_gru; /* GRU where the context is 361 loaded */ 362 struct gru_mm_struct *ts_gms; /* asid & ioproc struct */ 363 unsigned long ts_cbr_map; /* map of allocated CBRs */ 364 unsigned long ts_dsr_map; /* map of allocated DATA 365 resources */ 366 unsigned long ts_steal_jiffies;/* jiffies when context last 367 stolen */ 368 long ts_user_options;/* misc user option flags */ 369 pid_t ts_tgid_owner; /* task that is using the 370 context - for migration */ 371 unsigned short ts_sizeavail; /* Pagesizes in use */ 372 int ts_tsid; /* thread that owns the 373 structure */ 374 int ts_tlb_int_select;/* target cpu if interrupts 375 enabled */ 376 int ts_ctxnum; /* context number where the 377 context is loaded */ 378 atomic_t ts_refcnt; /* reference count GTS */ 379 unsigned char ts_dsr_au_count;/* Number of DSR resources 380 required for contest */ 381 unsigned char ts_cbr_au_count;/* Number of CBR resources 382 required for contest */ 383 char ts_cch_req_slice;/* CCH packet slice */ 384 char ts_blade; /* If >= 0, migrate context if 385 ref from diferent blade */ 386 char ts_force_cch_reload; 387 char ts_force_unload;/* force context to be unloaded 388 after migration */ 389 char ts_cbr_idx[GRU_CBR_AU];/* CBR numbers of each 390 allocated CB */ 391 int ts_data_valid; /* Indicates if ts_gdata has 392 valid data */ 393 struct gts_statistics ustats; /* User statistics */ 394 unsigned long ts_gdata[0]; /* save area for GRU data (CB, 395 DS, CBE) */ 396 }; 397 398 /* 399 * Threaded programs actually allocate an array of GSEGs when a context is 400 * created. Each thread uses a separate GSEG. TSID is the index into the GSEG 401 * array. 402 */ 403 #define TSID(a, v) (((a) - (v)->vm_start) / GRU_GSEG_PAGESIZE) 404 #define UGRUADDR(gts) ((gts)->ts_vma->vm_start + \ 405 (gts)->ts_tsid * GRU_GSEG_PAGESIZE) 406 407 #define NULLCTX (-1) /* if context not loaded into GRU */ 408 409 /*----------------------------------------------------------------------------- 410 * GRU State Tables 411 */ 412 413 /* 414 * One of these exists for each GRU chiplet. 415 */ 416 struct gru_state { 417 struct gru_blade_state *gs_blade; /* GRU state for entire 418 blade */ 419 unsigned long gs_gru_base_paddr; /* Physical address of 420 gru segments (64) */ 421 void *gs_gru_base_vaddr; /* Virtual address of 422 gru segments (64) */ 423 unsigned short gs_gid; /* unique GRU number */ 424 unsigned short gs_blade_id; /* blade of GRU */ 425 unsigned char gs_tgh_local_shift; /* used to pick TGH for 426 local flush */ 427 unsigned char gs_tgh_first_remote; /* starting TGH# for 428 remote flush */ 429 spinlock_t gs_asid_lock; /* lock used for 430 assigning asids */ 431 spinlock_t gs_lock; /* lock used for 432 assigning contexts */ 433 434 /* -- the following are protected by the gs_asid_lock spinlock ---- */ 435 unsigned int gs_asid; /* Next availe ASID */ 436 unsigned int gs_asid_limit; /* Limit of available 437 ASIDs */ 438 unsigned int gs_asid_gen; /* asid generation. 439 Inc on wrap */ 440 441 /* --- the following fields are protected by the gs_lock spinlock --- */ 442 unsigned long gs_context_map; /* bitmap to manage 443 contexts in use */ 444 unsigned long gs_cbr_map; /* bitmap to manage CB 445 resources */ 446 unsigned long gs_dsr_map; /* bitmap used to manage 447 DATA resources */ 448 unsigned int gs_reserved_cbrs; /* Number of kernel- 449 reserved cbrs */ 450 unsigned int gs_reserved_dsr_bytes; /* Bytes of kernel- 451 reserved dsrs */ 452 unsigned short gs_active_contexts; /* number of contexts 453 in use */ 454 struct gru_thread_state *gs_gts[GRU_NUM_CCH]; /* GTS currently using 455 the context */ 456 }; 457 458 /* 459 * This structure contains the GRU state for all the GRUs on a blade. 460 */ 461 struct gru_blade_state { 462 void *kernel_cb; /* First kernel 463 reserved cb */ 464 void *kernel_dsr; /* First kernel 465 reserved DSR */ 466 struct rw_semaphore bs_kgts_sema; /* lock for kgts */ 467 struct gru_thread_state *bs_kgts; /* GTS for kernel use */ 468 469 /* ---- the following are used for managing kernel async GRU CBRs --- */ 470 int bs_async_dsr_bytes; /* DSRs for async */ 471 int bs_async_cbrs; /* CBRs AU for async */ 472 struct completion *bs_async_wq; 473 474 /* ---- the following are protected by the bs_lock spinlock ---- */ 475 spinlock_t bs_lock; /* lock used for 476 stealing contexts */ 477 int bs_lru_ctxnum; /* STEAL - last context 478 stolen */ 479 struct gru_state *bs_lru_gru; /* STEAL - last gru 480 stolen */ 481 482 struct gru_state bs_grus[GRU_CHIPLETS_PER_BLADE]; 483 }; 484 485 /*----------------------------------------------------------------------------- 486 * Address Primitives 487 */ 488 #define get_tfm_for_cpu(g, c) \ 489 ((struct gru_tlb_fault_map *)get_tfm((g)->gs_gru_base_vaddr, (c))) 490 #define get_tfh_by_index(g, i) \ 491 ((struct gru_tlb_fault_handle *)get_tfh((g)->gs_gru_base_vaddr, (i))) 492 #define get_tgh_by_index(g, i) \ 493 ((struct gru_tlb_global_handle *)get_tgh((g)->gs_gru_base_vaddr, (i))) 494 #define get_cbe_by_index(g, i) \ 495 ((struct gru_control_block_extended *)get_cbe((g)->gs_gru_base_vaddr,\ 496 (i))) 497 498 /*----------------------------------------------------------------------------- 499 * Useful Macros 500 */ 501 502 /* Given a blade# & chiplet#, get a pointer to the GRU */ 503 #define get_gru(b, c) (&gru_base[b]->bs_grus[c]) 504 505 /* Number of bytes to save/restore when unloading/loading GRU contexts */ 506 #define DSR_BYTES(dsr) ((dsr) * GRU_DSR_AU_BYTES) 507 #define CBR_BYTES(cbr) ((cbr) * GRU_HANDLE_BYTES * GRU_CBR_AU_SIZE * 2) 508 509 /* Convert a user CB number to the actual CBRNUM */ 510 #define thread_cbr_number(gts, n) ((gts)->ts_cbr_idx[(n) / GRU_CBR_AU_SIZE] \ 511 * GRU_CBR_AU_SIZE + (n) % GRU_CBR_AU_SIZE) 512 513 /* Convert a gid to a pointer to the GRU */ 514 #define GID_TO_GRU(gid) \ 515 (gru_base[(gid) / GRU_CHIPLETS_PER_BLADE] ? \ 516 (&gru_base[(gid) / GRU_CHIPLETS_PER_BLADE]-> \ 517 bs_grus[(gid) % GRU_CHIPLETS_PER_BLADE]) : \ 518 NULL) 519 520 /* Scan all active GRUs in a GRU bitmap */ 521 #define for_each_gru_in_bitmap(gid, map) \ 522 for ((gid) = find_first_bit((map), GRU_MAX_GRUS); (gid) < GRU_MAX_GRUS;\ 523 (gid)++, (gid) = find_next_bit((map), GRU_MAX_GRUS, (gid))) 524 525 /* Scan all active GRUs on a specific blade */ 526 #define for_each_gru_on_blade(gru, nid, i) \ 527 for ((gru) = gru_base[nid]->bs_grus, (i) = 0; \ 528 (i) < GRU_CHIPLETS_PER_BLADE; \ 529 (i)++, (gru)++) 530 531 /* Scan all GRUs */ 532 #define foreach_gid(gid) \ 533 for ((gid) = 0; (gid) < gru_max_gids; (gid)++) 534 535 /* Scan all active GTSs on a gru. Note: must hold ss_lock to use this macro. */ 536 #define for_each_gts_on_gru(gts, gru, ctxnum) \ 537 for ((ctxnum) = 0; (ctxnum) < GRU_NUM_CCH; (ctxnum)++) \ 538 if (((gts) = (gru)->gs_gts[ctxnum])) 539 540 /* Scan each CBR whose bit is set in a TFM (or copy of) */ 541 #define for_each_cbr_in_tfm(i, map) \ 542 for ((i) = find_first_bit(map, GRU_NUM_CBE); \ 543 (i) < GRU_NUM_CBE; \ 544 (i)++, (i) = find_next_bit(map, GRU_NUM_CBE, i)) 545 546 /* Scan each CBR in a CBR bitmap. Note: multiple CBRs in an allocation unit */ 547 #define for_each_cbr_in_allocation_map(i, map, k) \ 548 for ((k) = find_first_bit(map, GRU_CBR_AU); (k) < GRU_CBR_AU; \ 549 (k) = find_next_bit(map, GRU_CBR_AU, (k) + 1)) \ 550 for ((i) = (k)*GRU_CBR_AU_SIZE; \ 551 (i) < ((k) + 1) * GRU_CBR_AU_SIZE; (i)++) 552 553 /* Scan each DSR in a DSR bitmap. Note: multiple DSRs in an allocation unit */ 554 #define for_each_dsr_in_allocation_map(i, map, k) \ 555 for ((k) = find_first_bit((const unsigned long *)map, GRU_DSR_AU);\ 556 (k) < GRU_DSR_AU; \ 557 (k) = find_next_bit((const unsigned long *)map, \ 558 GRU_DSR_AU, (k) + 1)) \ 559 for ((i) = (k) * GRU_DSR_AU_CL; \ 560 (i) < ((k) + 1) * GRU_DSR_AU_CL; (i)++) 561 562 #define gseg_physical_address(gru, ctxnum) \ 563 ((gru)->gs_gru_base_paddr + ctxnum * GRU_GSEG_STRIDE) 564 #define gseg_virtual_address(gru, ctxnum) \ 565 ((gru)->gs_gru_base_vaddr + ctxnum * GRU_GSEG_STRIDE) 566 567 /*----------------------------------------------------------------------------- 568 * Lock / Unlock GRU handles 569 * Use the "delresp" bit in the handle as a "lock" bit. 570 */ 571 572 /* Lock hierarchy checking enabled only in emulator */ 573 574 /* 0 = lock failed, 1 = locked */ 575 static inline int __trylock_handle(void *h) 576 { 577 return !test_and_set_bit(1, h); 578 } 579 580 static inline void __lock_handle(void *h) 581 { 582 while (test_and_set_bit(1, h)) 583 cpu_relax(); 584 } 585 586 static inline void __unlock_handle(void *h) 587 { 588 clear_bit(1, h); 589 } 590 591 static inline int trylock_cch_handle(struct gru_context_configuration_handle *cch) 592 { 593 return __trylock_handle(cch); 594 } 595 596 static inline void lock_cch_handle(struct gru_context_configuration_handle *cch) 597 { 598 __lock_handle(cch); 599 } 600 601 static inline void unlock_cch_handle(struct gru_context_configuration_handle 602 *cch) 603 { 604 __unlock_handle(cch); 605 } 606 607 static inline void lock_tgh_handle(struct gru_tlb_global_handle *tgh) 608 { 609 __lock_handle(tgh); 610 } 611 612 static inline void unlock_tgh_handle(struct gru_tlb_global_handle *tgh) 613 { 614 __unlock_handle(tgh); 615 } 616 617 static inline int is_kernel_context(struct gru_thread_state *gts) 618 { 619 return !gts->ts_mm; 620 } 621 622 /*----------------------------------------------------------------------------- 623 * Function prototypes & externs 624 */ 625 struct gru_unload_context_req; 626 627 extern const struct vm_operations_struct gru_vm_ops; 628 extern struct device *grudev; 629 630 extern struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, 631 int tsid); 632 extern struct gru_thread_state *gru_find_thread_state(struct vm_area_struct 633 *vma, int tsid); 634 extern struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct 635 *vma, int tsid); 636 extern struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts, 637 int blade); 638 extern void gru_load_context(struct gru_thread_state *gts); 639 extern void gru_steal_context(struct gru_thread_state *gts, int blade_id); 640 extern void gru_unload_context(struct gru_thread_state *gts, int savestate); 641 extern int gru_update_cch(struct gru_thread_state *gts, int force_unload); 642 extern void gts_drop(struct gru_thread_state *gts); 643 extern void gru_tgh_flush_init(struct gru_state *gru); 644 extern int gru_kservices_init(void); 645 extern void gru_kservices_exit(void); 646 extern int gru_dump_chiplet_request(unsigned long arg); 647 extern long gru_get_gseg_statistics(unsigned long arg); 648 extern irqreturn_t gru_intr(int irq, void *dev_id); 649 extern int gru_handle_user_call_os(unsigned long address); 650 extern int gru_user_flush_tlb(unsigned long arg); 651 extern int gru_user_unload_context(unsigned long arg); 652 extern int gru_get_exception_detail(unsigned long arg); 653 extern int gru_set_context_option(unsigned long address); 654 extern int gru_cpu_fault_map_id(void); 655 extern struct vm_area_struct *gru_find_vma(unsigned long vaddr); 656 extern void gru_flush_all_tlb(struct gru_state *gru); 657 extern int gru_proc_init(void); 658 extern void gru_proc_exit(void); 659 660 extern struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma, 661 int cbr_au_count, int dsr_au_count, int options, int tsid); 662 extern unsigned long gru_reserve_cb_resources(struct gru_state *gru, 663 int cbr_au_count, char *cbmap); 664 extern unsigned long gru_reserve_ds_resources(struct gru_state *gru, 665 int dsr_au_count, char *dsmap); 666 extern int gru_fault(struct vm_area_struct *, struct vm_fault *vmf); 667 extern struct gru_mm_struct *gru_register_mmu_notifier(void); 668 extern void gru_drop_mmu_notifier(struct gru_mm_struct *gms); 669 670 extern int gru_ktest(unsigned long arg); 671 extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start, 672 unsigned long len); 673 674 extern unsigned long gru_options; 675 676 #endif /* __GRUTABLES_H__ */ 677