xref: /openbmc/linux/drivers/misc/sgi-gru/grutables.h (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * SN Platform GRU Driver
3  *
4  *            GRU DRIVER TABLES, MACROS, externs, etc
5  *
6  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #ifndef __GRUTABLES_H__
24 #define __GRUTABLES_H__
25 
26 /*
27  * GRU Chiplet:
28  *   The GRU is a user addressible memory accelerator. It provides
29  *   several forms of load, store, memset, bcopy instructions. In addition, it
30  *   contains special instructions for AMOs, sending messages to message
31  *   queues, etc.
32  *
33  *   The GRU is an integral part of the node controller. It connects
34  *   directly to the cpu socket. In its current implementation, there are 2
35  *   GRU chiplets in the node controller on each blade (~node).
36  *
37  *   The entire GRU memory space is fully coherent and cacheable by the cpus.
38  *
39  *   Each GRU chiplet has a physical memory map that looks like the following:
40  *
41  *   	+-----------------+
42  *   	|/////////////////|
43  *   	|/////////////////|
44  *   	|/////////////////|
45  *   	|/////////////////|
46  *   	|/////////////////|
47  *   	|/////////////////|
48  *   	|/////////////////|
49  *   	|/////////////////|
50  *   	+-----------------+
51  *   	|  system control |
52  *   	+-----------------+        _______ +-------------+
53  *   	|/////////////////|       /        |             |
54  *   	|/////////////////|      /         |             |
55  *   	|/////////////////|     /          | instructions|
56  *   	|/////////////////|    /           |             |
57  *   	|/////////////////|   /            |             |
58  *   	|/////////////////|  /             |-------------|
59  *   	|/////////////////| /              |             |
60  *   	+-----------------+                |             |
61  *   	|   context 15    |                |  data       |
62  *   	+-----------------+                |             |
63  *   	|    ......       | \              |             |
64  *   	+-----------------+  \____________ +-------------+
65  *   	|   context 1     |
66  *   	+-----------------+
67  *   	|   context 0     |
68  *   	+-----------------+
69  *
70  *   Each of the "contexts" is a chunk of memory that can be mmaped into user
71  *   space. The context consists of 2 parts:
72  *
73  *  	- an instruction space that can be directly accessed by the user
74  *  	  to issue GRU instructions and to check instruction status.
75  *
76  *  	- a data area that acts as normal RAM.
77  *
78  *   User instructions contain virtual addresses of data to be accessed by the
79  *   GRU. The GRU contains a TLB that is used to convert these user virtual
80  *   addresses to physical addresses.
81  *
82  *   The "system control" area of the GRU chiplet is used by the kernel driver
83  *   to manage user contexts and to perform functions such as TLB dropin and
84  *   purging.
85  *
86  *   One context may be reserved for the kernel and used for cross-partition
87  *   communication. The GRU will also be used to asynchronously zero out
88  *   large blocks of memory (not currently implemented).
89  *
90  *
91  * Tables:
92  *
93  * 	VDATA-VMA Data		- Holds a few parameters. Head of linked list of
94  * 				  GTS tables for threads using the GSEG
95  * 	GTS - Gru Thread State  - contains info for managing a GSEG context. A
96  * 				  GTS is allocated for each thread accessing a
97  * 				  GSEG.
98  *     	GTD - GRU Thread Data   - contains shadow copy of GRU data when GSEG is
99  *     				  not loaded into a GRU
100  *	GMS - GRU Memory Struct - Used to manage TLB shootdowns. Tracks GRUs
101  *				  where a GSEG has been loaded. Similar to
102  *				  an mm_struct but for GRU.
103  *
104  *	GS  - GRU State 	- Used to manage the state of a GRU chiplet
105  *	BS  - Blade State	- Used to manage state of all GRU chiplets
106  *				  on a blade
107  *
108  *
109  *  Normal task tables for task using GRU.
110  *  		- 2 threads in process
111  *  		- 2 GSEGs open in process
112  *  		- GSEG1 is being used by both threads
113  *  		- GSEG2 is used only by thread 2
114  *
115  *       task -->|
116  *       task ---+---> mm ->------ (notifier) -------+-> gms
117  *                     |                             |
118  *                     |--> vma -> vdata ---> gts--->|		GSEG1 (thread1)
119  *                     |                  |          |
120  *                     |                  +-> gts--->|		GSEG1 (thread2)
121  *                     |                             |
122  *                     |--> vma -> vdata ---> gts--->|		GSEG2 (thread2)
123  *                     .
124  *                     .
125  *
126  *  GSEGs are marked DONTCOPY on fork
127  *
128  * At open
129  * 	file.private_data -> NULL
130  *
131  * At mmap,
132  * 	vma -> vdata
133  *
134  * After gseg reference
135  * 	vma -> vdata ->gts
136  *
137  * After fork
138  *   parent
139  * 	vma -> vdata -> gts
140  *   child
141  * 	(vma is not copied)
142  *
143  */
144 
145 #include <linux/rmap.h>
146 #include <linux/interrupt.h>
147 #include <linux/mutex.h>
148 #include <linux/wait.h>
149 #include <linux/mmu_notifier.h>
150 #include "gru.h"
151 #include "gruhandles.h"
152 
153 extern struct gru_stats_s gru_stats;
154 extern struct gru_blade_state *gru_base[];
155 extern unsigned long gru_start_paddr, gru_end_paddr;
156 
157 #define GRU_MAX_BLADES		MAX_NUMNODES
158 #define GRU_MAX_GRUS		(GRU_MAX_BLADES * GRU_CHIPLETS_PER_BLADE)
159 
160 #define GRU_DRIVER_ID_STR	"SGI GRU Device Driver"
161 #define GRU_DRIVER_VERSION_STR	"0.80"
162 
163 /*
164  * GRU statistics.
165  */
166 struct gru_stats_s {
167 	atomic_long_t vdata_alloc;
168 	atomic_long_t vdata_free;
169 	atomic_long_t gts_alloc;
170 	atomic_long_t gts_free;
171 	atomic_long_t vdata_double_alloc;
172 	atomic_long_t gts_double_allocate;
173 	atomic_long_t assign_context;
174 	atomic_long_t assign_context_failed;
175 	atomic_long_t free_context;
176 	atomic_long_t load_context;
177 	atomic_long_t unload_context;
178 	atomic_long_t steal_context;
179 	atomic_long_t steal_context_failed;
180 	atomic_long_t nopfn;
181 	atomic_long_t break_cow;
182 	atomic_long_t asid_new;
183 	atomic_long_t asid_next;
184 	atomic_long_t asid_wrap;
185 	atomic_long_t asid_reuse;
186 	atomic_long_t intr;
187 	atomic_long_t call_os;
188 	atomic_long_t call_os_check_for_bug;
189 	atomic_long_t call_os_wait_queue;
190 	atomic_long_t user_flush_tlb;
191 	atomic_long_t user_unload_context;
192 	atomic_long_t user_exception;
193 	atomic_long_t set_task_slice;
194 	atomic_long_t migrate_check;
195 	atomic_long_t migrated_retarget;
196 	atomic_long_t migrated_unload;
197 	atomic_long_t migrated_unload_delay;
198 	atomic_long_t migrated_nopfn_retarget;
199 	atomic_long_t migrated_nopfn_unload;
200 	atomic_long_t tlb_dropin;
201 	atomic_long_t tlb_dropin_fail_no_asid;
202 	atomic_long_t tlb_dropin_fail_upm;
203 	atomic_long_t tlb_dropin_fail_invalid;
204 	atomic_long_t tlb_dropin_fail_range_active;
205 	atomic_long_t tlb_dropin_fail_idle;
206 	atomic_long_t tlb_dropin_fail_fmm;
207 	atomic_long_t mmu_invalidate_range;
208 	atomic_long_t mmu_invalidate_page;
209 	atomic_long_t mmu_clear_flush_young;
210 	atomic_long_t flush_tlb;
211 	atomic_long_t flush_tlb_gru;
212 	atomic_long_t flush_tlb_gru_tgh;
213 	atomic_long_t flush_tlb_gru_zero_asid;
214 
215 	atomic_long_t copy_gpa;
216 
217 	atomic_long_t mesq_receive;
218 	atomic_long_t mesq_receive_none;
219 	atomic_long_t mesq_send;
220 	atomic_long_t mesq_send_failed;
221 	atomic_long_t mesq_noop;
222 	atomic_long_t mesq_send_unexpected_error;
223 	atomic_long_t mesq_send_lb_overflow;
224 	atomic_long_t mesq_send_qlimit_reached;
225 	atomic_long_t mesq_send_amo_nacked;
226 	atomic_long_t mesq_send_put_nacked;
227 	atomic_long_t mesq_qf_not_full;
228 	atomic_long_t mesq_qf_locked;
229 	atomic_long_t mesq_qf_noop_not_full;
230 	atomic_long_t mesq_qf_switch_head_failed;
231 	atomic_long_t mesq_qf_unexpected_error;
232 	atomic_long_t mesq_noop_unexpected_error;
233 	atomic_long_t mesq_noop_lb_overflow;
234 	atomic_long_t mesq_noop_qlimit_reached;
235 	atomic_long_t mesq_noop_amo_nacked;
236 	atomic_long_t mesq_noop_put_nacked;
237 
238 };
239 
240 #define OPT_DPRINT	1
241 #define OPT_STATS	2
242 #define GRU_QUICKLOOK	4
243 
244 
245 #define IRQ_GRU			110	/* Starting IRQ number for interrupts */
246 
247 /* Delay in jiffies between attempts to assign a GRU context */
248 #define GRU_ASSIGN_DELAY	((HZ * 20) / 1000)
249 
250 /*
251  * If a process has it's context stolen, min delay in jiffies before trying to
252  * steal a context from another process.
253  */
254 #define GRU_STEAL_DELAY		((HZ * 200) / 1000)
255 
256 #define STAT(id)	do {						\
257 				if (gru_options & OPT_STATS)		\
258 					atomic_long_inc(&gru_stats.id);	\
259 			} while (0)
260 
261 #ifdef CONFIG_SGI_GRU_DEBUG
262 #define gru_dbg(dev, fmt, x...)						\
263 	do {								\
264 		if (gru_options & OPT_DPRINT)				\
265 			dev_dbg(dev, "%s: " fmt, __func__, x);		\
266 	} while (0)
267 #else
268 #define gru_dbg(x...)
269 #endif
270 
271 /*-----------------------------------------------------------------------------
272  * ASID management
273  */
274 #define MAX_ASID	0xfffff0
275 #define MIN_ASID	8
276 #define ASID_INC	8	/* number of regions */
277 
278 /* Generate a GRU asid value from a GRU base asid & a virtual address. */
279 #if defined CONFIG_IA64
280 #define VADDR_HI_BIT		64
281 #define GRUREGION(addr)		((addr) >> (VADDR_HI_BIT - 3) & 3)
282 #elif defined CONFIG_X86_64
283 #define VADDR_HI_BIT		48
284 #define GRUREGION(addr)		(0)		/* ZZZ could do better */
285 #else
286 #error "Unsupported architecture"
287 #endif
288 #define GRUASID(asid, addr)	((asid) + GRUREGION(addr))
289 
290 /*------------------------------------------------------------------------------
291  *  File & VMS Tables
292  */
293 
294 struct gru_state;
295 
296 /*
297  * This structure is pointed to from the mmstruct via the notifier pointer.
298  * There is one of these per address space.
299  */
300 struct gru_mm_tracker {
301 	unsigned int		mt_asid_gen;	/* ASID wrap count */
302 	int			mt_asid;	/* current base ASID for gru */
303 	unsigned short		mt_ctxbitmap;	/* bitmap of contexts using
304 						   asid */
305 };
306 
307 struct gru_mm_struct {
308 	struct mmu_notifier	ms_notifier;
309 	atomic_t		ms_refcnt;
310 	spinlock_t		ms_asid_lock;	/* protects ASID assignment */
311 	atomic_t		ms_range_active;/* num range_invals active */
312 	char			ms_released;
313 	wait_queue_head_t	ms_wait_queue;
314 	DECLARE_BITMAP(ms_asidmap, GRU_MAX_GRUS);
315 	struct gru_mm_tracker	ms_asids[GRU_MAX_GRUS];
316 };
317 
318 /*
319  * One of these structures is allocated when a GSEG is mmaped. The
320  * structure is pointed to by the vma->vm_private_data field in the vma struct.
321  */
322 struct gru_vma_data {
323 	spinlock_t		vd_lock;	/* Serialize access to vma */
324 	struct list_head	vd_head;	/* head of linked list of gts */
325 	long			vd_user_options;/* misc user option flags */
326 	int			vd_cbr_au_count;
327 	int			vd_dsr_au_count;
328 };
329 
330 /*
331  * One of these is allocated for each thread accessing a mmaped GRU. A linked
332  * list of these structure is hung off the struct gru_vma_data in the mm_struct.
333  */
334 struct gru_thread_state {
335 	struct list_head	ts_next;	/* list - head at vma-private */
336 	struct mutex		ts_ctxlock;	/* load/unload CTX lock */
337 	struct mm_struct	*ts_mm;		/* mm currently mapped to
338 						   context */
339 	struct vm_area_struct	*ts_vma;	/* vma of GRU context */
340 	struct gru_state	*ts_gru;	/* GRU where the context is
341 						   loaded */
342 	struct gru_mm_struct	*ts_gms;	/* asid & ioproc struct */
343 	unsigned long		ts_cbr_map;	/* map of allocated CBRs */
344 	unsigned long		ts_dsr_map;	/* map of allocated DATA
345 						   resources */
346 	unsigned long		ts_steal_jiffies;/* jiffies when context last
347 						    stolen */
348 	long			ts_user_options;/* misc user option flags */
349 	pid_t			ts_tgid_owner;	/* task that is using the
350 						   context - for migration */
351 	int			ts_tsid;	/* thread that owns the
352 						   structure */
353 	int			ts_tlb_int_select;/* target cpu if interrupts
354 						     enabled */
355 	int			ts_ctxnum;	/* context number where the
356 						   context is loaded */
357 	atomic_t		ts_refcnt;	/* reference count GTS */
358 	unsigned char		ts_dsr_au_count;/* Number of DSR resources
359 						   required for contest */
360 	unsigned char		ts_cbr_au_count;/* Number of CBR resources
361 						   required for contest */
362 	char			ts_force_unload;/* force context to be unloaded
363 						   after migration */
364 	char			ts_cbr_idx[GRU_CBR_AU];/* CBR numbers of each
365 							  allocated CB */
366 	unsigned long		ts_gdata[0];	/* save area for GRU data (CB,
367 						   DS, CBE) */
368 };
369 
370 /*
371  * Threaded programs actually allocate an array of GSEGs when a context is
372  * created. Each thread uses a separate GSEG. TSID is the index into the GSEG
373  * array.
374  */
375 #define TSID(a, v)		(((a) - (v)->vm_start) / GRU_GSEG_PAGESIZE)
376 #define UGRUADDR(gts)		((gts)->ts_vma->vm_start +		\
377 					(gts)->ts_tsid * GRU_GSEG_PAGESIZE)
378 
379 #define NULLCTX			(-1)	/* if context not loaded into GRU */
380 
381 /*-----------------------------------------------------------------------------
382  *  GRU State Tables
383  */
384 
385 /*
386  * One of these exists for each GRU chiplet.
387  */
388 struct gru_state {
389 	struct gru_blade_state	*gs_blade;		/* GRU state for entire
390 							   blade */
391 	unsigned long		gs_gru_base_paddr;	/* Physical address of
392 							   gru segments (64) */
393 	void			*gs_gru_base_vaddr;	/* Virtual address of
394 							   gru segments (64) */
395 	unsigned char		gs_gid;			/* unique GRU number */
396 	unsigned char		gs_tgh_local_shift;	/* used to pick TGH for
397 							   local flush */
398 	unsigned char		gs_tgh_first_remote;	/* starting TGH# for
399 							   remote flush */
400 	unsigned short		gs_blade_id;		/* blade of GRU */
401 	spinlock_t		gs_asid_lock;		/* lock used for
402 							   assigning asids */
403 	spinlock_t		gs_lock;		/* lock used for
404 							   assigning contexts */
405 
406 	/* -- the following are protected by the gs_asid_lock spinlock ---- */
407 	unsigned int		gs_asid;		/* Next availe ASID */
408 	unsigned int		gs_asid_limit;		/* Limit of available
409 							   ASIDs */
410 	unsigned int		gs_asid_gen;		/* asid generation.
411 							   Inc on wrap */
412 
413 	/* --- the following fields are protected by the gs_lock spinlock --- */
414 	unsigned long		gs_context_map;		/* bitmap to manage
415 							   contexts in use */
416 	unsigned long		gs_cbr_map;		/* bitmap to manage CB
417 							   resources */
418 	unsigned long		gs_dsr_map;		/* bitmap used to manage
419 							   DATA resources */
420 	unsigned int		gs_reserved_cbrs;	/* Number of kernel-
421 							   reserved cbrs */
422 	unsigned int		gs_reserved_dsr_bytes;	/* Bytes of kernel-
423 							   reserved dsrs */
424 	unsigned short		gs_active_contexts;	/* number of contexts
425 							   in use */
426 	struct gru_thread_state	*gs_gts[GRU_NUM_CCH];	/* GTS currently using
427 							   the context */
428 };
429 
430 /*
431  * This structure contains the GRU state for all the GRUs on a blade.
432  */
433 struct gru_blade_state {
434 	void			*kernel_cb;		/* First kernel
435 							   reserved cb */
436 	void			*kernel_dsr;		/* First kernel
437 							   reserved DSR */
438 	/* ---- the following are protected by the bs_lock spinlock ---- */
439 	spinlock_t		bs_lock;		/* lock used for
440 							   stealing contexts */
441 	int			bs_lru_ctxnum;		/* STEAL - last context
442 							   stolen */
443 	struct gru_state	*bs_lru_gru;		/* STEAL - last gru
444 							   stolen */
445 
446 	struct gru_state	bs_grus[GRU_CHIPLETS_PER_BLADE];
447 };
448 
449 /*-----------------------------------------------------------------------------
450  * Address Primitives
451  */
452 #define get_tfm_for_cpu(g, c)						\
453 	((struct gru_tlb_fault_map *)get_tfm((g)->gs_gru_base_vaddr, (c)))
454 #define get_tfh_by_index(g, i)						\
455 	((struct gru_tlb_fault_handle *)get_tfh((g)->gs_gru_base_vaddr, (i)))
456 #define get_tgh_by_index(g, i)						\
457 	((struct gru_tlb_global_handle *)get_tgh((g)->gs_gru_base_vaddr, (i)))
458 #define get_cbe_by_index(g, i)						\
459 	((struct gru_control_block_extended *)get_cbe((g)->gs_gru_base_vaddr,\
460 			(i)))
461 
462 /*-----------------------------------------------------------------------------
463  * Useful Macros
464  */
465 
466 /* Given a blade# & chiplet#, get a pointer to the GRU */
467 #define get_gru(b, c)		(&gru_base[b]->bs_grus[c])
468 
469 /* Number of bytes to save/restore when unloading/loading GRU contexts */
470 #define DSR_BYTES(dsr)		((dsr) * GRU_DSR_AU_BYTES)
471 #define CBR_BYTES(cbr)		((cbr) * GRU_HANDLE_BYTES * GRU_CBR_AU_SIZE * 2)
472 
473 /* Convert a user CB number to the actual CBRNUM */
474 #define thread_cbr_number(gts, n) ((gts)->ts_cbr_idx[(n) / GRU_CBR_AU_SIZE] \
475 				  * GRU_CBR_AU_SIZE + (n) % GRU_CBR_AU_SIZE)
476 
477 /* Convert a gid to a pointer to the GRU */
478 #define GID_TO_GRU(gid)							\
479 	(gru_base[(gid) / GRU_CHIPLETS_PER_BLADE] ?			\
480 		(&gru_base[(gid) / GRU_CHIPLETS_PER_BLADE]->		\
481 			bs_grus[(gid) % GRU_CHIPLETS_PER_BLADE]) :	\
482 	 NULL)
483 
484 /* Scan all active GRUs in a GRU bitmap */
485 #define for_each_gru_in_bitmap(gid, map)				\
486 	for ((gid) = find_first_bit((map), GRU_MAX_GRUS); (gid) < GRU_MAX_GRUS;\
487 		(gid)++, (gid) = find_next_bit((map), GRU_MAX_GRUS, (gid)))
488 
489 /* Scan all active GRUs on a specific blade */
490 #define for_each_gru_on_blade(gru, nid, i)				\
491 	for ((gru) = gru_base[nid]->bs_grus, (i) = 0;			\
492 			(i) < GRU_CHIPLETS_PER_BLADE;			\
493 			(i)++, (gru)++)
494 
495 /* Scan all active GTSs on a gru. Note: must hold ss_lock to use this macro. */
496 #define for_each_gts_on_gru(gts, gru, ctxnum)				\
497 	for ((ctxnum) = 0; (ctxnum) < GRU_NUM_CCH; (ctxnum)++)		\
498 		if (((gts) = (gru)->gs_gts[ctxnum]))
499 
500 /* Scan each CBR whose bit is set in a TFM (or copy of) */
501 #define for_each_cbr_in_tfm(i, map)					\
502 	for ((i) = find_first_bit(map, GRU_NUM_CBE);			\
503 			(i) < GRU_NUM_CBE;				\
504 			(i)++, (i) = find_next_bit(map, GRU_NUM_CBE, i))
505 
506 /* Scan each CBR in a CBR bitmap. Note: multiple CBRs in an allocation unit */
507 #define for_each_cbr_in_allocation_map(i, map, k)			\
508 	for ((k) = find_first_bit(map, GRU_CBR_AU); (k) < GRU_CBR_AU;	\
509 			(k) = find_next_bit(map, GRU_CBR_AU, (k) + 1)) 	\
510 		for ((i) = (k)*GRU_CBR_AU_SIZE;				\
511 				(i) < ((k) + 1) * GRU_CBR_AU_SIZE; (i)++)
512 
513 /* Scan each DSR in a DSR bitmap. Note: multiple DSRs in an allocation unit */
514 #define for_each_dsr_in_allocation_map(i, map, k)			\
515 	for ((k) = find_first_bit((const unsigned long *)map, GRU_DSR_AU);\
516 			(k) < GRU_DSR_AU;				\
517 			(k) = find_next_bit((const unsigned long *)map,	\
518 					  GRU_DSR_AU, (k) + 1))		\
519 		for ((i) = (k) * GRU_DSR_AU_CL;				\
520 				(i) < ((k) + 1) * GRU_DSR_AU_CL; (i)++)
521 
522 #define gseg_physical_address(gru, ctxnum)				\
523 		((gru)->gs_gru_base_paddr + ctxnum * GRU_GSEG_STRIDE)
524 #define gseg_virtual_address(gru, ctxnum)				\
525 		((gru)->gs_gru_base_vaddr + ctxnum * GRU_GSEG_STRIDE)
526 
527 /*-----------------------------------------------------------------------------
528  * Lock / Unlock GRU handles
529  * 	Use the "delresp" bit in the handle as a "lock" bit.
530  */
531 
532 /* Lock hierarchy checking enabled only in emulator */
533 
534 static inline void __lock_handle(void *h)
535 {
536 	while (test_and_set_bit(1, h))
537 		cpu_relax();
538 }
539 
540 static inline void __unlock_handle(void *h)
541 {
542 	clear_bit(1, h);
543 }
544 
545 static inline void lock_cch_handle(struct gru_context_configuration_handle *cch)
546 {
547 	__lock_handle(cch);
548 }
549 
550 static inline void unlock_cch_handle(struct gru_context_configuration_handle
551 				     *cch)
552 {
553 	__unlock_handle(cch);
554 }
555 
556 static inline void lock_tgh_handle(struct gru_tlb_global_handle *tgh)
557 {
558 	__lock_handle(tgh);
559 }
560 
561 static inline void unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
562 {
563 	__unlock_handle(tgh);
564 }
565 
566 /*-----------------------------------------------------------------------------
567  * Function prototypes & externs
568  */
569 struct gru_unload_context_req;
570 
571 extern struct vm_operations_struct gru_vm_ops;
572 extern struct device *grudev;
573 
574 extern struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma,
575 				int tsid);
576 extern struct gru_thread_state *gru_find_thread_state(struct vm_area_struct
577 				*vma, int tsid);
578 extern struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct
579 				*vma, int tsid);
580 extern void gru_unload_context(struct gru_thread_state *gts, int savestate);
581 extern void gts_drop(struct gru_thread_state *gts);
582 extern void gru_tgh_flush_init(struct gru_state *gru);
583 extern int gru_kservices_init(struct gru_state *gru);
584 extern irqreturn_t gru_intr(int irq, void *dev_id);
585 extern int gru_handle_user_call_os(unsigned long address);
586 extern int gru_user_flush_tlb(unsigned long arg);
587 extern int gru_user_unload_context(unsigned long arg);
588 extern int gru_get_exception_detail(unsigned long arg);
589 extern int gru_set_task_slice(long address);
590 extern int gru_cpu_fault_map_id(void);
591 extern struct vm_area_struct *gru_find_vma(unsigned long vaddr);
592 extern void gru_flush_all_tlb(struct gru_state *gru);
593 extern int gru_proc_init(void);
594 extern void gru_proc_exit(void);
595 
596 extern unsigned long gru_reserve_cb_resources(struct gru_state *gru,
597 		int cbr_au_count, char *cbmap);
598 extern unsigned long gru_reserve_ds_resources(struct gru_state *gru,
599 		int dsr_au_count, char *dsmap);
600 extern int gru_fault(struct vm_area_struct *, struct vm_fault *vmf);
601 extern struct gru_mm_struct *gru_register_mmu_notifier(void);
602 extern void gru_drop_mmu_notifier(struct gru_mm_struct *gms);
603 
604 extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
605 					unsigned long len);
606 
607 extern unsigned long gru_options;
608 
609 #endif /* __GRUTABLES_H__ */
610