xref: /openbmc/linux/drivers/misc/sgi-gru/grumain.c (revision fd589a8f)
1 /*
2  * SN Platform GRU Driver
3  *
4  *            DRIVER TABLE MANAGER + GRU CONTEXT LOAD/UNLOAD
5  *
6  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 #include <linux/spinlock.h>
27 #include <linux/sched.h>
28 #include <linux/device.h>
29 #include <linux/list.h>
30 #include <asm/uv/uv_hub.h>
31 #include "gru.h"
32 #include "grutables.h"
33 #include "gruhandles.h"
34 
35 unsigned long gru_options __read_mostly;
36 
37 static struct device_driver gru_driver = {
38 	.name = "gru"
39 };
40 
41 static struct device gru_device = {
42 	.init_name = "",
43 	.driver = &gru_driver,
44 };
45 
46 struct device *grudev = &gru_device;
47 
48 /*
49  * Select a gru fault map to be used by the current cpu. Note that
50  * multiple cpus may be using the same map.
51  *	ZZZ should "shift" be used?? Depends on HT cpu numbering
52  *	ZZZ should be inline but did not work on emulator
53  */
54 int gru_cpu_fault_map_id(void)
55 {
56 	return uv_blade_processor_id() % GRU_NUM_TFM;
57 }
58 
59 /*--------- ASID Management -------------------------------------------
60  *
61  *  Initially, assign asids sequentially from MIN_ASID .. MAX_ASID.
62  *  Once MAX is reached, flush the TLB & start over. However,
63  *  some asids may still be in use. There won't be many (percentage wise) still
64  *  in use. Search active contexts & determine the value of the first
65  *  asid in use ("x"s below). Set "limit" to this value.
66  *  This defines a block of assignable asids.
67  *
68  *  When "limit" is reached, search forward from limit+1 and determine the
69  *  next block of assignable asids.
70  *
71  *  Repeat until MAX_ASID is reached, then start over again.
72  *
73  *  Each time MAX_ASID is reached, increment the asid generation. Since
74  *  the search for in-use asids only checks contexts with GRUs currently
75  *  assigned, asids in some contexts will be missed. Prior to loading
76  *  a context, the asid generation of the GTS asid is rechecked. If it
77  *  doesn't match the current generation, a new asid will be assigned.
78  *
79  *   	0---------------x------------x---------------------x----|
80  *	  ^-next	^-limit	   				^-MAX_ASID
81  *
82  * All asid manipulation & context loading/unloading is protected by the
83  * gs_lock.
84  */
85 
86 /* Hit the asid limit. Start over */
87 static int gru_wrap_asid(struct gru_state *gru)
88 {
89 	gru_dbg(grudev, "gid %d\n", gru->gs_gid);
90 	STAT(asid_wrap);
91 	gru->gs_asid_gen++;
92 	return MIN_ASID;
93 }
94 
95 /* Find the next chunk of unused asids */
96 static int gru_reset_asid_limit(struct gru_state *gru, int asid)
97 {
98 	int i, gid, inuse_asid, limit;
99 
100 	gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid);
101 	STAT(asid_next);
102 	limit = MAX_ASID;
103 	if (asid >= limit)
104 		asid = gru_wrap_asid(gru);
105 	gru_flush_all_tlb(gru);
106 	gid = gru->gs_gid;
107 again:
108 	for (i = 0; i < GRU_NUM_CCH; i++) {
109 		if (!gru->gs_gts[i] || is_kernel_context(gru->gs_gts[i]))
110 			continue;
111 		inuse_asid = gru->gs_gts[i]->ts_gms->ms_asids[gid].mt_asid;
112 		gru_dbg(grudev, "gid %d, gts %p, gms %p, inuse 0x%x, cxt %d\n",
113 			gru->gs_gid, gru->gs_gts[i], gru->gs_gts[i]->ts_gms,
114 			inuse_asid, i);
115 		if (inuse_asid == asid) {
116 			asid += ASID_INC;
117 			if (asid >= limit) {
118 				/*
119 				 * empty range: reset the range limit and
120 				 * start over
121 				 */
122 				limit = MAX_ASID;
123 				if (asid >= MAX_ASID)
124 					asid = gru_wrap_asid(gru);
125 				goto again;
126 			}
127 		}
128 
129 		if ((inuse_asid > asid) && (inuse_asid < limit))
130 			limit = inuse_asid;
131 	}
132 	gru->gs_asid_limit = limit;
133 	gru->gs_asid = asid;
134 	gru_dbg(grudev, "gid %d, new asid 0x%x, new_limit 0x%x\n", gru->gs_gid,
135 					asid, limit);
136 	return asid;
137 }
138 
139 /* Assign a new ASID to a thread context.  */
140 static int gru_assign_asid(struct gru_state *gru)
141 {
142 	int asid;
143 
144 	gru->gs_asid += ASID_INC;
145 	asid = gru->gs_asid;
146 	if (asid >= gru->gs_asid_limit)
147 		asid = gru_reset_asid_limit(gru, asid);
148 
149 	gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid);
150 	return asid;
151 }
152 
153 /*
154  * Clear n bits in a word. Return a word indicating the bits that were cleared.
155  * Optionally, build an array of chars that contain the bit numbers allocated.
156  */
157 static unsigned long reserve_resources(unsigned long *p, int n, int mmax,
158 				       char *idx)
159 {
160 	unsigned long bits = 0;
161 	int i;
162 
163 	while (n--) {
164 		i = find_first_bit(p, mmax);
165 		if (i == mmax)
166 			BUG();
167 		__clear_bit(i, p);
168 		__set_bit(i, &bits);
169 		if (idx)
170 			*idx++ = i;
171 	}
172 	return bits;
173 }
174 
175 unsigned long gru_reserve_cb_resources(struct gru_state *gru, int cbr_au_count,
176 				       char *cbmap)
177 {
178 	return reserve_resources(&gru->gs_cbr_map, cbr_au_count, GRU_CBR_AU,
179 				 cbmap);
180 }
181 
182 unsigned long gru_reserve_ds_resources(struct gru_state *gru, int dsr_au_count,
183 				       char *dsmap)
184 {
185 	return reserve_resources(&gru->gs_dsr_map, dsr_au_count, GRU_DSR_AU,
186 				 dsmap);
187 }
188 
189 static void reserve_gru_resources(struct gru_state *gru,
190 				  struct gru_thread_state *gts)
191 {
192 	gru->gs_active_contexts++;
193 	gts->ts_cbr_map =
194 	    gru_reserve_cb_resources(gru, gts->ts_cbr_au_count,
195 				     gts->ts_cbr_idx);
196 	gts->ts_dsr_map =
197 	    gru_reserve_ds_resources(gru, gts->ts_dsr_au_count, NULL);
198 }
199 
200 static void free_gru_resources(struct gru_state *gru,
201 			       struct gru_thread_state *gts)
202 {
203 	gru->gs_active_contexts--;
204 	gru->gs_cbr_map |= gts->ts_cbr_map;
205 	gru->gs_dsr_map |= gts->ts_dsr_map;
206 }
207 
208 /*
209  * Check if a GRU has sufficient free resources to satisfy an allocation
210  * request. Note: GRU locks may or may not be held when this is called. If
211  * not held, recheck after acquiring the appropriate locks.
212  *
213  * Returns 1 if sufficient resources, 0 if not
214  */
215 static int check_gru_resources(struct gru_state *gru, int cbr_au_count,
216 			       int dsr_au_count, int max_active_contexts)
217 {
218 	return hweight64(gru->gs_cbr_map) >= cbr_au_count
219 		&& hweight64(gru->gs_dsr_map) >= dsr_au_count
220 		&& gru->gs_active_contexts < max_active_contexts;
221 }
222 
223 /*
224  * TLB manangment requires tracking all GRU chiplets that have loaded a GSEG
225  * context.
226  */
227 static int gru_load_mm_tracker(struct gru_state *gru,
228 					struct gru_thread_state *gts)
229 {
230 	struct gru_mm_struct *gms = gts->ts_gms;
231 	struct gru_mm_tracker *asids = &gms->ms_asids[gru->gs_gid];
232 	unsigned short ctxbitmap = (1 << gts->ts_ctxnum);
233 	int asid;
234 
235 	spin_lock(&gms->ms_asid_lock);
236 	asid = asids->mt_asid;
237 
238 	spin_lock(&gru->gs_asid_lock);
239 	if (asid == 0 || (asids->mt_ctxbitmap == 0 && asids->mt_asid_gen !=
240 			  gru->gs_asid_gen)) {
241 		asid = gru_assign_asid(gru);
242 		asids->mt_asid = asid;
243 		asids->mt_asid_gen = gru->gs_asid_gen;
244 		STAT(asid_new);
245 	} else {
246 		STAT(asid_reuse);
247 	}
248 	spin_unlock(&gru->gs_asid_lock);
249 
250 	BUG_ON(asids->mt_ctxbitmap & ctxbitmap);
251 	asids->mt_ctxbitmap |= ctxbitmap;
252 	if (!test_bit(gru->gs_gid, gms->ms_asidmap))
253 		__set_bit(gru->gs_gid, gms->ms_asidmap);
254 	spin_unlock(&gms->ms_asid_lock);
255 
256 	gru_dbg(grudev,
257 		"gid %d, gts %p, gms %p, ctxnum %d, asid 0x%x, asidmap 0x%lx\n",
258 		gru->gs_gid, gts, gms, gts->ts_ctxnum, asid,
259 		gms->ms_asidmap[0]);
260 	return asid;
261 }
262 
263 static void gru_unload_mm_tracker(struct gru_state *gru,
264 					struct gru_thread_state *gts)
265 {
266 	struct gru_mm_struct *gms = gts->ts_gms;
267 	struct gru_mm_tracker *asids;
268 	unsigned short ctxbitmap;
269 
270 	asids = &gms->ms_asids[gru->gs_gid];
271 	ctxbitmap = (1 << gts->ts_ctxnum);
272 	spin_lock(&gms->ms_asid_lock);
273 	spin_lock(&gru->gs_asid_lock);
274 	BUG_ON((asids->mt_ctxbitmap & ctxbitmap) != ctxbitmap);
275 	asids->mt_ctxbitmap ^= ctxbitmap;
276 	gru_dbg(grudev, "gid %d, gts %p, gms %p, ctxnum 0x%d, asidmap 0x%lx\n",
277 		gru->gs_gid, gts, gms, gts->ts_ctxnum, gms->ms_asidmap[0]);
278 	spin_unlock(&gru->gs_asid_lock);
279 	spin_unlock(&gms->ms_asid_lock);
280 }
281 
282 /*
283  * Decrement the reference count on a GTS structure. Free the structure
284  * if the reference count goes to zero.
285  */
286 void gts_drop(struct gru_thread_state *gts)
287 {
288 	if (gts && atomic_dec_return(&gts->ts_refcnt) == 0) {
289 		gru_drop_mmu_notifier(gts->ts_gms);
290 		kfree(gts);
291 		STAT(gts_free);
292 	}
293 }
294 
295 /*
296  * Locate the GTS structure for the current thread.
297  */
298 static struct gru_thread_state *gru_find_current_gts_nolock(struct gru_vma_data
299 			    *vdata, int tsid)
300 {
301 	struct gru_thread_state *gts;
302 
303 	list_for_each_entry(gts, &vdata->vd_head, ts_next)
304 	    if (gts->ts_tsid == tsid)
305 		return gts;
306 	return NULL;
307 }
308 
309 /*
310  * Allocate a thread state structure.
311  */
312 struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma,
313 		int cbr_au_count, int dsr_au_count, int options, int tsid)
314 {
315 	struct gru_thread_state *gts;
316 	int bytes;
317 
318 	bytes = DSR_BYTES(dsr_au_count) + CBR_BYTES(cbr_au_count);
319 	bytes += sizeof(struct gru_thread_state);
320 	gts = kmalloc(bytes, GFP_KERNEL);
321 	if (!gts)
322 		return NULL;
323 
324 	STAT(gts_alloc);
325 	memset(gts, 0, sizeof(struct gru_thread_state)); /* zero out header */
326 	atomic_set(&gts->ts_refcnt, 1);
327 	mutex_init(&gts->ts_ctxlock);
328 	gts->ts_cbr_au_count = cbr_au_count;
329 	gts->ts_dsr_au_count = dsr_au_count;
330 	gts->ts_user_options = options;
331 	gts->ts_tsid = tsid;
332 	gts->ts_ctxnum = NULLCTX;
333 	gts->ts_tlb_int_select = -1;
334 	gts->ts_cch_req_slice = -1;
335 	gts->ts_sizeavail = GRU_SIZEAVAIL(PAGE_SHIFT);
336 	if (vma) {
337 		gts->ts_mm = current->mm;
338 		gts->ts_vma = vma;
339 		gts->ts_gms = gru_register_mmu_notifier();
340 		if (!gts->ts_gms)
341 			goto err;
342 	}
343 
344 	gru_dbg(grudev, "alloc gts %p\n", gts);
345 	return gts;
346 
347 err:
348 	gts_drop(gts);
349 	return NULL;
350 }
351 
352 /*
353  * Allocate a vma private data structure.
354  */
355 struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, int tsid)
356 {
357 	struct gru_vma_data *vdata = NULL;
358 
359 	vdata = kmalloc(sizeof(*vdata), GFP_KERNEL);
360 	if (!vdata)
361 		return NULL;
362 
363 	INIT_LIST_HEAD(&vdata->vd_head);
364 	spin_lock_init(&vdata->vd_lock);
365 	gru_dbg(grudev, "alloc vdata %p\n", vdata);
366 	return vdata;
367 }
368 
369 /*
370  * Find the thread state structure for the current thread.
371  */
372 struct gru_thread_state *gru_find_thread_state(struct vm_area_struct *vma,
373 					int tsid)
374 {
375 	struct gru_vma_data *vdata = vma->vm_private_data;
376 	struct gru_thread_state *gts;
377 
378 	spin_lock(&vdata->vd_lock);
379 	gts = gru_find_current_gts_nolock(vdata, tsid);
380 	spin_unlock(&vdata->vd_lock);
381 	gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
382 	return gts;
383 }
384 
385 /*
386  * Allocate a new thread state for a GSEG. Note that races may allow
387  * another thread to race to create a gts.
388  */
389 struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct *vma,
390 					int tsid)
391 {
392 	struct gru_vma_data *vdata = vma->vm_private_data;
393 	struct gru_thread_state *gts, *ngts;
394 
395 	gts = gru_alloc_gts(vma, vdata->vd_cbr_au_count, vdata->vd_dsr_au_count,
396 			    vdata->vd_user_options, tsid);
397 	if (!gts)
398 		return NULL;
399 
400 	spin_lock(&vdata->vd_lock);
401 	ngts = gru_find_current_gts_nolock(vdata, tsid);
402 	if (ngts) {
403 		gts_drop(gts);
404 		gts = ngts;
405 		STAT(gts_double_allocate);
406 	} else {
407 		list_add(&gts->ts_next, &vdata->vd_head);
408 	}
409 	spin_unlock(&vdata->vd_lock);
410 	gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
411 	return gts;
412 }
413 
414 /*
415  * Free the GRU context assigned to the thread state.
416  */
417 static void gru_free_gru_context(struct gru_thread_state *gts)
418 {
419 	struct gru_state *gru;
420 
421 	gru = gts->ts_gru;
422 	gru_dbg(grudev, "gts %p, gid %d\n", gts, gru->gs_gid);
423 
424 	spin_lock(&gru->gs_lock);
425 	gru->gs_gts[gts->ts_ctxnum] = NULL;
426 	free_gru_resources(gru, gts);
427 	BUG_ON(test_bit(gts->ts_ctxnum, &gru->gs_context_map) == 0);
428 	__clear_bit(gts->ts_ctxnum, &gru->gs_context_map);
429 	gts->ts_ctxnum = NULLCTX;
430 	gts->ts_gru = NULL;
431 	gts->ts_blade = -1;
432 	spin_unlock(&gru->gs_lock);
433 
434 	gts_drop(gts);
435 	STAT(free_context);
436 }
437 
438 /*
439  * Prefetching cachelines help hardware performance.
440  * (Strictly a performance enhancement. Not functionally required).
441  */
442 static void prefetch_data(void *p, int num, int stride)
443 {
444 	while (num-- > 0) {
445 		prefetchw(p);
446 		p += stride;
447 	}
448 }
449 
450 static inline long gru_copy_handle(void *d, void *s)
451 {
452 	memcpy(d, s, GRU_HANDLE_BYTES);
453 	return GRU_HANDLE_BYTES;
454 }
455 
456 static void gru_prefetch_context(void *gseg, void *cb, void *cbe,
457 				unsigned long cbrmap, unsigned long length)
458 {
459 	int i, scr;
460 
461 	prefetch_data(gseg + GRU_DS_BASE, length / GRU_CACHE_LINE_BYTES,
462 		      GRU_CACHE_LINE_BYTES);
463 
464 	for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
465 		prefetch_data(cb, 1, GRU_CACHE_LINE_BYTES);
466 		prefetch_data(cbe + i * GRU_HANDLE_STRIDE, 1,
467 			      GRU_CACHE_LINE_BYTES);
468 		cb += GRU_HANDLE_STRIDE;
469 	}
470 }
471 
472 static void gru_load_context_data(void *save, void *grubase, int ctxnum,
473 				  unsigned long cbrmap, unsigned long dsrmap,
474 				  int data_valid)
475 {
476 	void *gseg, *cb, *cbe;
477 	unsigned long length;
478 	int i, scr;
479 
480 	gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
481 	cb = gseg + GRU_CB_BASE;
482 	cbe = grubase + GRU_CBE_BASE;
483 	length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
484 	gru_prefetch_context(gseg, cb, cbe, cbrmap, length);
485 
486 	for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
487 		if (data_valid) {
488 			save += gru_copy_handle(cb, save);
489 			save += gru_copy_handle(cbe + i * GRU_HANDLE_STRIDE,
490 						save);
491 		} else {
492 			memset(cb, 0, GRU_CACHE_LINE_BYTES);
493 			memset(cbe + i * GRU_HANDLE_STRIDE, 0,
494 						GRU_CACHE_LINE_BYTES);
495 		}
496 		cb += GRU_HANDLE_STRIDE;
497 	}
498 
499 	if (data_valid)
500 		memcpy(gseg + GRU_DS_BASE, save, length);
501 	else
502 		memset(gseg + GRU_DS_BASE, 0, length);
503 }
504 
505 static void gru_unload_context_data(void *save, void *grubase, int ctxnum,
506 				    unsigned long cbrmap, unsigned long dsrmap)
507 {
508 	void *gseg, *cb, *cbe;
509 	unsigned long length;
510 	int i, scr;
511 
512 	gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
513 	cb = gseg + GRU_CB_BASE;
514 	cbe = grubase + GRU_CBE_BASE;
515 	length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
516 	gru_prefetch_context(gseg, cb, cbe, cbrmap, length);
517 
518 	for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
519 		save += gru_copy_handle(save, cb);
520 		save += gru_copy_handle(save, cbe + i * GRU_HANDLE_STRIDE);
521 		cb += GRU_HANDLE_STRIDE;
522 	}
523 	memcpy(save, gseg + GRU_DS_BASE, length);
524 }
525 
526 void gru_unload_context(struct gru_thread_state *gts, int savestate)
527 {
528 	struct gru_state *gru = gts->ts_gru;
529 	struct gru_context_configuration_handle *cch;
530 	int ctxnum = gts->ts_ctxnum;
531 
532 	if (!is_kernel_context(gts))
533 		zap_vma_ptes(gts->ts_vma, UGRUADDR(gts), GRU_GSEG_PAGESIZE);
534 	cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
535 
536 	gru_dbg(grudev, "gts %p\n", gts);
537 	lock_cch_handle(cch);
538 	if (cch_interrupt_sync(cch))
539 		BUG();
540 
541 	if (!is_kernel_context(gts))
542 		gru_unload_mm_tracker(gru, gts);
543 	if (savestate) {
544 		gru_unload_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr,
545 					ctxnum, gts->ts_cbr_map,
546 					gts->ts_dsr_map);
547 		gts->ts_data_valid = 1;
548 	}
549 
550 	if (cch_deallocate(cch))
551 		BUG();
552 	gts->ts_force_unload = 0;	/* ts_force_unload locked by CCH lock */
553 	unlock_cch_handle(cch);
554 
555 	gru_free_gru_context(gts);
556 }
557 
558 /*
559  * Load a GRU context by copying it from the thread data structure in memory
560  * to the GRU.
561  */
562 void gru_load_context(struct gru_thread_state *gts)
563 {
564 	struct gru_state *gru = gts->ts_gru;
565 	struct gru_context_configuration_handle *cch;
566 	int i, err, asid, ctxnum = gts->ts_ctxnum;
567 
568 	gru_dbg(grudev, "gts %p\n", gts);
569 	cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
570 
571 	lock_cch_handle(cch);
572 	cch->tfm_fault_bit_enable =
573 	    (gts->ts_user_options == GRU_OPT_MISS_FMM_POLL
574 	     || gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
575 	cch->tlb_int_enable = (gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
576 	if (cch->tlb_int_enable) {
577 		gts->ts_tlb_int_select = gru_cpu_fault_map_id();
578 		cch->tlb_int_select = gts->ts_tlb_int_select;
579 	}
580 	if (gts->ts_cch_req_slice >= 0) {
581 		cch->req_slice_set_enable = 1;
582 		cch->req_slice = gts->ts_cch_req_slice;
583 	} else {
584 		cch->req_slice_set_enable =0;
585 	}
586 	cch->tfm_done_bit_enable = 0;
587 	cch->dsr_allocation_map = gts->ts_dsr_map;
588 	cch->cbr_allocation_map = gts->ts_cbr_map;
589 
590 	if (is_kernel_context(gts)) {
591 		cch->unmap_enable = 1;
592 		cch->tfm_done_bit_enable = 1;
593 		cch->cb_int_enable = 1;
594 	} else {
595 		cch->unmap_enable = 0;
596 		cch->tfm_done_bit_enable = 0;
597 		cch->cb_int_enable = 0;
598 		asid = gru_load_mm_tracker(gru, gts);
599 		for (i = 0; i < 8; i++) {
600 			cch->asid[i] = asid + i;
601 			cch->sizeavail[i] = gts->ts_sizeavail;
602 		}
603 	}
604 
605 	err = cch_allocate(cch);
606 	if (err) {
607 		gru_dbg(grudev,
608 			"err %d: cch %p, gts %p, cbr 0x%lx, dsr 0x%lx\n",
609 			err, cch, gts, gts->ts_cbr_map, gts->ts_dsr_map);
610 		BUG();
611 	}
612 
613 	gru_load_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr, ctxnum,
614 			gts->ts_cbr_map, gts->ts_dsr_map, gts->ts_data_valid);
615 
616 	if (cch_start(cch))
617 		BUG();
618 	unlock_cch_handle(cch);
619 }
620 
621 /*
622  * Update fields in an active CCH:
623  * 	- retarget interrupts on local blade
624  * 	- update sizeavail mask
625  * 	- force a delayed context unload by clearing the CCH asids. This
626  * 	  forces TLB misses for new GRU instructions. The context is unloaded
627  * 	  when the next TLB miss occurs.
628  */
629 int gru_update_cch(struct gru_thread_state *gts, int force_unload)
630 {
631 	struct gru_context_configuration_handle *cch;
632 	struct gru_state *gru = gts->ts_gru;
633 	int i, ctxnum = gts->ts_ctxnum, ret = 0;
634 
635 	cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
636 
637 	lock_cch_handle(cch);
638 	if (cch->state == CCHSTATE_ACTIVE) {
639 		if (gru->gs_gts[gts->ts_ctxnum] != gts)
640 			goto exit;
641 		if (cch_interrupt(cch))
642 			BUG();
643 		if (!force_unload) {
644 			for (i = 0; i < 8; i++)
645 				cch->sizeavail[i] = gts->ts_sizeavail;
646 			gts->ts_tlb_int_select = gru_cpu_fault_map_id();
647 			cch->tlb_int_select = gru_cpu_fault_map_id();
648 			cch->tfm_fault_bit_enable =
649 			  (gts->ts_user_options == GRU_OPT_MISS_FMM_POLL
650 			    || gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
651 		} else {
652 			for (i = 0; i < 8; i++)
653 				cch->asid[i] = 0;
654 			cch->tfm_fault_bit_enable = 0;
655 			cch->tlb_int_enable = 0;
656 			gts->ts_force_unload = 1;
657 		}
658 		if (cch_start(cch))
659 			BUG();
660 		ret = 1;
661 	}
662 exit:
663 	unlock_cch_handle(cch);
664 	return ret;
665 }
666 
667 /*
668  * Update CCH tlb interrupt select. Required when all the following is true:
669  * 	- task's GRU context is loaded into a GRU
670  * 	- task is using interrupt notification for TLB faults
671  * 	- task has migrated to a different cpu on the same blade where
672  * 	  it was previously running.
673  */
674 static int gru_retarget_intr(struct gru_thread_state *gts)
675 {
676 	if (gts->ts_tlb_int_select < 0
677 	    || gts->ts_tlb_int_select == gru_cpu_fault_map_id())
678 		return 0;
679 
680 	gru_dbg(grudev, "retarget from %d to %d\n", gts->ts_tlb_int_select,
681 		gru_cpu_fault_map_id());
682 	return gru_update_cch(gts, 0);
683 }
684 
685 
686 /*
687  * Insufficient GRU resources available on the local blade. Steal a context from
688  * a process. This is a hack until a _real_ resource scheduler is written....
689  */
690 #define next_ctxnum(n)	((n) <  GRU_NUM_CCH - 2 ? (n) + 1 : 0)
691 #define next_gru(b, g)	(((g) < &(b)->bs_grus[GRU_CHIPLETS_PER_BLADE - 1]) ?  \
692 				 ((g)+1) : &(b)->bs_grus[0])
693 
694 static int is_gts_stealable(struct gru_thread_state *gts,
695 		struct gru_blade_state *bs)
696 {
697 	if (is_kernel_context(gts))
698 		return down_write_trylock(&bs->bs_kgts_sema);
699 	else
700 		return mutex_trylock(&gts->ts_ctxlock);
701 }
702 
703 static void gts_stolen(struct gru_thread_state *gts,
704 		struct gru_blade_state *bs)
705 {
706 	if (is_kernel_context(gts)) {
707 		up_write(&bs->bs_kgts_sema);
708 		STAT(steal_kernel_context);
709 	} else {
710 		mutex_unlock(&gts->ts_ctxlock);
711 		STAT(steal_user_context);
712 	}
713 }
714 
715 void gru_steal_context(struct gru_thread_state *gts, int blade_id)
716 {
717 	struct gru_blade_state *blade;
718 	struct gru_state *gru, *gru0;
719 	struct gru_thread_state *ngts = NULL;
720 	int ctxnum, ctxnum0, flag = 0, cbr, dsr;
721 
722 	cbr = gts->ts_cbr_au_count;
723 	dsr = gts->ts_dsr_au_count;
724 
725 	blade = gru_base[blade_id];
726 	spin_lock(&blade->bs_lock);
727 
728 	ctxnum = next_ctxnum(blade->bs_lru_ctxnum);
729 	gru = blade->bs_lru_gru;
730 	if (ctxnum == 0)
731 		gru = next_gru(blade, gru);
732 	ctxnum0 = ctxnum;
733 	gru0 = gru;
734 	while (1) {
735 		if (check_gru_resources(gru, cbr, dsr, GRU_NUM_CCH))
736 			break;
737 		spin_lock(&gru->gs_lock);
738 		for (; ctxnum < GRU_NUM_CCH; ctxnum++) {
739 			if (flag && gru == gru0 && ctxnum == ctxnum0)
740 				break;
741 			ngts = gru->gs_gts[ctxnum];
742 			/*
743 			 * We are grabbing locks out of order, so trylock is
744 			 * needed. GTSs are usually not locked, so the odds of
745 			 * success are high. If trylock fails, try to steal a
746 			 * different GSEG.
747 			 */
748 			if (ngts && is_gts_stealable(ngts, blade))
749 				break;
750 			ngts = NULL;
751 			flag = 1;
752 		}
753 		spin_unlock(&gru->gs_lock);
754 		if (ngts || (flag && gru == gru0 && ctxnum == ctxnum0))
755 			break;
756 		ctxnum = 0;
757 		gru = next_gru(blade, gru);
758 	}
759 	blade->bs_lru_gru = gru;
760 	blade->bs_lru_ctxnum = ctxnum;
761 	spin_unlock(&blade->bs_lock);
762 
763 	if (ngts) {
764 		gts->ustats.context_stolen++;
765 		ngts->ts_steal_jiffies = jiffies;
766 		gru_unload_context(ngts, is_kernel_context(ngts) ? 0 : 1);
767 		gts_stolen(ngts, blade);
768 	} else {
769 		STAT(steal_context_failed);
770 	}
771 	gru_dbg(grudev,
772 		"stole gid %d, ctxnum %d from gts %p. Need cb %d, ds %d;"
773 		" avail cb %ld, ds %ld\n",
774 		gru->gs_gid, ctxnum, ngts, cbr, dsr, hweight64(gru->gs_cbr_map),
775 		hweight64(gru->gs_dsr_map));
776 }
777 
778 /*
779  * Scan the GRUs on the local blade & assign a GRU context.
780  */
781 struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts,
782 						int blade)
783 {
784 	struct gru_state *gru, *grux;
785 	int i, max_active_contexts;
786 
787 
788 again:
789 	gru = NULL;
790 	max_active_contexts = GRU_NUM_CCH;
791 	for_each_gru_on_blade(grux, blade, i) {
792 		if (check_gru_resources(grux, gts->ts_cbr_au_count,
793 					gts->ts_dsr_au_count,
794 					max_active_contexts)) {
795 			gru = grux;
796 			max_active_contexts = grux->gs_active_contexts;
797 			if (max_active_contexts == 0)
798 				break;
799 		}
800 	}
801 
802 	if (gru) {
803 		spin_lock(&gru->gs_lock);
804 		if (!check_gru_resources(gru, gts->ts_cbr_au_count,
805 					 gts->ts_dsr_au_count, GRU_NUM_CCH)) {
806 			spin_unlock(&gru->gs_lock);
807 			goto again;
808 		}
809 		reserve_gru_resources(gru, gts);
810 		gts->ts_gru = gru;
811 		gts->ts_blade = gru->gs_blade_id;
812 		gts->ts_ctxnum =
813 		    find_first_zero_bit(&gru->gs_context_map, GRU_NUM_CCH);
814 		BUG_ON(gts->ts_ctxnum == GRU_NUM_CCH);
815 		atomic_inc(&gts->ts_refcnt);
816 		gru->gs_gts[gts->ts_ctxnum] = gts;
817 		__set_bit(gts->ts_ctxnum, &gru->gs_context_map);
818 		spin_unlock(&gru->gs_lock);
819 
820 		STAT(assign_context);
821 		gru_dbg(grudev,
822 			"gseg %p, gts %p, gid %d, ctx %d, cbr %d, dsr %d\n",
823 			gseg_virtual_address(gts->ts_gru, gts->ts_ctxnum), gts,
824 			gts->ts_gru->gs_gid, gts->ts_ctxnum,
825 			gts->ts_cbr_au_count, gts->ts_dsr_au_count);
826 	} else {
827 		gru_dbg(grudev, "failed to allocate a GTS %s\n", "");
828 		STAT(assign_context_failed);
829 	}
830 
831 	return gru;
832 }
833 
834 /*
835  * gru_nopage
836  *
837  * Map the user's GRU segment
838  *
839  * 	Note: gru segments alway mmaped on GRU_GSEG_PAGESIZE boundaries.
840  */
841 int gru_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
842 {
843 	struct gru_thread_state *gts;
844 	unsigned long paddr, vaddr;
845 	int blade_id;
846 
847 	vaddr = (unsigned long)vmf->virtual_address;
848 	gru_dbg(grudev, "vma %p, vaddr 0x%lx (0x%lx)\n",
849 		vma, vaddr, GSEG_BASE(vaddr));
850 	STAT(nopfn);
851 
852 	/* The following check ensures vaddr is a valid address in the VMA */
853 	gts = gru_find_thread_state(vma, TSID(vaddr, vma));
854 	if (!gts)
855 		return VM_FAULT_SIGBUS;
856 
857 again:
858 	mutex_lock(&gts->ts_ctxlock);
859 	preempt_disable();
860 	blade_id = uv_numa_blade_id();
861 
862 	if (gts->ts_gru) {
863 		if (gts->ts_gru->gs_blade_id != blade_id) {
864 			STAT(migrated_nopfn_unload);
865 			gru_unload_context(gts, 1);
866 		} else {
867 			if (gru_retarget_intr(gts))
868 				STAT(migrated_nopfn_retarget);
869 		}
870 	}
871 
872 	if (!gts->ts_gru) {
873 		STAT(load_user_context);
874 		if (!gru_assign_gru_context(gts, blade_id)) {
875 			preempt_enable();
876 			mutex_unlock(&gts->ts_ctxlock);
877 			set_current_state(TASK_INTERRUPTIBLE);
878 			schedule_timeout(GRU_ASSIGN_DELAY);  /* true hack ZZZ */
879 			blade_id = uv_numa_blade_id();
880 			if (gts->ts_steal_jiffies + GRU_STEAL_DELAY < jiffies)
881 				gru_steal_context(gts, blade_id);
882 			goto again;
883 		}
884 		gru_load_context(gts);
885 		paddr = gseg_physical_address(gts->ts_gru, gts->ts_ctxnum);
886 		remap_pfn_range(vma, vaddr & ~(GRU_GSEG_PAGESIZE - 1),
887 				paddr >> PAGE_SHIFT, GRU_GSEG_PAGESIZE,
888 				vma->vm_page_prot);
889 	}
890 
891 	preempt_enable();
892 	mutex_unlock(&gts->ts_ctxlock);
893 
894 	return VM_FAULT_NOPAGE;
895 }
896 
897