1 /* 2 * SN Platform GRU Driver 3 * 4 * FAULT HANDLER FOR GRU DETECTED TLB MISSES 5 * 6 * This file contains code that handles TLB misses within the GRU. 7 * These misses are reported either via interrupts or user polling of 8 * the user CB. 9 * 10 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 */ 26 27 #include <linux/kernel.h> 28 #include <linux/errno.h> 29 #include <linux/spinlock.h> 30 #include <linux/mm.h> 31 #include <linux/hugetlb.h> 32 #include <linux/device.h> 33 #include <linux/io.h> 34 #include <linux/uaccess.h> 35 #include <linux/security.h> 36 #include <asm/pgtable.h> 37 #include "gru.h" 38 #include "grutables.h" 39 #include "grulib.h" 40 #include "gru_instructions.h" 41 #include <asm/uv/uv_hub.h> 42 43 /* Return codes for vtop functions */ 44 #define VTOP_SUCCESS 0 45 #define VTOP_INVALID -1 46 #define VTOP_RETRY -2 47 48 49 /* 50 * Test if a physical address is a valid GRU GSEG address 51 */ 52 static inline int is_gru_paddr(unsigned long paddr) 53 { 54 return paddr >= gru_start_paddr && paddr < gru_end_paddr; 55 } 56 57 /* 58 * Find the vma of a GRU segment. Caller must hold mmap_sem. 59 */ 60 struct vm_area_struct *gru_find_vma(unsigned long vaddr) 61 { 62 struct vm_area_struct *vma; 63 64 vma = find_vma(current->mm, vaddr); 65 if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops) 66 return vma; 67 return NULL; 68 } 69 70 /* 71 * Find and lock the gts that contains the specified user vaddr. 72 * 73 * Returns: 74 * - *gts with the mmap_sem locked for read and the GTS locked. 75 * - NULL if vaddr invalid OR is not a valid GSEG vaddr. 76 */ 77 78 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr) 79 { 80 struct mm_struct *mm = current->mm; 81 struct vm_area_struct *vma; 82 struct gru_thread_state *gts = NULL; 83 84 down_read(&mm->mmap_sem); 85 vma = gru_find_vma(vaddr); 86 if (vma) 87 gts = gru_find_thread_state(vma, TSID(vaddr, vma)); 88 if (gts) 89 mutex_lock(>s->ts_ctxlock); 90 else 91 up_read(&mm->mmap_sem); 92 return gts; 93 } 94 95 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr) 96 { 97 struct mm_struct *mm = current->mm; 98 struct vm_area_struct *vma; 99 struct gru_thread_state *gts = ERR_PTR(-EINVAL); 100 101 down_write(&mm->mmap_sem); 102 vma = gru_find_vma(vaddr); 103 if (!vma) 104 goto err; 105 106 gts = gru_alloc_thread_state(vma, TSID(vaddr, vma)); 107 if (IS_ERR(gts)) 108 goto err; 109 mutex_lock(>s->ts_ctxlock); 110 downgrade_write(&mm->mmap_sem); 111 return gts; 112 113 err: 114 up_write(&mm->mmap_sem); 115 return gts; 116 } 117 118 /* 119 * Unlock a GTS that was previously locked with gru_find_lock_gts(). 120 */ 121 static void gru_unlock_gts(struct gru_thread_state *gts) 122 { 123 mutex_unlock(>s->ts_ctxlock); 124 up_read(¤t->mm->mmap_sem); 125 } 126 127 /* 128 * Set a CB.istatus to active using a user virtual address. This must be done 129 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY. 130 * If the line is evicted, the status may be lost. The in-cache update 131 * is necessary to prevent the user from seeing a stale cb.istatus that will 132 * change as soon as the TFH restart is complete. Races may cause an 133 * occasional failure to clear the cb.istatus, but that is ok. 134 */ 135 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk) 136 { 137 if (cbk) { 138 cbk->istatus = CBS_ACTIVE; 139 } 140 } 141 142 /* 143 * Read & clear a TFM 144 * 145 * The GRU has an array of fault maps. A map is private to a cpu 146 * Only one cpu will be accessing a cpu's fault map. 147 * 148 * This function scans the cpu-private fault map & clears all bits that 149 * are set. The function returns a bitmap that indicates the bits that 150 * were cleared. Note that sense the maps may be updated asynchronously by 151 * the GRU, atomic operations must be used to clear bits. 152 */ 153 static void get_clear_fault_map(struct gru_state *gru, 154 struct gru_tlb_fault_map *imap, 155 struct gru_tlb_fault_map *dmap) 156 { 157 unsigned long i, k; 158 struct gru_tlb_fault_map *tfm; 159 160 tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id()); 161 prefetchw(tfm); /* Helps on hardware, required for emulator */ 162 for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) { 163 k = tfm->fault_bits[i]; 164 if (k) 165 k = xchg(&tfm->fault_bits[i], 0UL); 166 imap->fault_bits[i] = k; 167 k = tfm->done_bits[i]; 168 if (k) 169 k = xchg(&tfm->done_bits[i], 0UL); 170 dmap->fault_bits[i] = k; 171 } 172 173 /* 174 * Not functionally required but helps performance. (Required 175 * on emulator) 176 */ 177 gru_flush_cache(tfm); 178 } 179 180 /* 181 * Atomic (interrupt context) & non-atomic (user context) functions to 182 * convert a vaddr into a physical address. The size of the page 183 * is returned in pageshift. 184 * returns: 185 * 0 - successful 186 * < 0 - error code 187 * 1 - (atomic only) try again in non-atomic context 188 */ 189 static int non_atomic_pte_lookup(struct vm_area_struct *vma, 190 unsigned long vaddr, int write, 191 unsigned long *paddr, int *pageshift) 192 { 193 struct page *page; 194 195 #ifdef CONFIG_HUGETLB_PAGE 196 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 197 #else 198 *pageshift = PAGE_SHIFT; 199 #endif 200 if (get_user_pages 201 (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0) 202 return -EFAULT; 203 *paddr = page_to_phys(page); 204 put_page(page); 205 return 0; 206 } 207 208 /* 209 * atomic_pte_lookup 210 * 211 * Convert a user virtual address to a physical address 212 * Only supports Intel large pages (2MB only) on x86_64. 213 * ZZZ - hugepage support is incomplete 214 * 215 * NOTE: mmap_sem is already held on entry to this function. This 216 * guarantees existence of the page tables. 217 */ 218 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, 219 int write, unsigned long *paddr, int *pageshift) 220 { 221 pgd_t *pgdp; 222 pmd_t *pmdp; 223 pud_t *pudp; 224 pte_t pte; 225 226 pgdp = pgd_offset(vma->vm_mm, vaddr); 227 if (unlikely(pgd_none(*pgdp))) 228 goto err; 229 230 pudp = pud_offset(pgdp, vaddr); 231 if (unlikely(pud_none(*pudp))) 232 goto err; 233 234 pmdp = pmd_offset(pudp, vaddr); 235 if (unlikely(pmd_none(*pmdp))) 236 goto err; 237 #ifdef CONFIG_X86_64 238 if (unlikely(pmd_large(*pmdp))) 239 pte = *(pte_t *) pmdp; 240 else 241 #endif 242 pte = *pte_offset_kernel(pmdp, vaddr); 243 244 if (unlikely(!pte_present(pte) || 245 (write && (!pte_write(pte) || !pte_dirty(pte))))) 246 return 1; 247 248 *paddr = pte_pfn(pte) << PAGE_SHIFT; 249 #ifdef CONFIG_HUGETLB_PAGE 250 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 251 #else 252 *pageshift = PAGE_SHIFT; 253 #endif 254 return 0; 255 256 err: 257 return 1; 258 } 259 260 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr, 261 int write, int atomic, unsigned long *gpa, int *pageshift) 262 { 263 struct mm_struct *mm = gts->ts_mm; 264 struct vm_area_struct *vma; 265 unsigned long paddr; 266 int ret, ps; 267 268 vma = find_vma(mm, vaddr); 269 if (!vma) 270 goto inval; 271 272 /* 273 * Atomic lookup is faster & usually works even if called in non-atomic 274 * context. 275 */ 276 rmb(); /* Must/check ms_range_active before loading PTEs */ 277 ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps); 278 if (ret) { 279 if (atomic) 280 goto upm; 281 if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps)) 282 goto inval; 283 } 284 if (is_gru_paddr(paddr)) 285 goto inval; 286 paddr = paddr & ~((1UL << ps) - 1); 287 *gpa = uv_soc_phys_ram_to_gpa(paddr); 288 *pageshift = ps; 289 return VTOP_SUCCESS; 290 291 inval: 292 return VTOP_INVALID; 293 upm: 294 return VTOP_RETRY; 295 } 296 297 298 /* 299 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the 300 * CBE cacheline so that the line will be written back to home agent. 301 * Otherwise the line may be silently dropped. This has no impact 302 * except on performance. 303 */ 304 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe) 305 { 306 if (unlikely(cbe)) { 307 cbe->cbrexecstatus = 0; /* make CL dirty */ 308 gru_flush_cache(cbe); 309 } 310 } 311 312 /* 313 * Preload the TLB with entries that may be required. Currently, preloading 314 * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to 315 * the end of the bcopy tranfer, whichever is smaller. 316 */ 317 static void gru_preload_tlb(struct gru_state *gru, 318 struct gru_thread_state *gts, int atomic, 319 unsigned long fault_vaddr, int asid, int write, 320 unsigned char tlb_preload_count, 321 struct gru_tlb_fault_handle *tfh, 322 struct gru_control_block_extended *cbe) 323 { 324 unsigned long vaddr = 0, gpa; 325 int ret, pageshift; 326 327 if (cbe->opccpy != OP_BCOPY) 328 return; 329 330 if (fault_vaddr == cbe->cbe_baddr0) 331 vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1; 332 else if (fault_vaddr == cbe->cbe_baddr1) 333 vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1; 334 335 fault_vaddr &= PAGE_MASK; 336 vaddr &= PAGE_MASK; 337 vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE); 338 339 while (vaddr > fault_vaddr) { 340 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 341 if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write, 342 GRU_PAGESIZE(pageshift))) 343 return; 344 gru_dbg(grudev, 345 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n", 346 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, 347 vaddr, asid, write, pageshift, gpa); 348 vaddr -= PAGE_SIZE; 349 STAT(tlb_preload_page); 350 } 351 } 352 353 /* 354 * Drop a TLB entry into the GRU. The fault is described by info in an TFH. 355 * Input: 356 * cb Address of user CBR. Null if not running in user context 357 * Return: 358 * 0 = dropin, exception, or switch to UPM successful 359 * 1 = range invalidate active 360 * < 0 = error code 361 * 362 */ 363 static int gru_try_dropin(struct gru_state *gru, 364 struct gru_thread_state *gts, 365 struct gru_tlb_fault_handle *tfh, 366 struct gru_instruction_bits *cbk) 367 { 368 struct gru_control_block_extended *cbe = NULL; 369 unsigned char tlb_preload_count = gts->ts_tlb_preload_count; 370 int pageshift = 0, asid, write, ret, atomic = !cbk, indexway; 371 unsigned long gpa = 0, vaddr = 0; 372 373 /* 374 * NOTE: The GRU contains magic hardware that eliminates races between 375 * TLB invalidates and TLB dropins. If an invalidate occurs 376 * in the window between reading the TFH and the subsequent TLB dropin, 377 * the dropin is ignored. This eliminates the need for additional locks. 378 */ 379 380 /* 381 * Prefetch the CBE if doing TLB preloading 382 */ 383 if (unlikely(tlb_preload_count)) { 384 cbe = gru_tfh_to_cbe(tfh); 385 prefetchw(cbe); 386 } 387 388 /* 389 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call. 390 * Might be a hardware race OR a stupid user. Ignore FMM because FMM 391 * is a transient state. 392 */ 393 if (tfh->status != TFHSTATUS_EXCEPTION) { 394 gru_flush_cache(tfh); 395 sync_core(); 396 if (tfh->status != TFHSTATUS_EXCEPTION) 397 goto failnoexception; 398 STAT(tfh_stale_on_fault); 399 } 400 if (tfh->state == TFHSTATE_IDLE) 401 goto failidle; 402 if (tfh->state == TFHSTATE_MISS_FMM && cbk) 403 goto failfmm; 404 405 write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0; 406 vaddr = tfh->missvaddr; 407 asid = tfh->missasid; 408 indexway = tfh->indexway; 409 if (asid == 0) 410 goto failnoasid; 411 412 rmb(); /* TFH must be cache resident before reading ms_range_active */ 413 414 /* 415 * TFH is cache resident - at least briefly. Fail the dropin 416 * if a range invalidate is active. 417 */ 418 if (atomic_read(>s->ts_gms->ms_range_active)) 419 goto failactive; 420 421 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 422 if (ret == VTOP_INVALID) 423 goto failinval; 424 if (ret == VTOP_RETRY) 425 goto failupm; 426 427 if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) { 428 gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift); 429 if (atomic || !gru_update_cch(gts)) { 430 gts->ts_force_cch_reload = 1; 431 goto failupm; 432 } 433 } 434 435 if (unlikely(cbe) && pageshift == PAGE_SHIFT) { 436 gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe); 437 gru_flush_cache_cbe(cbe); 438 } 439 440 gru_cb_set_istatus_active(cbk); 441 gts->ustats.tlbdropin++; 442 tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write, 443 GRU_PAGESIZE(pageshift)); 444 gru_dbg(grudev, 445 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x," 446 " rw %d, ps %d, gpa 0x%lx\n", 447 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid, 448 indexway, write, pageshift, gpa); 449 STAT(tlb_dropin); 450 return 0; 451 452 failnoasid: 453 /* No asid (delayed unload). */ 454 STAT(tlb_dropin_fail_no_asid); 455 gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 456 if (!cbk) 457 tfh_user_polling_mode(tfh); 458 else 459 gru_flush_cache(tfh); 460 gru_flush_cache_cbe(cbe); 461 return -EAGAIN; 462 463 failupm: 464 /* Atomic failure switch CBR to UPM */ 465 tfh_user_polling_mode(tfh); 466 gru_flush_cache_cbe(cbe); 467 STAT(tlb_dropin_fail_upm); 468 gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 469 return 1; 470 471 failfmm: 472 /* FMM state on UPM call */ 473 gru_flush_cache(tfh); 474 gru_flush_cache_cbe(cbe); 475 STAT(tlb_dropin_fail_fmm); 476 gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state); 477 return 0; 478 479 failnoexception: 480 /* TFH status did not show exception pending */ 481 gru_flush_cache(tfh); 482 gru_flush_cache_cbe(cbe); 483 if (cbk) 484 gru_flush_cache(cbk); 485 STAT(tlb_dropin_fail_no_exception); 486 gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n", 487 tfh, tfh->status, tfh->state); 488 return 0; 489 490 failidle: 491 /* TFH state was idle - no miss pending */ 492 gru_flush_cache(tfh); 493 gru_flush_cache_cbe(cbe); 494 if (cbk) 495 gru_flush_cache(cbk); 496 STAT(tlb_dropin_fail_idle); 497 gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state); 498 return 0; 499 500 failinval: 501 /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */ 502 tfh_exception(tfh); 503 gru_flush_cache_cbe(cbe); 504 STAT(tlb_dropin_fail_invalid); 505 gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 506 return -EFAULT; 507 508 failactive: 509 /* Range invalidate active. Switch to UPM iff atomic */ 510 if (!cbk) 511 tfh_user_polling_mode(tfh); 512 else 513 gru_flush_cache(tfh); 514 gru_flush_cache_cbe(cbe); 515 STAT(tlb_dropin_fail_range_active); 516 gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n", 517 tfh, vaddr); 518 return 1; 519 } 520 521 /* 522 * Process an external interrupt from the GRU. This interrupt is 523 * caused by a TLB miss. 524 * Note that this is the interrupt handler that is registered with linux 525 * interrupt handlers. 526 */ 527 static irqreturn_t gru_intr(int chiplet, int blade) 528 { 529 struct gru_state *gru; 530 struct gru_tlb_fault_map imap, dmap; 531 struct gru_thread_state *gts; 532 struct gru_tlb_fault_handle *tfh = NULL; 533 struct completion *cmp; 534 int cbrnum, ctxnum; 535 536 STAT(intr); 537 538 gru = &gru_base[blade]->bs_grus[chiplet]; 539 if (!gru) { 540 dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n", 541 raw_smp_processor_id(), chiplet); 542 return IRQ_NONE; 543 } 544 get_clear_fault_map(gru, &imap, &dmap); 545 gru_dbg(grudev, 546 "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n", 547 smp_processor_id(), chiplet, gru->gs_gid, 548 imap.fault_bits[0], imap.fault_bits[1], 549 dmap.fault_bits[0], dmap.fault_bits[1]); 550 551 for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) { 552 STAT(intr_cbr); 553 cmp = gru->gs_blade->bs_async_wq; 554 if (cmp) 555 complete(cmp); 556 gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n", 557 gru->gs_gid, cbrnum, cmp ? cmp->done : -1); 558 } 559 560 for_each_cbr_in_tfm(cbrnum, imap.fault_bits) { 561 STAT(intr_tfh); 562 tfh = get_tfh_by_index(gru, cbrnum); 563 prefetchw(tfh); /* Helps on hdw, required for emulator */ 564 565 /* 566 * When hardware sets a bit in the faultmap, it implicitly 567 * locks the GRU context so that it cannot be unloaded. 568 * The gts cannot change until a TFH start/writestart command 569 * is issued. 570 */ 571 ctxnum = tfh->ctxnum; 572 gts = gru->gs_gts[ctxnum]; 573 574 /* Spurious interrupts can cause this. Ignore. */ 575 if (!gts) { 576 STAT(intr_spurious); 577 continue; 578 } 579 580 /* 581 * This is running in interrupt context. Trylock the mmap_sem. 582 * If it fails, retry the fault in user context. 583 */ 584 gts->ustats.fmm_tlbmiss++; 585 if (!gts->ts_force_cch_reload && 586 down_read_trylock(>s->ts_mm->mmap_sem)) { 587 gru_try_dropin(gru, gts, tfh, NULL); 588 up_read(>s->ts_mm->mmap_sem); 589 } else { 590 tfh_user_polling_mode(tfh); 591 STAT(intr_mm_lock_failed); 592 } 593 } 594 return IRQ_HANDLED; 595 } 596 597 irqreturn_t gru0_intr(int irq, void *dev_id) 598 { 599 return gru_intr(0, uv_numa_blade_id()); 600 } 601 602 irqreturn_t gru1_intr(int irq, void *dev_id) 603 { 604 return gru_intr(1, uv_numa_blade_id()); 605 } 606 607 irqreturn_t gru_intr_mblade(int irq, void *dev_id) 608 { 609 int blade; 610 611 for_each_possible_blade(blade) { 612 if (uv_blade_nr_possible_cpus(blade)) 613 continue; 614 gru_intr(0, blade); 615 gru_intr(1, blade); 616 } 617 return IRQ_HANDLED; 618 } 619 620 621 static int gru_user_dropin(struct gru_thread_state *gts, 622 struct gru_tlb_fault_handle *tfh, 623 void *cb) 624 { 625 struct gru_mm_struct *gms = gts->ts_gms; 626 int ret; 627 628 gts->ustats.upm_tlbmiss++; 629 while (1) { 630 wait_event(gms->ms_wait_queue, 631 atomic_read(&gms->ms_range_active) == 0); 632 prefetchw(tfh); /* Helps on hdw, required for emulator */ 633 ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb); 634 if (ret <= 0) 635 return ret; 636 STAT(call_os_wait_queue); 637 } 638 } 639 640 /* 641 * This interface is called as a result of a user detecting a "call OS" bit 642 * in a user CB. Normally means that a TLB fault has occurred. 643 * cb - user virtual address of the CB 644 */ 645 int gru_handle_user_call_os(unsigned long cb) 646 { 647 struct gru_tlb_fault_handle *tfh; 648 struct gru_thread_state *gts; 649 void *cbk; 650 int ucbnum, cbrnum, ret = -EINVAL; 651 652 STAT(call_os); 653 654 /* sanity check the cb pointer */ 655 ucbnum = get_cb_number((void *)cb); 656 if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB) 657 return -EINVAL; 658 659 gts = gru_find_lock_gts(cb); 660 if (!gts) 661 return -EINVAL; 662 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 663 664 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) 665 goto exit; 666 667 gru_check_context_placement(gts); 668 669 /* 670 * CCH may contain stale data if ts_force_cch_reload is set. 671 */ 672 if (gts->ts_gru && gts->ts_force_cch_reload) { 673 gts->ts_force_cch_reload = 0; 674 gru_update_cch(gts); 675 } 676 677 ret = -EAGAIN; 678 cbrnum = thread_cbr_number(gts, ucbnum); 679 if (gts->ts_gru) { 680 tfh = get_tfh_by_index(gts->ts_gru, cbrnum); 681 cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr, 682 gts->ts_ctxnum, ucbnum); 683 ret = gru_user_dropin(gts, tfh, cbk); 684 } 685 exit: 686 gru_unlock_gts(gts); 687 return ret; 688 } 689 690 /* 691 * Fetch the exception detail information for a CB that terminated with 692 * an exception. 693 */ 694 int gru_get_exception_detail(unsigned long arg) 695 { 696 struct control_block_extended_exc_detail excdet; 697 struct gru_control_block_extended *cbe; 698 struct gru_thread_state *gts; 699 int ucbnum, cbrnum, ret; 700 701 STAT(user_exception); 702 if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet))) 703 return -EFAULT; 704 705 gts = gru_find_lock_gts(excdet.cb); 706 if (!gts) 707 return -EINVAL; 708 709 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 710 ucbnum = get_cb_number((void *)excdet.cb); 711 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) { 712 ret = -EINVAL; 713 } else if (gts->ts_gru) { 714 cbrnum = thread_cbr_number(gts, ucbnum); 715 cbe = get_cbe_by_index(gts->ts_gru, cbrnum); 716 gru_flush_cache(cbe); /* CBE not coherent */ 717 sync_core(); /* make sure we are have current data */ 718 excdet.opc = cbe->opccpy; 719 excdet.exopc = cbe->exopccpy; 720 excdet.ecause = cbe->ecause; 721 excdet.exceptdet0 = cbe->idef1upd; 722 excdet.exceptdet1 = cbe->idef3upd; 723 excdet.cbrstate = cbe->cbrstate; 724 excdet.cbrexecstatus = cbe->cbrexecstatus; 725 gru_flush_cache_cbe(cbe); 726 ret = 0; 727 } else { 728 ret = -EAGAIN; 729 } 730 gru_unlock_gts(gts); 731 732 gru_dbg(grudev, 733 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, " 734 "exdet0 0x%lx, exdet1 0x%x\n", 735 excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus, 736 excdet.ecause, excdet.exceptdet0, excdet.exceptdet1); 737 if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet))) 738 ret = -EFAULT; 739 return ret; 740 } 741 742 /* 743 * User request to unload a context. Content is saved for possible reload. 744 */ 745 static int gru_unload_all_contexts(void) 746 { 747 struct gru_thread_state *gts; 748 struct gru_state *gru; 749 int gid, ctxnum; 750 751 if (!capable(CAP_SYS_ADMIN)) 752 return -EPERM; 753 foreach_gid(gid) { 754 gru = GID_TO_GRU(gid); 755 spin_lock(&gru->gs_lock); 756 for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) { 757 gts = gru->gs_gts[ctxnum]; 758 if (gts && mutex_trylock(>s->ts_ctxlock)) { 759 spin_unlock(&gru->gs_lock); 760 gru_unload_context(gts, 1); 761 mutex_unlock(>s->ts_ctxlock); 762 spin_lock(&gru->gs_lock); 763 } 764 } 765 spin_unlock(&gru->gs_lock); 766 } 767 return 0; 768 } 769 770 int gru_user_unload_context(unsigned long arg) 771 { 772 struct gru_thread_state *gts; 773 struct gru_unload_context_req req; 774 775 STAT(user_unload_context); 776 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 777 return -EFAULT; 778 779 gru_dbg(grudev, "gseg 0x%lx\n", req.gseg); 780 781 if (!req.gseg) 782 return gru_unload_all_contexts(); 783 784 gts = gru_find_lock_gts(req.gseg); 785 if (!gts) 786 return -EINVAL; 787 788 if (gts->ts_gru) 789 gru_unload_context(gts, 1); 790 gru_unlock_gts(gts); 791 792 return 0; 793 } 794 795 /* 796 * User request to flush a range of virtual addresses from the GRU TLB 797 * (Mainly for testing). 798 */ 799 int gru_user_flush_tlb(unsigned long arg) 800 { 801 struct gru_thread_state *gts; 802 struct gru_flush_tlb_req req; 803 struct gru_mm_struct *gms; 804 805 STAT(user_flush_tlb); 806 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 807 return -EFAULT; 808 809 gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg, 810 req.vaddr, req.len); 811 812 gts = gru_find_lock_gts(req.gseg); 813 if (!gts) 814 return -EINVAL; 815 816 gms = gts->ts_gms; 817 gru_unlock_gts(gts); 818 gru_flush_tlb_range(gms, req.vaddr, req.len); 819 820 return 0; 821 } 822 823 /* 824 * Fetch GSEG statisticss 825 */ 826 long gru_get_gseg_statistics(unsigned long arg) 827 { 828 struct gru_thread_state *gts; 829 struct gru_get_gseg_statistics_req req; 830 831 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 832 return -EFAULT; 833 834 /* 835 * The library creates arrays of contexts for threaded programs. 836 * If no gts exists in the array, the context has never been used & all 837 * statistics are implicitly 0. 838 */ 839 gts = gru_find_lock_gts(req.gseg); 840 if (gts) { 841 memcpy(&req.stats, >s->ustats, sizeof(gts->ustats)); 842 gru_unlock_gts(gts); 843 } else { 844 memset(&req.stats, 0, sizeof(gts->ustats)); 845 } 846 847 if (copy_to_user((void __user *)arg, &req, sizeof(req))) 848 return -EFAULT; 849 850 return 0; 851 } 852 853 /* 854 * Register the current task as the user of the GSEG slice. 855 * Needed for TLB fault interrupt targeting. 856 */ 857 int gru_set_context_option(unsigned long arg) 858 { 859 struct gru_thread_state *gts; 860 struct gru_set_context_option_req req; 861 int ret = 0; 862 863 STAT(set_context_option); 864 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 865 return -EFAULT; 866 gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1); 867 868 gts = gru_find_lock_gts(req.gseg); 869 if (!gts) { 870 gts = gru_alloc_locked_gts(req.gseg); 871 if (IS_ERR(gts)) 872 return PTR_ERR(gts); 873 } 874 875 switch (req.op) { 876 case sco_blade_chiplet: 877 /* Select blade/chiplet for GRU context */ 878 if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] || 879 req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) { 880 ret = -EINVAL; 881 } else { 882 gts->ts_user_blade_id = req.val1; 883 gts->ts_user_chiplet_id = req.val0; 884 gru_check_context_placement(gts); 885 } 886 break; 887 case sco_gseg_owner: 888 /* Register the current task as the GSEG owner */ 889 gts->ts_tgid_owner = current->tgid; 890 break; 891 case sco_cch_req_slice: 892 /* Set the CCH slice option */ 893 gts->ts_cch_req_slice = req.val1 & 3; 894 break; 895 default: 896 ret = -EINVAL; 897 } 898 gru_unlock_gts(gts); 899 900 return ret; 901 } 902