xref: /openbmc/linux/drivers/misc/sgi-gru/grukservices.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * SN Platform GRU Driver
3  *
4  *              KERNEL SERVICES THAT USE THE GRU
5  *
6  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/miscdevice.h>
30 #include <linux/proc_fs.h>
31 #include <linux/interrupt.h>
32 #include <linux/uaccess.h>
33 #include <linux/delay.h>
34 #include <asm/io_apic.h>
35 #include "gru.h"
36 #include "grulib.h"
37 #include "grutables.h"
38 #include "grukservices.h"
39 #include "gru_instructions.h"
40 #include <asm/uv/uv_hub.h>
41 
42 /*
43  * Kernel GRU Usage
44  *
45  * The following is an interim algorithm for management of kernel GRU
46  * resources. This will likely be replaced when we better understand the
47  * kernel/user requirements.
48  *
49  * Blade percpu resources reserved for kernel use. These resources are
50  * reserved whenever the the kernel context for the blade is loaded. Note
51  * that the kernel context is not guaranteed to be always available. It is
52  * loaded on demand & can be stolen by a user if the user demand exceeds the
53  * kernel demand. The kernel can always reload the kernel context but
54  * a SLEEP may be required!!!.
55  *
56  * Async Overview:
57  *
58  * 	Each blade has one "kernel context" that owns GRU kernel resources
59  * 	located on the blade. Kernel drivers use GRU resources in this context
60  * 	for sending messages, zeroing memory, etc.
61  *
62  * 	The kernel context is dynamically loaded on demand. If it is not in
63  * 	use by the kernel, the kernel context can be unloaded & given to a user.
64  * 	The kernel context will be reloaded when needed. This may require that
65  * 	a context be stolen from a user.
66  * 		NOTE: frequent unloading/reloading of the kernel context is
67  * 		expensive. We are depending on batch schedulers, cpusets, sane
68  * 		drivers or some other mechanism to prevent the need for frequent
69  *	 	stealing/reloading.
70  *
71  * 	The kernel context consists of two parts:
72  * 		- 1 CB & a few DSRs that are reserved for each cpu on the blade.
73  * 		  Each cpu has it's own private resources & does not share them
74  * 		  with other cpus. These resources are used serially, ie,
75  * 		  locked, used & unlocked  on each call to a function in
76  * 		  grukservices.
77  * 		  	(Now that we have dynamic loading of kernel contexts, I
78  * 		  	 may rethink this & allow sharing between cpus....)
79  *
80  *		- Additional resources can be reserved long term & used directly
81  *		  by UV drivers located in the kernel. Drivers using these GRU
82  *		  resources can use asynchronous GRU instructions that send
83  *		  interrupts on completion.
84  *		  	- these resources must be explicitly locked/unlocked
85  *		  	- locked resources prevent (obviously) the kernel
86  *		  	  context from being unloaded.
87  *			- drivers using these resource directly issue their own
88  *			  GRU instruction and must wait/check completion.
89  *
90  * 		  When these resources are reserved, the caller can optionally
91  * 		  associate a wait_queue with the resources and use asynchronous
92  * 		  GRU instructions. When an async GRU instruction completes, the
93  * 		  driver will do a wakeup on the event.
94  *
95  */
96 
97 
98 #define ASYNC_HAN_TO_BID(h)	((h) - 1)
99 #define ASYNC_BID_TO_HAN(b)	((b) + 1)
100 #define ASYNC_HAN_TO_BS(h)	gru_base[ASYNC_HAN_TO_BID(h)]
101 
102 #define GRU_NUM_KERNEL_CBR	1
103 #define GRU_NUM_KERNEL_DSR_BYTES 256
104 #define GRU_NUM_KERNEL_DSR_CL	(GRU_NUM_KERNEL_DSR_BYTES /		\
105 					GRU_CACHE_LINE_BYTES)
106 
107 /* GRU instruction attributes for all instructions */
108 #define IMA			IMA_CB_DELAY
109 
110 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
111 #define __gru_cacheline_aligned__                               \
112 	__attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
113 
114 #define MAGIC	0x1234567887654321UL
115 
116 /* Default retry count for GRU errors on kernel instructions */
117 #define EXCEPTION_RETRY_LIMIT	3
118 
119 /* Status of message queue sections */
120 #define MQS_EMPTY		0
121 #define MQS_FULL		1
122 #define MQS_NOOP		2
123 
124 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
125 /* optimized for x86_64 */
126 struct message_queue {
127 	union gru_mesqhead	head __gru_cacheline_aligned__;	/* CL 0 */
128 	int			qlines;				/* DW 1 */
129 	long 			hstatus[2];
130 	void 			*next __gru_cacheline_aligned__;/* CL 1 */
131 	void 			*limit;
132 	void 			*start;
133 	void 			*start2;
134 	char			data ____cacheline_aligned;	/* CL 2 */
135 };
136 
137 /* First word in every message - used by mesq interface */
138 struct message_header {
139 	char	present;
140 	char	present2;
141 	char 	lines;
142 	char	fill;
143 };
144 
145 #define HSTATUS(mq, h)	((mq) + offsetof(struct message_queue, hstatus[h]))
146 
147 /*
148  * Reload the blade's kernel context into a GRU chiplet. Called holding
149  * the bs_kgts_sema for READ. Will steal user contexts if necessary.
150  */
151 static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
152 {
153 	struct gru_state *gru;
154 	struct gru_thread_state *kgts;
155 	void *vaddr;
156 	int ctxnum, ncpus;
157 
158 	up_read(&bs->bs_kgts_sema);
159 	down_write(&bs->bs_kgts_sema);
160 
161 	if (!bs->bs_kgts) {
162 		bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
163 		bs->bs_kgts->ts_user_blade_id = blade_id;
164 	}
165 	kgts = bs->bs_kgts;
166 
167 	if (!kgts->ts_gru) {
168 		STAT(load_kernel_context);
169 		ncpus = uv_blade_nr_possible_cpus(blade_id);
170 		kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
171 			GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
172 		kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
173 			GRU_NUM_KERNEL_DSR_BYTES * ncpus +
174 				bs->bs_async_dsr_bytes);
175 		while (!gru_assign_gru_context(kgts)) {
176 			msleep(1);
177 			gru_steal_context(kgts);
178 		}
179 		gru_load_context(kgts);
180 		gru = bs->bs_kgts->ts_gru;
181 		vaddr = gru->gs_gru_base_vaddr;
182 		ctxnum = kgts->ts_ctxnum;
183 		bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
184 		bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
185 	}
186 	downgrade_write(&bs->bs_kgts_sema);
187 }
188 
189 /*
190  * Free all kernel contexts that are not currently in use.
191  *   Returns 0 if all freed, else number of inuse context.
192  */
193 static int gru_free_kernel_contexts(void)
194 {
195 	struct gru_blade_state *bs;
196 	struct gru_thread_state *kgts;
197 	int bid, ret = 0;
198 
199 	for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
200 		bs = gru_base[bid];
201 		if (!bs)
202 			continue;
203 
204 		/* Ignore busy contexts. Don't want to block here.  */
205 		if (down_write_trylock(&bs->bs_kgts_sema)) {
206 			kgts = bs->bs_kgts;
207 			if (kgts && kgts->ts_gru)
208 				gru_unload_context(kgts, 0);
209 			bs->bs_kgts = NULL;
210 			up_write(&bs->bs_kgts_sema);
211 			kfree(kgts);
212 		} else {
213 			ret++;
214 		}
215 	}
216 	return ret;
217 }
218 
219 /*
220  * Lock & load the kernel context for the specified blade.
221  */
222 static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
223 {
224 	struct gru_blade_state *bs;
225 	int bid;
226 
227 	STAT(lock_kernel_context);
228 again:
229 	bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
230 	bs = gru_base[bid];
231 
232 	/* Handle the case where migration occured while waiting for the sema */
233 	down_read(&bs->bs_kgts_sema);
234 	if (blade_id < 0 && bid != uv_numa_blade_id()) {
235 		up_read(&bs->bs_kgts_sema);
236 		goto again;
237 	}
238 	if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
239 		gru_load_kernel_context(bs, bid);
240 	return bs;
241 
242 }
243 
244 /*
245  * Unlock the kernel context for the specified blade. Context is not
246  * unloaded but may be stolen before next use.
247  */
248 static void gru_unlock_kernel_context(int blade_id)
249 {
250 	struct gru_blade_state *bs;
251 
252 	bs = gru_base[blade_id];
253 	up_read(&bs->bs_kgts_sema);
254 	STAT(unlock_kernel_context);
255 }
256 
257 /*
258  * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
259  * 	- returns with preemption disabled
260  */
261 static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
262 {
263 	struct gru_blade_state *bs;
264 	int lcpu;
265 
266 	BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
267 	preempt_disable();
268 	bs = gru_lock_kernel_context(-1);
269 	lcpu = uv_blade_processor_id();
270 	*cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
271 	*dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
272 	return 0;
273 }
274 
275 /*
276  * Free the current cpus reserved DSR/CBR resources.
277  */
278 static void gru_free_cpu_resources(void *cb, void *dsr)
279 {
280 	gru_unlock_kernel_context(uv_numa_blade_id());
281 	preempt_enable();
282 }
283 
284 /*
285  * Reserve GRU resources to be used asynchronously.
286  *   Note: currently supports only 1 reservation per blade.
287  *
288  * 	input:
289  * 		blade_id  - blade on which resources should be reserved
290  * 		cbrs	  - number of CBRs
291  * 		dsr_bytes - number of DSR bytes needed
292  *	output:
293  *		handle to identify resource
294  *		(0 = async resources already reserved)
295  */
296 unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
297 			struct completion *cmp)
298 {
299 	struct gru_blade_state *bs;
300 	struct gru_thread_state *kgts;
301 	int ret = 0;
302 
303 	bs = gru_base[blade_id];
304 
305 	down_write(&bs->bs_kgts_sema);
306 
307 	/* Verify no resources already reserved */
308 	if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
309 		goto done;
310 	bs->bs_async_dsr_bytes = dsr_bytes;
311 	bs->bs_async_cbrs = cbrs;
312 	bs->bs_async_wq = cmp;
313 	kgts = bs->bs_kgts;
314 
315 	/* Resources changed. Unload context if already loaded */
316 	if (kgts && kgts->ts_gru)
317 		gru_unload_context(kgts, 0);
318 	ret = ASYNC_BID_TO_HAN(blade_id);
319 
320 done:
321 	up_write(&bs->bs_kgts_sema);
322 	return ret;
323 }
324 
325 /*
326  * Release async resources previously reserved.
327  *
328  *	input:
329  *		han - handle to identify resources
330  */
331 void gru_release_async_resources(unsigned long han)
332 {
333 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
334 
335 	down_write(&bs->bs_kgts_sema);
336 	bs->bs_async_dsr_bytes = 0;
337 	bs->bs_async_cbrs = 0;
338 	bs->bs_async_wq = NULL;
339 	up_write(&bs->bs_kgts_sema);
340 }
341 
342 /*
343  * Wait for async GRU instructions to complete.
344  *
345  *	input:
346  *		han - handle to identify resources
347  */
348 void gru_wait_async_cbr(unsigned long han)
349 {
350 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
351 
352 	wait_for_completion(bs->bs_async_wq);
353 	mb();
354 }
355 
356 /*
357  * Lock previous reserved async GRU resources
358  *
359  *	input:
360  *		han - handle to identify resources
361  *	output:
362  *		cb  - pointer to first CBR
363  *		dsr - pointer to first DSR
364  */
365 void gru_lock_async_resource(unsigned long han,  void **cb, void **dsr)
366 {
367 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
368 	int blade_id = ASYNC_HAN_TO_BID(han);
369 	int ncpus;
370 
371 	gru_lock_kernel_context(blade_id);
372 	ncpus = uv_blade_nr_possible_cpus(blade_id);
373 	if (cb)
374 		*cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
375 	if (dsr)
376 		*dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
377 }
378 
379 /*
380  * Unlock previous reserved async GRU resources
381  *
382  *	input:
383  *		han - handle to identify resources
384  */
385 void gru_unlock_async_resource(unsigned long han)
386 {
387 	int blade_id = ASYNC_HAN_TO_BID(han);
388 
389 	gru_unlock_kernel_context(blade_id);
390 }
391 
392 /*----------------------------------------------------------------------*/
393 int gru_get_cb_exception_detail(void *cb,
394 		struct control_block_extended_exc_detail *excdet)
395 {
396 	struct gru_control_block_extended *cbe;
397 	struct gru_thread_state *kgts = NULL;
398 	unsigned long off;
399 	int cbrnum, bid;
400 
401 	/*
402 	 * Locate kgts for cb. This algorithm is SLOW but
403 	 * this function is rarely called (ie., almost never).
404 	 * Performance does not matter.
405 	 */
406 	for_each_possible_blade(bid) {
407 		if (!gru_base[bid])
408 			break;
409 		kgts = gru_base[bid]->bs_kgts;
410 		if (!kgts || !kgts->ts_gru)
411 			continue;
412 		off = cb - kgts->ts_gru->gs_gru_base_vaddr;
413 		if (off < GRU_SIZE)
414 			break;
415 		kgts = NULL;
416 	}
417 	BUG_ON(!kgts);
418 	cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
419 	cbe = get_cbe(GRUBASE(cb), cbrnum);
420 	gru_flush_cache(cbe);	/* CBE not coherent */
421 	sync_core();
422 	excdet->opc = cbe->opccpy;
423 	excdet->exopc = cbe->exopccpy;
424 	excdet->ecause = cbe->ecause;
425 	excdet->exceptdet0 = cbe->idef1upd;
426 	excdet->exceptdet1 = cbe->idef3upd;
427 	gru_flush_cache(cbe);
428 	return 0;
429 }
430 
431 char *gru_get_cb_exception_detail_str(int ret, void *cb,
432 				      char *buf, int size)
433 {
434 	struct gru_control_block_status *gen = (void *)cb;
435 	struct control_block_extended_exc_detail excdet;
436 
437 	if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
438 		gru_get_cb_exception_detail(cb, &excdet);
439 		snprintf(buf, size,
440 			"GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
441 			"excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
442 			gen, excdet.opc, excdet.exopc, excdet.ecause,
443 			excdet.exceptdet0, excdet.exceptdet1);
444 	} else {
445 		snprintf(buf, size, "No exception");
446 	}
447 	return buf;
448 }
449 
450 static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
451 {
452 	while (gen->istatus >= CBS_ACTIVE) {
453 		cpu_relax();
454 		barrier();
455 	}
456 	return gen->istatus;
457 }
458 
459 static int gru_retry_exception(void *cb)
460 {
461 	struct gru_control_block_status *gen = (void *)cb;
462 	struct control_block_extended_exc_detail excdet;
463 	int retry = EXCEPTION_RETRY_LIMIT;
464 
465 	while (1)  {
466 		if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
467 			return CBS_IDLE;
468 		if (gru_get_cb_message_queue_substatus(cb))
469 			return CBS_EXCEPTION;
470 		gru_get_cb_exception_detail(cb, &excdet);
471 		if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
472 				(excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
473 			break;
474 		if (retry-- == 0)
475 			break;
476 		gen->icmd = 1;
477 		gru_flush_cache(gen);
478 	}
479 	return CBS_EXCEPTION;
480 }
481 
482 int gru_check_status_proc(void *cb)
483 {
484 	struct gru_control_block_status *gen = (void *)cb;
485 	int ret;
486 
487 	ret = gen->istatus;
488 	if (ret == CBS_EXCEPTION)
489 		ret = gru_retry_exception(cb);
490 	rmb();
491 	return ret;
492 
493 }
494 
495 int gru_wait_proc(void *cb)
496 {
497 	struct gru_control_block_status *gen = (void *)cb;
498 	int ret;
499 
500 	ret = gru_wait_idle_or_exception(gen);
501 	if (ret == CBS_EXCEPTION)
502 		ret = gru_retry_exception(cb);
503 	rmb();
504 	return ret;
505 }
506 
507 void gru_abort(int ret, void *cb, char *str)
508 {
509 	char buf[GRU_EXC_STR_SIZE];
510 
511 	panic("GRU FATAL ERROR: %s - %s\n", str,
512 	      gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
513 }
514 
515 void gru_wait_abort_proc(void *cb)
516 {
517 	int ret;
518 
519 	ret = gru_wait_proc(cb);
520 	if (ret)
521 		gru_abort(ret, cb, "gru_wait_abort");
522 }
523 
524 
525 /*------------------------------ MESSAGE QUEUES -----------------------------*/
526 
527 /* Internal status . These are NOT returned to the user. */
528 #define MQIE_AGAIN		-1	/* try again */
529 
530 
531 /*
532  * Save/restore the "present" flag that is in the second line of 2-line
533  * messages
534  */
535 static inline int get_present2(void *p)
536 {
537 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
538 	return mhdr->present;
539 }
540 
541 static inline void restore_present2(void *p, int val)
542 {
543 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
544 	mhdr->present = val;
545 }
546 
547 /*
548  * Create a message queue.
549  * 	qlines - message queue size in cache lines. Includes 2-line header.
550  */
551 int gru_create_message_queue(struct gru_message_queue_desc *mqd,
552 		void *p, unsigned int bytes, int nasid, int vector, int apicid)
553 {
554 	struct message_queue *mq = p;
555 	unsigned int qlines;
556 
557 	qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
558 	memset(mq, 0, bytes);
559 	mq->start = &mq->data;
560 	mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
561 	mq->next = &mq->data;
562 	mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
563 	mq->qlines = qlines;
564 	mq->hstatus[0] = 0;
565 	mq->hstatus[1] = 1;
566 	mq->head = gru_mesq_head(2, qlines / 2 + 1);
567 	mqd->mq = mq;
568 	mqd->mq_gpa = uv_gpa(mq);
569 	mqd->qlines = qlines;
570 	mqd->interrupt_pnode = nasid >> 1;
571 	mqd->interrupt_vector = vector;
572 	mqd->interrupt_apicid = apicid;
573 	return 0;
574 }
575 EXPORT_SYMBOL_GPL(gru_create_message_queue);
576 
577 /*
578  * Send a NOOP message to a message queue
579  * 	Returns:
580  * 		 0 - if queue is full after the send. This is the normal case
581  * 		     but various races can change this.
582  *		-1 - if mesq sent successfully but queue not full
583  *		>0 - unexpected error. MQE_xxx returned
584  */
585 static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
586 				void *mesg)
587 {
588 	const struct message_header noop_header = {
589 					.present = MQS_NOOP, .lines = 1};
590 	unsigned long m;
591 	int substatus, ret;
592 	struct message_header save_mhdr, *mhdr = mesg;
593 
594 	STAT(mesq_noop);
595 	save_mhdr = *mhdr;
596 	*mhdr = noop_header;
597 	gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
598 	ret = gru_wait(cb);
599 
600 	if (ret) {
601 		substatus = gru_get_cb_message_queue_substatus(cb);
602 		switch (substatus) {
603 		case CBSS_NO_ERROR:
604 			STAT(mesq_noop_unexpected_error);
605 			ret = MQE_UNEXPECTED_CB_ERR;
606 			break;
607 		case CBSS_LB_OVERFLOWED:
608 			STAT(mesq_noop_lb_overflow);
609 			ret = MQE_CONGESTION;
610 			break;
611 		case CBSS_QLIMIT_REACHED:
612 			STAT(mesq_noop_qlimit_reached);
613 			ret = 0;
614 			break;
615 		case CBSS_AMO_NACKED:
616 			STAT(mesq_noop_amo_nacked);
617 			ret = MQE_CONGESTION;
618 			break;
619 		case CBSS_PUT_NACKED:
620 			STAT(mesq_noop_put_nacked);
621 			m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
622 			gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
623 						IMA);
624 			if (gru_wait(cb) == CBS_IDLE)
625 				ret = MQIE_AGAIN;
626 			else
627 				ret = MQE_UNEXPECTED_CB_ERR;
628 			break;
629 		case CBSS_PAGE_OVERFLOW:
630 			STAT(mesq_noop_page_overflow);
631 			/* fallthru */
632 		default:
633 			BUG();
634 		}
635 	}
636 	*mhdr = save_mhdr;
637 	return ret;
638 }
639 
640 /*
641  * Handle a gru_mesq full.
642  */
643 static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
644 				void *mesg, int lines)
645 {
646 	union gru_mesqhead mqh;
647 	unsigned int limit, head;
648 	unsigned long avalue;
649 	int half, qlines;
650 
651 	/* Determine if switching to first/second half of q */
652 	avalue = gru_get_amo_value(cb);
653 	head = gru_get_amo_value_head(cb);
654 	limit = gru_get_amo_value_limit(cb);
655 
656 	qlines = mqd->qlines;
657 	half = (limit != qlines);
658 
659 	if (half)
660 		mqh = gru_mesq_head(qlines / 2 + 1, qlines);
661 	else
662 		mqh = gru_mesq_head(2, qlines / 2 + 1);
663 
664 	/* Try to get lock for switching head pointer */
665 	gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
666 	if (gru_wait(cb) != CBS_IDLE)
667 		goto cberr;
668 	if (!gru_get_amo_value(cb)) {
669 		STAT(mesq_qf_locked);
670 		return MQE_QUEUE_FULL;
671 	}
672 
673 	/* Got the lock. Send optional NOP if queue not full, */
674 	if (head != limit) {
675 		if (send_noop_message(cb, mqd, mesg)) {
676 			gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
677 					XTYPE_DW, IMA);
678 			if (gru_wait(cb) != CBS_IDLE)
679 				goto cberr;
680 			STAT(mesq_qf_noop_not_full);
681 			return MQIE_AGAIN;
682 		}
683 		avalue++;
684 	}
685 
686 	/* Then flip queuehead to other half of queue. */
687 	gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
688 							IMA);
689 	if (gru_wait(cb) != CBS_IDLE)
690 		goto cberr;
691 
692 	/* If not successfully in swapping queue head, clear the hstatus lock */
693 	if (gru_get_amo_value(cb) != avalue) {
694 		STAT(mesq_qf_switch_head_failed);
695 		gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
696 							IMA);
697 		if (gru_wait(cb) != CBS_IDLE)
698 			goto cberr;
699 	}
700 	return MQIE_AGAIN;
701 cberr:
702 	STAT(mesq_qf_unexpected_error);
703 	return MQE_UNEXPECTED_CB_ERR;
704 }
705 
706 /*
707  * Handle a PUT failure. Note: if message was a 2-line message, one of the
708  * lines might have successfully have been written. Before sending the
709  * message, "present" must be cleared in BOTH lines to prevent the receiver
710  * from prematurely seeing the full message.
711  */
712 static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
713 			void *mesg, int lines)
714 {
715 	unsigned long m, *val = mesg, gpa, save;
716 	int ret;
717 
718 	m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
719 	if (lines == 2) {
720 		gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
721 		if (gru_wait(cb) != CBS_IDLE)
722 			return MQE_UNEXPECTED_CB_ERR;
723 	}
724 	gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
725 	if (gru_wait(cb) != CBS_IDLE)
726 		return MQE_UNEXPECTED_CB_ERR;
727 
728 	if (!mqd->interrupt_vector)
729 		return MQE_OK;
730 
731 	/*
732 	 * Send a cross-partition interrupt to the SSI that contains the target
733 	 * message queue. Normally, the interrupt is automatically delivered by
734 	 * hardware but some error conditions require explicit delivery.
735 	 * Use the GRU to deliver the interrupt. Otherwise partition failures
736 	 * could cause unrecovered errors.
737 	 */
738 	gpa = uv_global_gru_mmr_address(mqd->interrupt_pnode, UVH_IPI_INT);
739 	save = *val;
740 	*val = uv_hub_ipi_value(mqd->interrupt_apicid, mqd->interrupt_vector,
741 				dest_Fixed);
742 	gru_vstore_phys(cb, gpa, gru_get_tri(mesg), IAA_REGISTER, IMA);
743 	ret = gru_wait(cb);
744 	*val = save;
745 	if (ret != CBS_IDLE)
746 		return MQE_UNEXPECTED_CB_ERR;
747 	return MQE_OK;
748 }
749 
750 /*
751  * Handle a gru_mesq failure. Some of these failures are software recoverable
752  * or retryable.
753  */
754 static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
755 				void *mesg, int lines)
756 {
757 	int substatus, ret = 0;
758 
759 	substatus = gru_get_cb_message_queue_substatus(cb);
760 	switch (substatus) {
761 	case CBSS_NO_ERROR:
762 		STAT(mesq_send_unexpected_error);
763 		ret = MQE_UNEXPECTED_CB_ERR;
764 		break;
765 	case CBSS_LB_OVERFLOWED:
766 		STAT(mesq_send_lb_overflow);
767 		ret = MQE_CONGESTION;
768 		break;
769 	case CBSS_QLIMIT_REACHED:
770 		STAT(mesq_send_qlimit_reached);
771 		ret = send_message_queue_full(cb, mqd, mesg, lines);
772 		break;
773 	case CBSS_AMO_NACKED:
774 		STAT(mesq_send_amo_nacked);
775 		ret = MQE_CONGESTION;
776 		break;
777 	case CBSS_PUT_NACKED:
778 		STAT(mesq_send_put_nacked);
779 		ret = send_message_put_nacked(cb, mqd, mesg, lines);
780 		break;
781 	case CBSS_PAGE_OVERFLOW:
782 		STAT(mesq_page_overflow);
783 		/* fallthru */
784 	default:
785 		BUG();
786 	}
787 	return ret;
788 }
789 
790 /*
791  * Send a message to a message queue
792  * 	mqd	message queue descriptor
793  * 	mesg	message. ust be vaddr within a GSEG
794  * 	bytes	message size (<= 2 CL)
795  */
796 int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
797 				unsigned int bytes)
798 {
799 	struct message_header *mhdr;
800 	void *cb;
801 	void *dsr;
802 	int istatus, clines, ret;
803 
804 	STAT(mesq_send);
805 	BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
806 
807 	clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
808 	if (gru_get_cpu_resources(bytes, &cb, &dsr))
809 		return MQE_BUG_NO_RESOURCES;
810 	memcpy(dsr, mesg, bytes);
811 	mhdr = dsr;
812 	mhdr->present = MQS_FULL;
813 	mhdr->lines = clines;
814 	if (clines == 2) {
815 		mhdr->present2 = get_present2(mhdr);
816 		restore_present2(mhdr, MQS_FULL);
817 	}
818 
819 	do {
820 		ret = MQE_OK;
821 		gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
822 		istatus = gru_wait(cb);
823 		if (istatus != CBS_IDLE)
824 			ret = send_message_failure(cb, mqd, dsr, clines);
825 	} while (ret == MQIE_AGAIN);
826 	gru_free_cpu_resources(cb, dsr);
827 
828 	if (ret)
829 		STAT(mesq_send_failed);
830 	return ret;
831 }
832 EXPORT_SYMBOL_GPL(gru_send_message_gpa);
833 
834 /*
835  * Advance the receive pointer for the queue to the next message.
836  */
837 void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
838 {
839 	struct message_queue *mq = mqd->mq;
840 	struct message_header *mhdr = mq->next;
841 	void *next, *pnext;
842 	int half = -1;
843 	int lines = mhdr->lines;
844 
845 	if (lines == 2)
846 		restore_present2(mhdr, MQS_EMPTY);
847 	mhdr->present = MQS_EMPTY;
848 
849 	pnext = mq->next;
850 	next = pnext + GRU_CACHE_LINE_BYTES * lines;
851 	if (next == mq->limit) {
852 		next = mq->start;
853 		half = 1;
854 	} else if (pnext < mq->start2 && next >= mq->start2) {
855 		half = 0;
856 	}
857 
858 	if (half >= 0)
859 		mq->hstatus[half] = 1;
860 	mq->next = next;
861 }
862 EXPORT_SYMBOL_GPL(gru_free_message);
863 
864 /*
865  * Get next message from message queue. Return NULL if no message
866  * present. User must call next_message() to move to next message.
867  * 	rmq	message queue
868  */
869 void *gru_get_next_message(struct gru_message_queue_desc *mqd)
870 {
871 	struct message_queue *mq = mqd->mq;
872 	struct message_header *mhdr = mq->next;
873 	int present = mhdr->present;
874 
875 	/* skip NOOP messages */
876 	while (present == MQS_NOOP) {
877 		gru_free_message(mqd, mhdr);
878 		mhdr = mq->next;
879 		present = mhdr->present;
880 	}
881 
882 	/* Wait for both halves of 2 line messages */
883 	if (present == MQS_FULL && mhdr->lines == 2 &&
884 				get_present2(mhdr) == MQS_EMPTY)
885 		present = MQS_EMPTY;
886 
887 	if (!present) {
888 		STAT(mesq_receive_none);
889 		return NULL;
890 	}
891 
892 	if (mhdr->lines == 2)
893 		restore_present2(mhdr, mhdr->present2);
894 
895 	STAT(mesq_receive);
896 	return mhdr;
897 }
898 EXPORT_SYMBOL_GPL(gru_get_next_message);
899 
900 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
901 
902 /*
903  * Load a DW from a global GPA. The GPA can be a memory or MMR address.
904  */
905 int gru_read_gpa(unsigned long *value, unsigned long gpa)
906 {
907 	void *cb;
908 	void *dsr;
909 	int ret, iaa;
910 
911 	STAT(read_gpa);
912 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
913 		return MQE_BUG_NO_RESOURCES;
914 	iaa = gpa >> 62;
915 	gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
916 	ret = gru_wait(cb);
917 	if (ret == CBS_IDLE)
918 		*value = *(unsigned long *)dsr;
919 	gru_free_cpu_resources(cb, dsr);
920 	return ret;
921 }
922 EXPORT_SYMBOL_GPL(gru_read_gpa);
923 
924 
925 /*
926  * Copy a block of data using the GRU resources
927  */
928 int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
929 				unsigned int bytes)
930 {
931 	void *cb;
932 	void *dsr;
933 	int ret;
934 
935 	STAT(copy_gpa);
936 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
937 		return MQE_BUG_NO_RESOURCES;
938 	gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
939 		  XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
940 	ret = gru_wait(cb);
941 	gru_free_cpu_resources(cb, dsr);
942 	return ret;
943 }
944 EXPORT_SYMBOL_GPL(gru_copy_gpa);
945 
946 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
947 /* 	Temp - will delete after we gain confidence in the GRU		*/
948 
949 static int quicktest0(unsigned long arg)
950 {
951 	unsigned long word0;
952 	unsigned long word1;
953 	void *cb;
954 	void *dsr;
955 	unsigned long *p;
956 	int ret = -EIO;
957 
958 	if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
959 		return MQE_BUG_NO_RESOURCES;
960 	p = dsr;
961 	word0 = MAGIC;
962 	word1 = 0;
963 
964 	gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
965 	if (gru_wait(cb) != CBS_IDLE) {
966 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
967 		goto done;
968 	}
969 
970 	if (*p != MAGIC) {
971 		printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
972 		goto done;
973 	}
974 	gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
975 	if (gru_wait(cb) != CBS_IDLE) {
976 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
977 		goto done;
978 	}
979 
980 	if (word0 != word1 || word1 != MAGIC) {
981 		printk(KERN_DEBUG
982 		       "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
983 		     smp_processor_id(), word1, MAGIC);
984 		goto done;
985 	}
986 	ret = 0;
987 
988 done:
989 	gru_free_cpu_resources(cb, dsr);
990 	return ret;
991 }
992 
993 #define ALIGNUP(p, q)	((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
994 
995 static int quicktest1(unsigned long arg)
996 {
997 	struct gru_message_queue_desc mqd;
998 	void *p, *mq;
999 	unsigned long *dw;
1000 	int i, ret = -EIO;
1001 	char mes[GRU_CACHE_LINE_BYTES], *m;
1002 
1003 	/* Need  1K cacheline aligned that does not cross page boundary */
1004 	p = kmalloc(4096, 0);
1005 	if (p == NULL)
1006 		return -ENOMEM;
1007 	mq = ALIGNUP(p, 1024);
1008 	memset(mes, 0xee, sizeof(mes));
1009 	dw = mq;
1010 
1011 	gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
1012 	for (i = 0; i < 6; i++) {
1013 		mes[8] = i;
1014 		do {
1015 			ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
1016 		} while (ret == MQE_CONGESTION);
1017 		if (ret)
1018 			break;
1019 	}
1020 	if (ret != MQE_QUEUE_FULL || i != 4) {
1021 		printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
1022 		       smp_processor_id(), ret, i);
1023 		goto done;
1024 	}
1025 
1026 	for (i = 0; i < 6; i++) {
1027 		m = gru_get_next_message(&mqd);
1028 		if (!m || m[8] != i)
1029 			break;
1030 		gru_free_message(&mqd, m);
1031 	}
1032 	if (i != 4) {
1033 		printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1034 			smp_processor_id(), i, m, m ? m[8] : -1);
1035 		goto done;
1036 	}
1037 	ret = 0;
1038 
1039 done:
1040 	kfree(p);
1041 	return ret;
1042 }
1043 
1044 static int quicktest2(unsigned long arg)
1045 {
1046 	static DECLARE_COMPLETION(cmp);
1047 	unsigned long han;
1048 	int blade_id = 0;
1049 	int numcb = 4;
1050 	int ret = 0;
1051 	unsigned long *buf;
1052 	void *cb0, *cb;
1053 	struct gru_control_block_status *gen;
1054 	int i, k, istatus, bytes;
1055 
1056 	bytes = numcb * 4 * 8;
1057 	buf = kmalloc(bytes, GFP_KERNEL);
1058 	if (!buf)
1059 		return -ENOMEM;
1060 
1061 	ret = -EBUSY;
1062 	han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1063 	if (!han)
1064 		goto done;
1065 
1066 	gru_lock_async_resource(han, &cb0, NULL);
1067 	memset(buf, 0xee, bytes);
1068 	for (i = 0; i < numcb; i++)
1069 		gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1070 				XTYPE_DW, 4, 1, IMA_INTERRUPT);
1071 
1072 	ret = 0;
1073 	k = numcb;
1074 	do {
1075 		gru_wait_async_cbr(han);
1076 		for (i = 0; i < numcb; i++) {
1077 			cb = cb0 + i * GRU_HANDLE_STRIDE;
1078 			istatus = gru_check_status(cb);
1079 			if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1080 				break;
1081 		}
1082 		if (i == numcb)
1083 			continue;
1084 		if (istatus != CBS_IDLE) {
1085 			printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1086 			ret = -EFAULT;
1087 		} else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1088 				buf[4 * i + 3]) {
1089 			printk(KERN_DEBUG "GRU:%d quicktest2:cb %d,  buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1090 			       smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1091 			ret = -EIO;
1092 		}
1093 		k--;
1094 		gen = cb;
1095 		gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1096 	} while (k);
1097 	BUG_ON(cmp.done);
1098 
1099 	gru_unlock_async_resource(han);
1100 	gru_release_async_resources(han);
1101 done:
1102 	kfree(buf);
1103 	return ret;
1104 }
1105 
1106 #define BUFSIZE 200
1107 static int quicktest3(unsigned long arg)
1108 {
1109 	char buf1[BUFSIZE], buf2[BUFSIZE];
1110 	int ret = 0;
1111 
1112 	memset(buf2, 0, sizeof(buf2));
1113 	memset(buf1, get_cycles() & 255, sizeof(buf1));
1114 	gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1115 	if (memcmp(buf1, buf2, BUFSIZE)) {
1116 		printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1117 		ret = -EIO;
1118 	}
1119 	return ret;
1120 }
1121 
1122 /*
1123  * Debugging only. User hook for various kernel tests
1124  * of driver & gru.
1125  */
1126 int gru_ktest(unsigned long arg)
1127 {
1128 	int ret = -EINVAL;
1129 
1130 	switch (arg & 0xff) {
1131 	case 0:
1132 		ret = quicktest0(arg);
1133 		break;
1134 	case 1:
1135 		ret = quicktest1(arg);
1136 		break;
1137 	case 2:
1138 		ret = quicktest2(arg);
1139 		break;
1140 	case 3:
1141 		ret = quicktest3(arg);
1142 		break;
1143 	case 99:
1144 		ret = gru_free_kernel_contexts();
1145 		break;
1146 	}
1147 	return ret;
1148 
1149 }
1150 
1151 int gru_kservices_init(void)
1152 {
1153 	return 0;
1154 }
1155 
1156 void gru_kservices_exit(void)
1157 {
1158 	if (gru_free_kernel_contexts())
1159 		BUG();
1160 }
1161 
1162