1 /* 2 * SN Platform GRU Driver 3 * 4 * FAULT HANDLER FOR GRU DETECTED TLB MISSES 5 * 6 * This file contains code that handles TLB misses within the GRU. 7 * These misses are reported either via interrupts or user polling of 8 * the user CB. 9 * 10 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 */ 26 27 #include <linux/kernel.h> 28 #include <linux/errno.h> 29 #include <linux/spinlock.h> 30 #include <linux/mm.h> 31 #include <linux/hugetlb.h> 32 #include <linux/device.h> 33 #include <linux/io.h> 34 #include <linux/uaccess.h> 35 #include <linux/security.h> 36 #include <linux/prefetch.h> 37 #include <asm/pgtable.h> 38 #include "gru.h" 39 #include "grutables.h" 40 #include "grulib.h" 41 #include "gru_instructions.h" 42 #include <asm/uv/uv_hub.h> 43 44 /* Return codes for vtop functions */ 45 #define VTOP_SUCCESS 0 46 #define VTOP_INVALID -1 47 #define VTOP_RETRY -2 48 49 50 /* 51 * Test if a physical address is a valid GRU GSEG address 52 */ 53 static inline int is_gru_paddr(unsigned long paddr) 54 { 55 return paddr >= gru_start_paddr && paddr < gru_end_paddr; 56 } 57 58 /* 59 * Find the vma of a GRU segment. Caller must hold mmap_sem. 60 */ 61 struct vm_area_struct *gru_find_vma(unsigned long vaddr) 62 { 63 struct vm_area_struct *vma; 64 65 vma = find_vma(current->mm, vaddr); 66 if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops) 67 return vma; 68 return NULL; 69 } 70 71 /* 72 * Find and lock the gts that contains the specified user vaddr. 73 * 74 * Returns: 75 * - *gts with the mmap_sem locked for read and the GTS locked. 76 * - NULL if vaddr invalid OR is not a valid GSEG vaddr. 77 */ 78 79 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr) 80 { 81 struct mm_struct *mm = current->mm; 82 struct vm_area_struct *vma; 83 struct gru_thread_state *gts = NULL; 84 85 down_read(&mm->mmap_sem); 86 vma = gru_find_vma(vaddr); 87 if (vma) 88 gts = gru_find_thread_state(vma, TSID(vaddr, vma)); 89 if (gts) 90 mutex_lock(>s->ts_ctxlock); 91 else 92 up_read(&mm->mmap_sem); 93 return gts; 94 } 95 96 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr) 97 { 98 struct mm_struct *mm = current->mm; 99 struct vm_area_struct *vma; 100 struct gru_thread_state *gts = ERR_PTR(-EINVAL); 101 102 down_write(&mm->mmap_sem); 103 vma = gru_find_vma(vaddr); 104 if (!vma) 105 goto err; 106 107 gts = gru_alloc_thread_state(vma, TSID(vaddr, vma)); 108 if (IS_ERR(gts)) 109 goto err; 110 mutex_lock(>s->ts_ctxlock); 111 downgrade_write(&mm->mmap_sem); 112 return gts; 113 114 err: 115 up_write(&mm->mmap_sem); 116 return gts; 117 } 118 119 /* 120 * Unlock a GTS that was previously locked with gru_find_lock_gts(). 121 */ 122 static void gru_unlock_gts(struct gru_thread_state *gts) 123 { 124 mutex_unlock(>s->ts_ctxlock); 125 up_read(¤t->mm->mmap_sem); 126 } 127 128 /* 129 * Set a CB.istatus to active using a user virtual address. This must be done 130 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY. 131 * If the line is evicted, the status may be lost. The in-cache update 132 * is necessary to prevent the user from seeing a stale cb.istatus that will 133 * change as soon as the TFH restart is complete. Races may cause an 134 * occasional failure to clear the cb.istatus, but that is ok. 135 */ 136 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk) 137 { 138 if (cbk) { 139 cbk->istatus = CBS_ACTIVE; 140 } 141 } 142 143 /* 144 * Read & clear a TFM 145 * 146 * The GRU has an array of fault maps. A map is private to a cpu 147 * Only one cpu will be accessing a cpu's fault map. 148 * 149 * This function scans the cpu-private fault map & clears all bits that 150 * are set. The function returns a bitmap that indicates the bits that 151 * were cleared. Note that sense the maps may be updated asynchronously by 152 * the GRU, atomic operations must be used to clear bits. 153 */ 154 static void get_clear_fault_map(struct gru_state *gru, 155 struct gru_tlb_fault_map *imap, 156 struct gru_tlb_fault_map *dmap) 157 { 158 unsigned long i, k; 159 struct gru_tlb_fault_map *tfm; 160 161 tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id()); 162 prefetchw(tfm); /* Helps on hardware, required for emulator */ 163 for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) { 164 k = tfm->fault_bits[i]; 165 if (k) 166 k = xchg(&tfm->fault_bits[i], 0UL); 167 imap->fault_bits[i] = k; 168 k = tfm->done_bits[i]; 169 if (k) 170 k = xchg(&tfm->done_bits[i], 0UL); 171 dmap->fault_bits[i] = k; 172 } 173 174 /* 175 * Not functionally required but helps performance. (Required 176 * on emulator) 177 */ 178 gru_flush_cache(tfm); 179 } 180 181 /* 182 * Atomic (interrupt context) & non-atomic (user context) functions to 183 * convert a vaddr into a physical address. The size of the page 184 * is returned in pageshift. 185 * returns: 186 * 0 - successful 187 * < 0 - error code 188 * 1 - (atomic only) try again in non-atomic context 189 */ 190 static int non_atomic_pte_lookup(struct vm_area_struct *vma, 191 unsigned long vaddr, int write, 192 unsigned long *paddr, int *pageshift) 193 { 194 struct page *page; 195 196 #ifdef CONFIG_HUGETLB_PAGE 197 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 198 #else 199 *pageshift = PAGE_SHIFT; 200 #endif 201 if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page, NULL) <= 0) 202 return -EFAULT; 203 *paddr = page_to_phys(page); 204 put_page(page); 205 return 0; 206 } 207 208 /* 209 * atomic_pte_lookup 210 * 211 * Convert a user virtual address to a physical address 212 * Only supports Intel large pages (2MB only) on x86_64. 213 * ZZZ - hugepage support is incomplete 214 * 215 * NOTE: mmap_sem is already held on entry to this function. This 216 * guarantees existence of the page tables. 217 */ 218 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, 219 int write, unsigned long *paddr, int *pageshift) 220 { 221 pgd_t *pgdp; 222 p4d_t *p4dp; 223 pud_t *pudp; 224 pmd_t *pmdp; 225 pte_t pte; 226 227 pgdp = pgd_offset(vma->vm_mm, vaddr); 228 if (unlikely(pgd_none(*pgdp))) 229 goto err; 230 231 p4dp = p4d_offset(pgdp, vaddr); 232 if (unlikely(p4d_none(*p4dp))) 233 goto err; 234 235 pudp = pud_offset(p4dp, vaddr); 236 if (unlikely(pud_none(*pudp))) 237 goto err; 238 239 pmdp = pmd_offset(pudp, vaddr); 240 if (unlikely(pmd_none(*pmdp))) 241 goto err; 242 #ifdef CONFIG_X86_64 243 if (unlikely(pmd_large(*pmdp))) 244 pte = *(pte_t *) pmdp; 245 else 246 #endif 247 pte = *pte_offset_kernel(pmdp, vaddr); 248 249 if (unlikely(!pte_present(pte) || 250 (write && (!pte_write(pte) || !pte_dirty(pte))))) 251 return 1; 252 253 *paddr = pte_pfn(pte) << PAGE_SHIFT; 254 #ifdef CONFIG_HUGETLB_PAGE 255 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 256 #else 257 *pageshift = PAGE_SHIFT; 258 #endif 259 return 0; 260 261 err: 262 return 1; 263 } 264 265 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr, 266 int write, int atomic, unsigned long *gpa, int *pageshift) 267 { 268 struct mm_struct *mm = gts->ts_mm; 269 struct vm_area_struct *vma; 270 unsigned long paddr; 271 int ret, ps; 272 273 vma = find_vma(mm, vaddr); 274 if (!vma) 275 goto inval; 276 277 /* 278 * Atomic lookup is faster & usually works even if called in non-atomic 279 * context. 280 */ 281 rmb(); /* Must/check ms_range_active before loading PTEs */ 282 ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps); 283 if (ret) { 284 if (atomic) 285 goto upm; 286 if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps)) 287 goto inval; 288 } 289 if (is_gru_paddr(paddr)) 290 goto inval; 291 paddr = paddr & ~((1UL << ps) - 1); 292 *gpa = uv_soc_phys_ram_to_gpa(paddr); 293 *pageshift = ps; 294 return VTOP_SUCCESS; 295 296 inval: 297 return VTOP_INVALID; 298 upm: 299 return VTOP_RETRY; 300 } 301 302 303 /* 304 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the 305 * CBE cacheline so that the line will be written back to home agent. 306 * Otherwise the line may be silently dropped. This has no impact 307 * except on performance. 308 */ 309 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe) 310 { 311 if (unlikely(cbe)) { 312 cbe->cbrexecstatus = 0; /* make CL dirty */ 313 gru_flush_cache(cbe); 314 } 315 } 316 317 /* 318 * Preload the TLB with entries that may be required. Currently, preloading 319 * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to 320 * the end of the bcopy tranfer, whichever is smaller. 321 */ 322 static void gru_preload_tlb(struct gru_state *gru, 323 struct gru_thread_state *gts, int atomic, 324 unsigned long fault_vaddr, int asid, int write, 325 unsigned char tlb_preload_count, 326 struct gru_tlb_fault_handle *tfh, 327 struct gru_control_block_extended *cbe) 328 { 329 unsigned long vaddr = 0, gpa; 330 int ret, pageshift; 331 332 if (cbe->opccpy != OP_BCOPY) 333 return; 334 335 if (fault_vaddr == cbe->cbe_baddr0) 336 vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1; 337 else if (fault_vaddr == cbe->cbe_baddr1) 338 vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1; 339 340 fault_vaddr &= PAGE_MASK; 341 vaddr &= PAGE_MASK; 342 vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE); 343 344 while (vaddr > fault_vaddr) { 345 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 346 if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write, 347 GRU_PAGESIZE(pageshift))) 348 return; 349 gru_dbg(grudev, 350 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n", 351 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, 352 vaddr, asid, write, pageshift, gpa); 353 vaddr -= PAGE_SIZE; 354 STAT(tlb_preload_page); 355 } 356 } 357 358 /* 359 * Drop a TLB entry into the GRU. The fault is described by info in an TFH. 360 * Input: 361 * cb Address of user CBR. Null if not running in user context 362 * Return: 363 * 0 = dropin, exception, or switch to UPM successful 364 * 1 = range invalidate active 365 * < 0 = error code 366 * 367 */ 368 static int gru_try_dropin(struct gru_state *gru, 369 struct gru_thread_state *gts, 370 struct gru_tlb_fault_handle *tfh, 371 struct gru_instruction_bits *cbk) 372 { 373 struct gru_control_block_extended *cbe = NULL; 374 unsigned char tlb_preload_count = gts->ts_tlb_preload_count; 375 int pageshift = 0, asid, write, ret, atomic = !cbk, indexway; 376 unsigned long gpa = 0, vaddr = 0; 377 378 /* 379 * NOTE: The GRU contains magic hardware that eliminates races between 380 * TLB invalidates and TLB dropins. If an invalidate occurs 381 * in the window between reading the TFH and the subsequent TLB dropin, 382 * the dropin is ignored. This eliminates the need for additional locks. 383 */ 384 385 /* 386 * Prefetch the CBE if doing TLB preloading 387 */ 388 if (unlikely(tlb_preload_count)) { 389 cbe = gru_tfh_to_cbe(tfh); 390 prefetchw(cbe); 391 } 392 393 /* 394 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call. 395 * Might be a hardware race OR a stupid user. Ignore FMM because FMM 396 * is a transient state. 397 */ 398 if (tfh->status != TFHSTATUS_EXCEPTION) { 399 gru_flush_cache(tfh); 400 sync_core(); 401 if (tfh->status != TFHSTATUS_EXCEPTION) 402 goto failnoexception; 403 STAT(tfh_stale_on_fault); 404 } 405 if (tfh->state == TFHSTATE_IDLE) 406 goto failidle; 407 if (tfh->state == TFHSTATE_MISS_FMM && cbk) 408 goto failfmm; 409 410 write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0; 411 vaddr = tfh->missvaddr; 412 asid = tfh->missasid; 413 indexway = tfh->indexway; 414 if (asid == 0) 415 goto failnoasid; 416 417 rmb(); /* TFH must be cache resident before reading ms_range_active */ 418 419 /* 420 * TFH is cache resident - at least briefly. Fail the dropin 421 * if a range invalidate is active. 422 */ 423 if (atomic_read(>s->ts_gms->ms_range_active)) 424 goto failactive; 425 426 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 427 if (ret == VTOP_INVALID) 428 goto failinval; 429 if (ret == VTOP_RETRY) 430 goto failupm; 431 432 if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) { 433 gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift); 434 if (atomic || !gru_update_cch(gts)) { 435 gts->ts_force_cch_reload = 1; 436 goto failupm; 437 } 438 } 439 440 if (unlikely(cbe) && pageshift == PAGE_SHIFT) { 441 gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe); 442 gru_flush_cache_cbe(cbe); 443 } 444 445 gru_cb_set_istatus_active(cbk); 446 gts->ustats.tlbdropin++; 447 tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write, 448 GRU_PAGESIZE(pageshift)); 449 gru_dbg(grudev, 450 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x," 451 " rw %d, ps %d, gpa 0x%lx\n", 452 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid, 453 indexway, write, pageshift, gpa); 454 STAT(tlb_dropin); 455 return 0; 456 457 failnoasid: 458 /* No asid (delayed unload). */ 459 STAT(tlb_dropin_fail_no_asid); 460 gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 461 if (!cbk) 462 tfh_user_polling_mode(tfh); 463 else 464 gru_flush_cache(tfh); 465 gru_flush_cache_cbe(cbe); 466 return -EAGAIN; 467 468 failupm: 469 /* Atomic failure switch CBR to UPM */ 470 tfh_user_polling_mode(tfh); 471 gru_flush_cache_cbe(cbe); 472 STAT(tlb_dropin_fail_upm); 473 gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 474 return 1; 475 476 failfmm: 477 /* FMM state on UPM call */ 478 gru_flush_cache(tfh); 479 gru_flush_cache_cbe(cbe); 480 STAT(tlb_dropin_fail_fmm); 481 gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state); 482 return 0; 483 484 failnoexception: 485 /* TFH status did not show exception pending */ 486 gru_flush_cache(tfh); 487 gru_flush_cache_cbe(cbe); 488 if (cbk) 489 gru_flush_cache(cbk); 490 STAT(tlb_dropin_fail_no_exception); 491 gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n", 492 tfh, tfh->status, tfh->state); 493 return 0; 494 495 failidle: 496 /* TFH state was idle - no miss pending */ 497 gru_flush_cache(tfh); 498 gru_flush_cache_cbe(cbe); 499 if (cbk) 500 gru_flush_cache(cbk); 501 STAT(tlb_dropin_fail_idle); 502 gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state); 503 return 0; 504 505 failinval: 506 /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */ 507 tfh_exception(tfh); 508 gru_flush_cache_cbe(cbe); 509 STAT(tlb_dropin_fail_invalid); 510 gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 511 return -EFAULT; 512 513 failactive: 514 /* Range invalidate active. Switch to UPM iff atomic */ 515 if (!cbk) 516 tfh_user_polling_mode(tfh); 517 else 518 gru_flush_cache(tfh); 519 gru_flush_cache_cbe(cbe); 520 STAT(tlb_dropin_fail_range_active); 521 gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n", 522 tfh, vaddr); 523 return 1; 524 } 525 526 /* 527 * Process an external interrupt from the GRU. This interrupt is 528 * caused by a TLB miss. 529 * Note that this is the interrupt handler that is registered with linux 530 * interrupt handlers. 531 */ 532 static irqreturn_t gru_intr(int chiplet, int blade) 533 { 534 struct gru_state *gru; 535 struct gru_tlb_fault_map imap, dmap; 536 struct gru_thread_state *gts; 537 struct gru_tlb_fault_handle *tfh = NULL; 538 struct completion *cmp; 539 int cbrnum, ctxnum; 540 541 STAT(intr); 542 543 gru = &gru_base[blade]->bs_grus[chiplet]; 544 if (!gru) { 545 dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n", 546 raw_smp_processor_id(), chiplet); 547 return IRQ_NONE; 548 } 549 get_clear_fault_map(gru, &imap, &dmap); 550 gru_dbg(grudev, 551 "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n", 552 smp_processor_id(), chiplet, gru->gs_gid, 553 imap.fault_bits[0], imap.fault_bits[1], 554 dmap.fault_bits[0], dmap.fault_bits[1]); 555 556 for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) { 557 STAT(intr_cbr); 558 cmp = gru->gs_blade->bs_async_wq; 559 if (cmp) 560 complete(cmp); 561 gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n", 562 gru->gs_gid, cbrnum, cmp ? cmp->done : -1); 563 } 564 565 for_each_cbr_in_tfm(cbrnum, imap.fault_bits) { 566 STAT(intr_tfh); 567 tfh = get_tfh_by_index(gru, cbrnum); 568 prefetchw(tfh); /* Helps on hdw, required for emulator */ 569 570 /* 571 * When hardware sets a bit in the faultmap, it implicitly 572 * locks the GRU context so that it cannot be unloaded. 573 * The gts cannot change until a TFH start/writestart command 574 * is issued. 575 */ 576 ctxnum = tfh->ctxnum; 577 gts = gru->gs_gts[ctxnum]; 578 579 /* Spurious interrupts can cause this. Ignore. */ 580 if (!gts) { 581 STAT(intr_spurious); 582 continue; 583 } 584 585 /* 586 * This is running in interrupt context. Trylock the mmap_sem. 587 * If it fails, retry the fault in user context. 588 */ 589 gts->ustats.fmm_tlbmiss++; 590 if (!gts->ts_force_cch_reload && 591 down_read_trylock(>s->ts_mm->mmap_sem)) { 592 gru_try_dropin(gru, gts, tfh, NULL); 593 up_read(>s->ts_mm->mmap_sem); 594 } else { 595 tfh_user_polling_mode(tfh); 596 STAT(intr_mm_lock_failed); 597 } 598 } 599 return IRQ_HANDLED; 600 } 601 602 irqreturn_t gru0_intr(int irq, void *dev_id) 603 { 604 return gru_intr(0, uv_numa_blade_id()); 605 } 606 607 irqreturn_t gru1_intr(int irq, void *dev_id) 608 { 609 return gru_intr(1, uv_numa_blade_id()); 610 } 611 612 irqreturn_t gru_intr_mblade(int irq, void *dev_id) 613 { 614 int blade; 615 616 for_each_possible_blade(blade) { 617 if (uv_blade_nr_possible_cpus(blade)) 618 continue; 619 gru_intr(0, blade); 620 gru_intr(1, blade); 621 } 622 return IRQ_HANDLED; 623 } 624 625 626 static int gru_user_dropin(struct gru_thread_state *gts, 627 struct gru_tlb_fault_handle *tfh, 628 void *cb) 629 { 630 struct gru_mm_struct *gms = gts->ts_gms; 631 int ret; 632 633 gts->ustats.upm_tlbmiss++; 634 while (1) { 635 wait_event(gms->ms_wait_queue, 636 atomic_read(&gms->ms_range_active) == 0); 637 prefetchw(tfh); /* Helps on hdw, required for emulator */ 638 ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb); 639 if (ret <= 0) 640 return ret; 641 STAT(call_os_wait_queue); 642 } 643 } 644 645 /* 646 * This interface is called as a result of a user detecting a "call OS" bit 647 * in a user CB. Normally means that a TLB fault has occurred. 648 * cb - user virtual address of the CB 649 */ 650 int gru_handle_user_call_os(unsigned long cb) 651 { 652 struct gru_tlb_fault_handle *tfh; 653 struct gru_thread_state *gts; 654 void *cbk; 655 int ucbnum, cbrnum, ret = -EINVAL; 656 657 STAT(call_os); 658 659 /* sanity check the cb pointer */ 660 ucbnum = get_cb_number((void *)cb); 661 if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB) 662 return -EINVAL; 663 664 gts = gru_find_lock_gts(cb); 665 if (!gts) 666 return -EINVAL; 667 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 668 669 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) 670 goto exit; 671 672 gru_check_context_placement(gts); 673 674 /* 675 * CCH may contain stale data if ts_force_cch_reload is set. 676 */ 677 if (gts->ts_gru && gts->ts_force_cch_reload) { 678 gts->ts_force_cch_reload = 0; 679 gru_update_cch(gts); 680 } 681 682 ret = -EAGAIN; 683 cbrnum = thread_cbr_number(gts, ucbnum); 684 if (gts->ts_gru) { 685 tfh = get_tfh_by_index(gts->ts_gru, cbrnum); 686 cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr, 687 gts->ts_ctxnum, ucbnum); 688 ret = gru_user_dropin(gts, tfh, cbk); 689 } 690 exit: 691 gru_unlock_gts(gts); 692 return ret; 693 } 694 695 /* 696 * Fetch the exception detail information for a CB that terminated with 697 * an exception. 698 */ 699 int gru_get_exception_detail(unsigned long arg) 700 { 701 struct control_block_extended_exc_detail excdet; 702 struct gru_control_block_extended *cbe; 703 struct gru_thread_state *gts; 704 int ucbnum, cbrnum, ret; 705 706 STAT(user_exception); 707 if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet))) 708 return -EFAULT; 709 710 gts = gru_find_lock_gts(excdet.cb); 711 if (!gts) 712 return -EINVAL; 713 714 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 715 ucbnum = get_cb_number((void *)excdet.cb); 716 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) { 717 ret = -EINVAL; 718 } else if (gts->ts_gru) { 719 cbrnum = thread_cbr_number(gts, ucbnum); 720 cbe = get_cbe_by_index(gts->ts_gru, cbrnum); 721 gru_flush_cache(cbe); /* CBE not coherent */ 722 sync_core(); /* make sure we are have current data */ 723 excdet.opc = cbe->opccpy; 724 excdet.exopc = cbe->exopccpy; 725 excdet.ecause = cbe->ecause; 726 excdet.exceptdet0 = cbe->idef1upd; 727 excdet.exceptdet1 = cbe->idef3upd; 728 excdet.cbrstate = cbe->cbrstate; 729 excdet.cbrexecstatus = cbe->cbrexecstatus; 730 gru_flush_cache_cbe(cbe); 731 ret = 0; 732 } else { 733 ret = -EAGAIN; 734 } 735 gru_unlock_gts(gts); 736 737 gru_dbg(grudev, 738 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, " 739 "exdet0 0x%lx, exdet1 0x%x\n", 740 excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus, 741 excdet.ecause, excdet.exceptdet0, excdet.exceptdet1); 742 if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet))) 743 ret = -EFAULT; 744 return ret; 745 } 746 747 /* 748 * User request to unload a context. Content is saved for possible reload. 749 */ 750 static int gru_unload_all_contexts(void) 751 { 752 struct gru_thread_state *gts; 753 struct gru_state *gru; 754 int gid, ctxnum; 755 756 if (!capable(CAP_SYS_ADMIN)) 757 return -EPERM; 758 foreach_gid(gid) { 759 gru = GID_TO_GRU(gid); 760 spin_lock(&gru->gs_lock); 761 for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) { 762 gts = gru->gs_gts[ctxnum]; 763 if (gts && mutex_trylock(>s->ts_ctxlock)) { 764 spin_unlock(&gru->gs_lock); 765 gru_unload_context(gts, 1); 766 mutex_unlock(>s->ts_ctxlock); 767 spin_lock(&gru->gs_lock); 768 } 769 } 770 spin_unlock(&gru->gs_lock); 771 } 772 return 0; 773 } 774 775 int gru_user_unload_context(unsigned long arg) 776 { 777 struct gru_thread_state *gts; 778 struct gru_unload_context_req req; 779 780 STAT(user_unload_context); 781 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 782 return -EFAULT; 783 784 gru_dbg(grudev, "gseg 0x%lx\n", req.gseg); 785 786 if (!req.gseg) 787 return gru_unload_all_contexts(); 788 789 gts = gru_find_lock_gts(req.gseg); 790 if (!gts) 791 return -EINVAL; 792 793 if (gts->ts_gru) 794 gru_unload_context(gts, 1); 795 gru_unlock_gts(gts); 796 797 return 0; 798 } 799 800 /* 801 * User request to flush a range of virtual addresses from the GRU TLB 802 * (Mainly for testing). 803 */ 804 int gru_user_flush_tlb(unsigned long arg) 805 { 806 struct gru_thread_state *gts; 807 struct gru_flush_tlb_req req; 808 struct gru_mm_struct *gms; 809 810 STAT(user_flush_tlb); 811 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 812 return -EFAULT; 813 814 gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg, 815 req.vaddr, req.len); 816 817 gts = gru_find_lock_gts(req.gseg); 818 if (!gts) 819 return -EINVAL; 820 821 gms = gts->ts_gms; 822 gru_unlock_gts(gts); 823 gru_flush_tlb_range(gms, req.vaddr, req.len); 824 825 return 0; 826 } 827 828 /* 829 * Fetch GSEG statisticss 830 */ 831 long gru_get_gseg_statistics(unsigned long arg) 832 { 833 struct gru_thread_state *gts; 834 struct gru_get_gseg_statistics_req req; 835 836 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 837 return -EFAULT; 838 839 /* 840 * The library creates arrays of contexts for threaded programs. 841 * If no gts exists in the array, the context has never been used & all 842 * statistics are implicitly 0. 843 */ 844 gts = gru_find_lock_gts(req.gseg); 845 if (gts) { 846 memcpy(&req.stats, >s->ustats, sizeof(gts->ustats)); 847 gru_unlock_gts(gts); 848 } else { 849 memset(&req.stats, 0, sizeof(gts->ustats)); 850 } 851 852 if (copy_to_user((void __user *)arg, &req, sizeof(req))) 853 return -EFAULT; 854 855 return 0; 856 } 857 858 /* 859 * Register the current task as the user of the GSEG slice. 860 * Needed for TLB fault interrupt targeting. 861 */ 862 int gru_set_context_option(unsigned long arg) 863 { 864 struct gru_thread_state *gts; 865 struct gru_set_context_option_req req; 866 int ret = 0; 867 868 STAT(set_context_option); 869 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 870 return -EFAULT; 871 gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1); 872 873 gts = gru_find_lock_gts(req.gseg); 874 if (!gts) { 875 gts = gru_alloc_locked_gts(req.gseg); 876 if (IS_ERR(gts)) 877 return PTR_ERR(gts); 878 } 879 880 switch (req.op) { 881 case sco_blade_chiplet: 882 /* Select blade/chiplet for GRU context */ 883 if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB || 884 req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || 885 (req.val1 >= 0 && !gru_base[req.val1])) { 886 ret = -EINVAL; 887 } else { 888 gts->ts_user_blade_id = req.val1; 889 gts->ts_user_chiplet_id = req.val0; 890 gru_check_context_placement(gts); 891 } 892 break; 893 case sco_gseg_owner: 894 /* Register the current task as the GSEG owner */ 895 gts->ts_tgid_owner = current->tgid; 896 break; 897 case sco_cch_req_slice: 898 /* Set the CCH slice option */ 899 gts->ts_cch_req_slice = req.val1 & 3; 900 break; 901 default: 902 ret = -EINVAL; 903 } 904 gru_unlock_gts(gts); 905 906 return ret; 907 } 908