1 /* 2 * SN Platform GRU Driver 3 * 4 * GRU DRIVER TABLES, MACROS, externs, etc 5 * 6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #ifndef __GRUTABLES_H__ 24 #define __GRUTABLES_H__ 25 26 /* 27 * GRU Chiplet: 28 * The GRU is a user addressible memory accelerator. It provides 29 * several forms of load, store, memset, bcopy instructions. In addition, it 30 * contains special instructions for AMOs, sending messages to message 31 * queues, etc. 32 * 33 * The GRU is an integral part of the node controller. It connects 34 * directly to the cpu socket. In its current implementation, there are 2 35 * GRU chiplets in the node controller on each blade (~node). 36 * 37 * The entire GRU memory space is fully coherent and cacheable by the cpus. 38 * 39 * Each GRU chiplet has a physical memory map that looks like the following: 40 * 41 * +-----------------+ 42 * |/////////////////| 43 * |/////////////////| 44 * |/////////////////| 45 * |/////////////////| 46 * |/////////////////| 47 * |/////////////////| 48 * |/////////////////| 49 * |/////////////////| 50 * +-----------------+ 51 * | system control | 52 * +-----------------+ _______ +-------------+ 53 * |/////////////////| / | | 54 * |/////////////////| / | | 55 * |/////////////////| / | instructions| 56 * |/////////////////| / | | 57 * |/////////////////| / | | 58 * |/////////////////| / |-------------| 59 * |/////////////////| / | | 60 * +-----------------+ | | 61 * | context 15 | | data | 62 * +-----------------+ | | 63 * | ...... | \ | | 64 * +-----------------+ \____________ +-------------+ 65 * | context 1 | 66 * +-----------------+ 67 * | context 0 | 68 * +-----------------+ 69 * 70 * Each of the "contexts" is a chunk of memory that can be mmaped into user 71 * space. The context consists of 2 parts: 72 * 73 * - an instruction space that can be directly accessed by the user 74 * to issue GRU instructions and to check instruction status. 75 * 76 * - a data area that acts as normal RAM. 77 * 78 * User instructions contain virtual addresses of data to be accessed by the 79 * GRU. The GRU contains a TLB that is used to convert these user virtual 80 * addresses to physical addresses. 81 * 82 * The "system control" area of the GRU chiplet is used by the kernel driver 83 * to manage user contexts and to perform functions such as TLB dropin and 84 * purging. 85 * 86 * One context may be reserved for the kernel and used for cross-partition 87 * communication. The GRU will also be used to asynchronously zero out 88 * large blocks of memory (not currently implemented). 89 * 90 * 91 * Tables: 92 * 93 * VDATA-VMA Data - Holds a few parameters. Head of linked list of 94 * GTS tables for threads using the GSEG 95 * GTS - Gru Thread State - contains info for managing a GSEG context. A 96 * GTS is allocated for each thread accessing a 97 * GSEG. 98 * GTD - GRU Thread Data - contains shadow copy of GRU data when GSEG is 99 * not loaded into a GRU 100 * GMS - GRU Memory Struct - Used to manage TLB shootdowns. Tracks GRUs 101 * where a GSEG has been loaded. Similar to 102 * an mm_struct but for GRU. 103 * 104 * GS - GRU State - Used to manage the state of a GRU chiplet 105 * BS - Blade State - Used to manage state of all GRU chiplets 106 * on a blade 107 * 108 * 109 * Normal task tables for task using GRU. 110 * - 2 threads in process 111 * - 2 GSEGs open in process 112 * - GSEG1 is being used by both threads 113 * - GSEG2 is used only by thread 2 114 * 115 * task -->| 116 * task ---+---> mm ->------ (notifier) -------+-> gms 117 * | | 118 * |--> vma -> vdata ---> gts--->| GSEG1 (thread1) 119 * | | | 120 * | +-> gts--->| GSEG1 (thread2) 121 * | | 122 * |--> vma -> vdata ---> gts--->| GSEG2 (thread2) 123 * . 124 * . 125 * 126 * GSEGs are marked DONTCOPY on fork 127 * 128 * At open 129 * file.private_data -> NULL 130 * 131 * At mmap, 132 * vma -> vdata 133 * 134 * After gseg reference 135 * vma -> vdata ->gts 136 * 137 * After fork 138 * parent 139 * vma -> vdata -> gts 140 * child 141 * (vma is not copied) 142 * 143 */ 144 145 #include <linux/rmap.h> 146 #include <linux/interrupt.h> 147 #include <linux/mutex.h> 148 #include <linux/wait.h> 149 #include <linux/mmu_notifier.h> 150 #include "gru.h" 151 #include "gruhandles.h" 152 153 extern struct gru_stats_s gru_stats; 154 extern struct gru_blade_state *gru_base[]; 155 extern unsigned long gru_start_paddr, gru_end_paddr; 156 extern unsigned int gru_max_gids; 157 158 #define GRU_MAX_BLADES MAX_NUMNODES 159 #define GRU_MAX_GRUS (GRU_MAX_BLADES * GRU_CHIPLETS_PER_BLADE) 160 161 #define GRU_DRIVER_ID_STR "SGI GRU Device Driver" 162 #define GRU_DRIVER_VERSION_STR "0.80" 163 164 /* 165 * GRU statistics. 166 */ 167 struct gru_stats_s { 168 atomic_long_t vdata_alloc; 169 atomic_long_t vdata_free; 170 atomic_long_t gts_alloc; 171 atomic_long_t gts_free; 172 atomic_long_t vdata_double_alloc; 173 atomic_long_t gts_double_allocate; 174 atomic_long_t assign_context; 175 atomic_long_t assign_context_failed; 176 atomic_long_t free_context; 177 atomic_long_t load_context; 178 atomic_long_t unload_context; 179 atomic_long_t steal_context; 180 atomic_long_t steal_context_failed; 181 atomic_long_t nopfn; 182 atomic_long_t break_cow; 183 atomic_long_t asid_new; 184 atomic_long_t asid_next; 185 atomic_long_t asid_wrap; 186 atomic_long_t asid_reuse; 187 atomic_long_t intr; 188 atomic_long_t intr_mm_lock_failed; 189 atomic_long_t call_os; 190 atomic_long_t call_os_offnode_reference; 191 atomic_long_t call_os_check_for_bug; 192 atomic_long_t call_os_wait_queue; 193 atomic_long_t user_flush_tlb; 194 atomic_long_t user_unload_context; 195 atomic_long_t user_exception; 196 atomic_long_t set_task_slice; 197 atomic_long_t migrate_check; 198 atomic_long_t migrated_retarget; 199 atomic_long_t migrated_unload; 200 atomic_long_t migrated_unload_delay; 201 atomic_long_t migrated_nopfn_retarget; 202 atomic_long_t migrated_nopfn_unload; 203 atomic_long_t tlb_dropin; 204 atomic_long_t tlb_dropin_fail_no_asid; 205 atomic_long_t tlb_dropin_fail_upm; 206 atomic_long_t tlb_dropin_fail_invalid; 207 atomic_long_t tlb_dropin_fail_range_active; 208 atomic_long_t tlb_dropin_fail_idle; 209 atomic_long_t tlb_dropin_fail_fmm; 210 atomic_long_t mmu_invalidate_range; 211 atomic_long_t mmu_invalidate_page; 212 atomic_long_t mmu_clear_flush_young; 213 atomic_long_t flush_tlb; 214 atomic_long_t flush_tlb_gru; 215 atomic_long_t flush_tlb_gru_tgh; 216 atomic_long_t flush_tlb_gru_zero_asid; 217 218 atomic_long_t copy_gpa; 219 220 atomic_long_t mesq_receive; 221 atomic_long_t mesq_receive_none; 222 atomic_long_t mesq_send; 223 atomic_long_t mesq_send_failed; 224 atomic_long_t mesq_noop; 225 atomic_long_t mesq_send_unexpected_error; 226 atomic_long_t mesq_send_lb_overflow; 227 atomic_long_t mesq_send_qlimit_reached; 228 atomic_long_t mesq_send_amo_nacked; 229 atomic_long_t mesq_send_put_nacked; 230 atomic_long_t mesq_qf_not_full; 231 atomic_long_t mesq_qf_locked; 232 atomic_long_t mesq_qf_noop_not_full; 233 atomic_long_t mesq_qf_switch_head_failed; 234 atomic_long_t mesq_qf_unexpected_error; 235 atomic_long_t mesq_noop_unexpected_error; 236 atomic_long_t mesq_noop_lb_overflow; 237 atomic_long_t mesq_noop_qlimit_reached; 238 atomic_long_t mesq_noop_amo_nacked; 239 atomic_long_t mesq_noop_put_nacked; 240 241 }; 242 243 enum mcs_op {cchop_allocate, cchop_start, cchop_interrupt, cchop_interrupt_sync, 244 cchop_deallocate, tghop_invalidate, mcsop_last}; 245 246 struct mcs_op_statistic { 247 atomic_long_t count; 248 atomic_long_t total; 249 unsigned long max; 250 }; 251 252 extern struct mcs_op_statistic mcs_op_statistics[mcsop_last]; 253 254 #define OPT_DPRINT 1 255 #define OPT_STATS 2 256 #define GRU_QUICKLOOK 4 257 258 259 #define IRQ_GRU 110 /* Starting IRQ number for interrupts */ 260 261 /* Delay in jiffies between attempts to assign a GRU context */ 262 #define GRU_ASSIGN_DELAY ((HZ * 20) / 1000) 263 264 /* 265 * If a process has it's context stolen, min delay in jiffies before trying to 266 * steal a context from another process. 267 */ 268 #define GRU_STEAL_DELAY ((HZ * 200) / 1000) 269 270 #define STAT(id) do { \ 271 if (gru_options & OPT_STATS) \ 272 atomic_long_inc(&gru_stats.id); \ 273 } while (0) 274 275 #ifdef CONFIG_SGI_GRU_DEBUG 276 #define gru_dbg(dev, fmt, x...) \ 277 do { \ 278 if (gru_options & OPT_DPRINT) \ 279 dev_dbg(dev, "%s: " fmt, __func__, x); \ 280 } while (0) 281 #else 282 #define gru_dbg(x...) 283 #endif 284 285 /*----------------------------------------------------------------------------- 286 * ASID management 287 */ 288 #define MAX_ASID 0xfffff0 289 #define MIN_ASID 8 290 #define ASID_INC 8 /* number of regions */ 291 292 /* Generate a GRU asid value from a GRU base asid & a virtual address. */ 293 #if defined CONFIG_IA64 294 #define VADDR_HI_BIT 64 295 #elif defined CONFIG_X86_64 296 #define VADDR_HI_BIT 48 297 #else 298 #error "Unsupported architecture" 299 #endif 300 #define GRUREGION(addr) ((addr) >> (VADDR_HI_BIT - 3) & 3) 301 #define GRUASID(asid, addr) ((asid) + GRUREGION(addr)) 302 303 /*------------------------------------------------------------------------------ 304 * File & VMS Tables 305 */ 306 307 struct gru_state; 308 309 /* 310 * This structure is pointed to from the mmstruct via the notifier pointer. 311 * There is one of these per address space. 312 */ 313 struct gru_mm_tracker { /* pack to reduce size */ 314 unsigned int mt_asid_gen:24; /* ASID wrap count */ 315 unsigned int mt_asid:24; /* current base ASID for gru */ 316 unsigned short mt_ctxbitmap:16;/* bitmap of contexts using 317 asid */ 318 } __attribute__ ((packed)); 319 320 struct gru_mm_struct { 321 struct mmu_notifier ms_notifier; 322 atomic_t ms_refcnt; 323 spinlock_t ms_asid_lock; /* protects ASID assignment */ 324 atomic_t ms_range_active;/* num range_invals active */ 325 char ms_released; 326 wait_queue_head_t ms_wait_queue; 327 DECLARE_BITMAP(ms_asidmap, GRU_MAX_GRUS); 328 struct gru_mm_tracker ms_asids[GRU_MAX_GRUS]; 329 }; 330 331 /* 332 * One of these structures is allocated when a GSEG is mmaped. The 333 * structure is pointed to by the vma->vm_private_data field in the vma struct. 334 */ 335 struct gru_vma_data { 336 spinlock_t vd_lock; /* Serialize access to vma */ 337 struct list_head vd_head; /* head of linked list of gts */ 338 long vd_user_options;/* misc user option flags */ 339 int vd_cbr_au_count; 340 int vd_dsr_au_count; 341 }; 342 343 /* 344 * One of these is allocated for each thread accessing a mmaped GRU. A linked 345 * list of these structure is hung off the struct gru_vma_data in the mm_struct. 346 */ 347 struct gru_thread_state { 348 struct list_head ts_next; /* list - head at vma-private */ 349 struct mutex ts_ctxlock; /* load/unload CTX lock */ 350 struct mm_struct *ts_mm; /* mm currently mapped to 351 context */ 352 struct vm_area_struct *ts_vma; /* vma of GRU context */ 353 struct gru_state *ts_gru; /* GRU where the context is 354 loaded */ 355 struct gru_mm_struct *ts_gms; /* asid & ioproc struct */ 356 unsigned long ts_cbr_map; /* map of allocated CBRs */ 357 unsigned long ts_dsr_map; /* map of allocated DATA 358 resources */ 359 unsigned long ts_steal_jiffies;/* jiffies when context last 360 stolen */ 361 long ts_user_options;/* misc user option flags */ 362 pid_t ts_tgid_owner; /* task that is using the 363 context - for migration */ 364 unsigned short ts_sizeavail; /* Pagesizes in use */ 365 int ts_tsid; /* thread that owns the 366 structure */ 367 int ts_tlb_int_select;/* target cpu if interrupts 368 enabled */ 369 int ts_ctxnum; /* context number where the 370 context is loaded */ 371 atomic_t ts_refcnt; /* reference count GTS */ 372 unsigned char ts_dsr_au_count;/* Number of DSR resources 373 required for contest */ 374 unsigned char ts_cbr_au_count;/* Number of CBR resources 375 required for contest */ 376 char ts_blade; /* If >= 0, migrate context if 377 ref from diferent blade */ 378 char ts_force_cch_reload; 379 char ts_force_unload;/* force context to be unloaded 380 after migration */ 381 char ts_cbr_idx[GRU_CBR_AU];/* CBR numbers of each 382 allocated CB */ 383 unsigned long ts_gdata[0]; /* save area for GRU data (CB, 384 DS, CBE) */ 385 }; 386 387 /* 388 * Threaded programs actually allocate an array of GSEGs when a context is 389 * created. Each thread uses a separate GSEG. TSID is the index into the GSEG 390 * array. 391 */ 392 #define TSID(a, v) (((a) - (v)->vm_start) / GRU_GSEG_PAGESIZE) 393 #define UGRUADDR(gts) ((gts)->ts_vma->vm_start + \ 394 (gts)->ts_tsid * GRU_GSEG_PAGESIZE) 395 396 #define NULLCTX (-1) /* if context not loaded into GRU */ 397 398 /*----------------------------------------------------------------------------- 399 * GRU State Tables 400 */ 401 402 /* 403 * One of these exists for each GRU chiplet. 404 */ 405 struct gru_state { 406 struct gru_blade_state *gs_blade; /* GRU state for entire 407 blade */ 408 unsigned long gs_gru_base_paddr; /* Physical address of 409 gru segments (64) */ 410 void *gs_gru_base_vaddr; /* Virtual address of 411 gru segments (64) */ 412 unsigned short gs_gid; /* unique GRU number */ 413 unsigned short gs_blade_id; /* blade of GRU */ 414 unsigned char gs_tgh_local_shift; /* used to pick TGH for 415 local flush */ 416 unsigned char gs_tgh_first_remote; /* starting TGH# for 417 remote flush */ 418 spinlock_t gs_asid_lock; /* lock used for 419 assigning asids */ 420 spinlock_t gs_lock; /* lock used for 421 assigning contexts */ 422 423 /* -- the following are protected by the gs_asid_lock spinlock ---- */ 424 unsigned int gs_asid; /* Next availe ASID */ 425 unsigned int gs_asid_limit; /* Limit of available 426 ASIDs */ 427 unsigned int gs_asid_gen; /* asid generation. 428 Inc on wrap */ 429 430 /* --- the following fields are protected by the gs_lock spinlock --- */ 431 unsigned long gs_context_map; /* bitmap to manage 432 contexts in use */ 433 unsigned long gs_cbr_map; /* bitmap to manage CB 434 resources */ 435 unsigned long gs_dsr_map; /* bitmap used to manage 436 DATA resources */ 437 unsigned int gs_reserved_cbrs; /* Number of kernel- 438 reserved cbrs */ 439 unsigned int gs_reserved_dsr_bytes; /* Bytes of kernel- 440 reserved dsrs */ 441 unsigned short gs_active_contexts; /* number of contexts 442 in use */ 443 struct gru_thread_state *gs_gts[GRU_NUM_CCH]; /* GTS currently using 444 the context */ 445 }; 446 447 /* 448 * This structure contains the GRU state for all the GRUs on a blade. 449 */ 450 struct gru_blade_state { 451 void *kernel_cb; /* First kernel 452 reserved cb */ 453 void *kernel_dsr; /* First kernel 454 reserved DSR */ 455 /* ---- the following are protected by the bs_lock spinlock ---- */ 456 spinlock_t bs_lock; /* lock used for 457 stealing contexts */ 458 int bs_lru_ctxnum; /* STEAL - last context 459 stolen */ 460 struct gru_state *bs_lru_gru; /* STEAL - last gru 461 stolen */ 462 463 struct gru_state bs_grus[GRU_CHIPLETS_PER_BLADE]; 464 }; 465 466 /*----------------------------------------------------------------------------- 467 * Address Primitives 468 */ 469 #define get_tfm_for_cpu(g, c) \ 470 ((struct gru_tlb_fault_map *)get_tfm((g)->gs_gru_base_vaddr, (c))) 471 #define get_tfh_by_index(g, i) \ 472 ((struct gru_tlb_fault_handle *)get_tfh((g)->gs_gru_base_vaddr, (i))) 473 #define get_tgh_by_index(g, i) \ 474 ((struct gru_tlb_global_handle *)get_tgh((g)->gs_gru_base_vaddr, (i))) 475 #define get_cbe_by_index(g, i) \ 476 ((struct gru_control_block_extended *)get_cbe((g)->gs_gru_base_vaddr,\ 477 (i))) 478 479 /*----------------------------------------------------------------------------- 480 * Useful Macros 481 */ 482 483 /* Given a blade# & chiplet#, get a pointer to the GRU */ 484 #define get_gru(b, c) (&gru_base[b]->bs_grus[c]) 485 486 /* Number of bytes to save/restore when unloading/loading GRU contexts */ 487 #define DSR_BYTES(dsr) ((dsr) * GRU_DSR_AU_BYTES) 488 #define CBR_BYTES(cbr) ((cbr) * GRU_HANDLE_BYTES * GRU_CBR_AU_SIZE * 2) 489 490 /* Convert a user CB number to the actual CBRNUM */ 491 #define thread_cbr_number(gts, n) ((gts)->ts_cbr_idx[(n) / GRU_CBR_AU_SIZE] \ 492 * GRU_CBR_AU_SIZE + (n) % GRU_CBR_AU_SIZE) 493 494 /* Convert a gid to a pointer to the GRU */ 495 #define GID_TO_GRU(gid) \ 496 (gru_base[(gid) / GRU_CHIPLETS_PER_BLADE] ? \ 497 (&gru_base[(gid) / GRU_CHIPLETS_PER_BLADE]-> \ 498 bs_grus[(gid) % GRU_CHIPLETS_PER_BLADE]) : \ 499 NULL) 500 501 /* Scan all active GRUs in a GRU bitmap */ 502 #define for_each_gru_in_bitmap(gid, map) \ 503 for ((gid) = find_first_bit((map), GRU_MAX_GRUS); (gid) < GRU_MAX_GRUS;\ 504 (gid)++, (gid) = find_next_bit((map), GRU_MAX_GRUS, (gid))) 505 506 /* Scan all active GRUs on a specific blade */ 507 #define for_each_gru_on_blade(gru, nid, i) \ 508 for ((gru) = gru_base[nid]->bs_grus, (i) = 0; \ 509 (i) < GRU_CHIPLETS_PER_BLADE; \ 510 (i)++, (gru)++) 511 512 /* Scan all GRUs */ 513 #define foreach_gid(gid) \ 514 for ((gid) = 0; (gid) < gru_max_gids; (gid)++) 515 516 /* Scan all active GTSs on a gru. Note: must hold ss_lock to use this macro. */ 517 #define for_each_gts_on_gru(gts, gru, ctxnum) \ 518 for ((ctxnum) = 0; (ctxnum) < GRU_NUM_CCH; (ctxnum)++) \ 519 if (((gts) = (gru)->gs_gts[ctxnum])) 520 521 /* Scan each CBR whose bit is set in a TFM (or copy of) */ 522 #define for_each_cbr_in_tfm(i, map) \ 523 for ((i) = find_first_bit(map, GRU_NUM_CBE); \ 524 (i) < GRU_NUM_CBE; \ 525 (i)++, (i) = find_next_bit(map, GRU_NUM_CBE, i)) 526 527 /* Scan each CBR in a CBR bitmap. Note: multiple CBRs in an allocation unit */ 528 #define for_each_cbr_in_allocation_map(i, map, k) \ 529 for ((k) = find_first_bit(map, GRU_CBR_AU); (k) < GRU_CBR_AU; \ 530 (k) = find_next_bit(map, GRU_CBR_AU, (k) + 1)) \ 531 for ((i) = (k)*GRU_CBR_AU_SIZE; \ 532 (i) < ((k) + 1) * GRU_CBR_AU_SIZE; (i)++) 533 534 /* Scan each DSR in a DSR bitmap. Note: multiple DSRs in an allocation unit */ 535 #define for_each_dsr_in_allocation_map(i, map, k) \ 536 for ((k) = find_first_bit((const unsigned long *)map, GRU_DSR_AU);\ 537 (k) < GRU_DSR_AU; \ 538 (k) = find_next_bit((const unsigned long *)map, \ 539 GRU_DSR_AU, (k) + 1)) \ 540 for ((i) = (k) * GRU_DSR_AU_CL; \ 541 (i) < ((k) + 1) * GRU_DSR_AU_CL; (i)++) 542 543 #define gseg_physical_address(gru, ctxnum) \ 544 ((gru)->gs_gru_base_paddr + ctxnum * GRU_GSEG_STRIDE) 545 #define gseg_virtual_address(gru, ctxnum) \ 546 ((gru)->gs_gru_base_vaddr + ctxnum * GRU_GSEG_STRIDE) 547 548 /*----------------------------------------------------------------------------- 549 * Lock / Unlock GRU handles 550 * Use the "delresp" bit in the handle as a "lock" bit. 551 */ 552 553 /* Lock hierarchy checking enabled only in emulator */ 554 555 static inline void __lock_handle(void *h) 556 { 557 while (test_and_set_bit(1, h)) 558 cpu_relax(); 559 } 560 561 static inline void __unlock_handle(void *h) 562 { 563 clear_bit(1, h); 564 } 565 566 static inline void lock_cch_handle(struct gru_context_configuration_handle *cch) 567 { 568 __lock_handle(cch); 569 } 570 571 static inline void unlock_cch_handle(struct gru_context_configuration_handle 572 *cch) 573 { 574 __unlock_handle(cch); 575 } 576 577 static inline void lock_tgh_handle(struct gru_tlb_global_handle *tgh) 578 { 579 __lock_handle(tgh); 580 } 581 582 static inline void unlock_tgh_handle(struct gru_tlb_global_handle *tgh) 583 { 584 __unlock_handle(tgh); 585 } 586 587 /*----------------------------------------------------------------------------- 588 * Function prototypes & externs 589 */ 590 struct gru_unload_context_req; 591 592 extern struct vm_operations_struct gru_vm_ops; 593 extern struct device *grudev; 594 595 extern struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, 596 int tsid); 597 extern struct gru_thread_state *gru_find_thread_state(struct vm_area_struct 598 *vma, int tsid); 599 extern struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct 600 *vma, int tsid); 601 extern void gru_unload_context(struct gru_thread_state *gts, int savestate); 602 extern int gru_update_cch(struct gru_thread_state *gts, int force_unload); 603 extern void gts_drop(struct gru_thread_state *gts); 604 extern void gru_tgh_flush_init(struct gru_state *gru); 605 extern int gru_kservices_init(struct gru_state *gru); 606 extern void gru_kservices_exit(struct gru_state *gru); 607 extern irqreturn_t gru_intr(int irq, void *dev_id); 608 extern int gru_handle_user_call_os(unsigned long address); 609 extern int gru_user_flush_tlb(unsigned long arg); 610 extern int gru_user_unload_context(unsigned long arg); 611 extern int gru_get_exception_detail(unsigned long arg); 612 extern int gru_set_task_slice(long address); 613 extern int gru_cpu_fault_map_id(void); 614 extern struct vm_area_struct *gru_find_vma(unsigned long vaddr); 615 extern void gru_flush_all_tlb(struct gru_state *gru); 616 extern int gru_proc_init(void); 617 extern void gru_proc_exit(void); 618 619 extern unsigned long gru_reserve_cb_resources(struct gru_state *gru, 620 int cbr_au_count, char *cbmap); 621 extern unsigned long gru_reserve_ds_resources(struct gru_state *gru, 622 int dsr_au_count, char *dsmap); 623 extern int gru_fault(struct vm_area_struct *, struct vm_fault *vmf); 624 extern struct gru_mm_struct *gru_register_mmu_notifier(void); 625 extern void gru_drop_mmu_notifier(struct gru_mm_struct *gms); 626 627 extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start, 628 unsigned long len); 629 630 extern unsigned long gru_options; 631 632 #endif /* __GRUTABLES_H__ */ 633