1 /* 2 * SN Platform GRU Driver 3 * 4 * FAULT HANDLER FOR GRU DETECTED TLB MISSES 5 * 6 * This file contains code that handles TLB misses within the GRU. 7 * These misses are reported either via interrupts or user polling of 8 * the user CB. 9 * 10 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 */ 26 27 #include <linux/kernel.h> 28 #include <linux/errno.h> 29 #include <linux/spinlock.h> 30 #include <linux/mm.h> 31 #include <linux/hugetlb.h> 32 #include <linux/device.h> 33 #include <linux/io.h> 34 #include <linux/uaccess.h> 35 #include <linux/security.h> 36 #include <linux/prefetch.h> 37 #include <asm/pgtable.h> 38 #include "gru.h" 39 #include "grutables.h" 40 #include "grulib.h" 41 #include "gru_instructions.h" 42 #include <asm/uv/uv_hub.h> 43 44 /* Return codes for vtop functions */ 45 #define VTOP_SUCCESS 0 46 #define VTOP_INVALID -1 47 #define VTOP_RETRY -2 48 49 50 /* 51 * Test if a physical address is a valid GRU GSEG address 52 */ 53 static inline int is_gru_paddr(unsigned long paddr) 54 { 55 return paddr >= gru_start_paddr && paddr < gru_end_paddr; 56 } 57 58 /* 59 * Find the vma of a GRU segment. Caller must hold mmap_sem. 60 */ 61 struct vm_area_struct *gru_find_vma(unsigned long vaddr) 62 { 63 struct vm_area_struct *vma; 64 65 vma = find_vma(current->mm, vaddr); 66 if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops) 67 return vma; 68 return NULL; 69 } 70 71 /* 72 * Find and lock the gts that contains the specified user vaddr. 73 * 74 * Returns: 75 * - *gts with the mmap_sem locked for read and the GTS locked. 76 * - NULL if vaddr invalid OR is not a valid GSEG vaddr. 77 */ 78 79 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr) 80 { 81 struct mm_struct *mm = current->mm; 82 struct vm_area_struct *vma; 83 struct gru_thread_state *gts = NULL; 84 85 down_read(&mm->mmap_sem); 86 vma = gru_find_vma(vaddr); 87 if (vma) 88 gts = gru_find_thread_state(vma, TSID(vaddr, vma)); 89 if (gts) 90 mutex_lock(>s->ts_ctxlock); 91 else 92 up_read(&mm->mmap_sem); 93 return gts; 94 } 95 96 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr) 97 { 98 struct mm_struct *mm = current->mm; 99 struct vm_area_struct *vma; 100 struct gru_thread_state *gts = ERR_PTR(-EINVAL); 101 102 down_write(&mm->mmap_sem); 103 vma = gru_find_vma(vaddr); 104 if (!vma) 105 goto err; 106 107 gts = gru_alloc_thread_state(vma, TSID(vaddr, vma)); 108 if (IS_ERR(gts)) 109 goto err; 110 mutex_lock(>s->ts_ctxlock); 111 downgrade_write(&mm->mmap_sem); 112 return gts; 113 114 err: 115 up_write(&mm->mmap_sem); 116 return gts; 117 } 118 119 /* 120 * Unlock a GTS that was previously locked with gru_find_lock_gts(). 121 */ 122 static void gru_unlock_gts(struct gru_thread_state *gts) 123 { 124 mutex_unlock(>s->ts_ctxlock); 125 up_read(¤t->mm->mmap_sem); 126 } 127 128 /* 129 * Set a CB.istatus to active using a user virtual address. This must be done 130 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY. 131 * If the line is evicted, the status may be lost. The in-cache update 132 * is necessary to prevent the user from seeing a stale cb.istatus that will 133 * change as soon as the TFH restart is complete. Races may cause an 134 * occasional failure to clear the cb.istatus, but that is ok. 135 */ 136 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk) 137 { 138 if (cbk) { 139 cbk->istatus = CBS_ACTIVE; 140 } 141 } 142 143 /* 144 * Read & clear a TFM 145 * 146 * The GRU has an array of fault maps. A map is private to a cpu 147 * Only one cpu will be accessing a cpu's fault map. 148 * 149 * This function scans the cpu-private fault map & clears all bits that 150 * are set. The function returns a bitmap that indicates the bits that 151 * were cleared. Note that sense the maps may be updated asynchronously by 152 * the GRU, atomic operations must be used to clear bits. 153 */ 154 static void get_clear_fault_map(struct gru_state *gru, 155 struct gru_tlb_fault_map *imap, 156 struct gru_tlb_fault_map *dmap) 157 { 158 unsigned long i, k; 159 struct gru_tlb_fault_map *tfm; 160 161 tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id()); 162 prefetchw(tfm); /* Helps on hardware, required for emulator */ 163 for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) { 164 k = tfm->fault_bits[i]; 165 if (k) 166 k = xchg(&tfm->fault_bits[i], 0UL); 167 imap->fault_bits[i] = k; 168 k = tfm->done_bits[i]; 169 if (k) 170 k = xchg(&tfm->done_bits[i], 0UL); 171 dmap->fault_bits[i] = k; 172 } 173 174 /* 175 * Not functionally required but helps performance. (Required 176 * on emulator) 177 */ 178 gru_flush_cache(tfm); 179 } 180 181 /* 182 * Atomic (interrupt context) & non-atomic (user context) functions to 183 * convert a vaddr into a physical address. The size of the page 184 * is returned in pageshift. 185 * returns: 186 * 0 - successful 187 * < 0 - error code 188 * 1 - (atomic only) try again in non-atomic context 189 */ 190 static int non_atomic_pte_lookup(struct vm_area_struct *vma, 191 unsigned long vaddr, int write, 192 unsigned long *paddr, int *pageshift) 193 { 194 struct page *page; 195 196 #ifdef CONFIG_HUGETLB_PAGE 197 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 198 #else 199 *pageshift = PAGE_SHIFT; 200 #endif 201 if (get_user_pages 202 (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0) 203 return -EFAULT; 204 *paddr = page_to_phys(page); 205 put_page(page); 206 return 0; 207 } 208 209 /* 210 * atomic_pte_lookup 211 * 212 * Convert a user virtual address to a physical address 213 * Only supports Intel large pages (2MB only) on x86_64. 214 * ZZZ - hugepage support is incomplete 215 * 216 * NOTE: mmap_sem is already held on entry to this function. This 217 * guarantees existence of the page tables. 218 */ 219 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, 220 int write, unsigned long *paddr, int *pageshift) 221 { 222 pgd_t *pgdp; 223 pmd_t *pmdp; 224 pud_t *pudp; 225 pte_t pte; 226 227 pgdp = pgd_offset(vma->vm_mm, vaddr); 228 if (unlikely(pgd_none(*pgdp))) 229 goto err; 230 231 pudp = pud_offset(pgdp, vaddr); 232 if (unlikely(pud_none(*pudp))) 233 goto err; 234 235 pmdp = pmd_offset(pudp, vaddr); 236 if (unlikely(pmd_none(*pmdp))) 237 goto err; 238 #ifdef CONFIG_X86_64 239 if (unlikely(pmd_large(*pmdp))) 240 pte = *(pte_t *) pmdp; 241 else 242 #endif 243 pte = *pte_offset_kernel(pmdp, vaddr); 244 245 if (unlikely(!pte_present(pte) || 246 (write && (!pte_write(pte) || !pte_dirty(pte))))) 247 return 1; 248 249 *paddr = pte_pfn(pte) << PAGE_SHIFT; 250 #ifdef CONFIG_HUGETLB_PAGE 251 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 252 #else 253 *pageshift = PAGE_SHIFT; 254 #endif 255 return 0; 256 257 err: 258 return 1; 259 } 260 261 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr, 262 int write, int atomic, unsigned long *gpa, int *pageshift) 263 { 264 struct mm_struct *mm = gts->ts_mm; 265 struct vm_area_struct *vma; 266 unsigned long paddr; 267 int ret, ps; 268 269 vma = find_vma(mm, vaddr); 270 if (!vma) 271 goto inval; 272 273 /* 274 * Atomic lookup is faster & usually works even if called in non-atomic 275 * context. 276 */ 277 rmb(); /* Must/check ms_range_active before loading PTEs */ 278 ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps); 279 if (ret) { 280 if (atomic) 281 goto upm; 282 if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps)) 283 goto inval; 284 } 285 if (is_gru_paddr(paddr)) 286 goto inval; 287 paddr = paddr & ~((1UL << ps) - 1); 288 *gpa = uv_soc_phys_ram_to_gpa(paddr); 289 *pageshift = ps; 290 return VTOP_SUCCESS; 291 292 inval: 293 return VTOP_INVALID; 294 upm: 295 return VTOP_RETRY; 296 } 297 298 299 /* 300 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the 301 * CBE cacheline so that the line will be written back to home agent. 302 * Otherwise the line may be silently dropped. This has no impact 303 * except on performance. 304 */ 305 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe) 306 { 307 if (unlikely(cbe)) { 308 cbe->cbrexecstatus = 0; /* make CL dirty */ 309 gru_flush_cache(cbe); 310 } 311 } 312 313 /* 314 * Preload the TLB with entries that may be required. Currently, preloading 315 * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to 316 * the end of the bcopy tranfer, whichever is smaller. 317 */ 318 static void gru_preload_tlb(struct gru_state *gru, 319 struct gru_thread_state *gts, int atomic, 320 unsigned long fault_vaddr, int asid, int write, 321 unsigned char tlb_preload_count, 322 struct gru_tlb_fault_handle *tfh, 323 struct gru_control_block_extended *cbe) 324 { 325 unsigned long vaddr = 0, gpa; 326 int ret, pageshift; 327 328 if (cbe->opccpy != OP_BCOPY) 329 return; 330 331 if (fault_vaddr == cbe->cbe_baddr0) 332 vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1; 333 else if (fault_vaddr == cbe->cbe_baddr1) 334 vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1; 335 336 fault_vaddr &= PAGE_MASK; 337 vaddr &= PAGE_MASK; 338 vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE); 339 340 while (vaddr > fault_vaddr) { 341 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 342 if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write, 343 GRU_PAGESIZE(pageshift))) 344 return; 345 gru_dbg(grudev, 346 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n", 347 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, 348 vaddr, asid, write, pageshift, gpa); 349 vaddr -= PAGE_SIZE; 350 STAT(tlb_preload_page); 351 } 352 } 353 354 /* 355 * Drop a TLB entry into the GRU. The fault is described by info in an TFH. 356 * Input: 357 * cb Address of user CBR. Null if not running in user context 358 * Return: 359 * 0 = dropin, exception, or switch to UPM successful 360 * 1 = range invalidate active 361 * < 0 = error code 362 * 363 */ 364 static int gru_try_dropin(struct gru_state *gru, 365 struct gru_thread_state *gts, 366 struct gru_tlb_fault_handle *tfh, 367 struct gru_instruction_bits *cbk) 368 { 369 struct gru_control_block_extended *cbe = NULL; 370 unsigned char tlb_preload_count = gts->ts_tlb_preload_count; 371 int pageshift = 0, asid, write, ret, atomic = !cbk, indexway; 372 unsigned long gpa = 0, vaddr = 0; 373 374 /* 375 * NOTE: The GRU contains magic hardware that eliminates races between 376 * TLB invalidates and TLB dropins. If an invalidate occurs 377 * in the window between reading the TFH and the subsequent TLB dropin, 378 * the dropin is ignored. This eliminates the need for additional locks. 379 */ 380 381 /* 382 * Prefetch the CBE if doing TLB preloading 383 */ 384 if (unlikely(tlb_preload_count)) { 385 cbe = gru_tfh_to_cbe(tfh); 386 prefetchw(cbe); 387 } 388 389 /* 390 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call. 391 * Might be a hardware race OR a stupid user. Ignore FMM because FMM 392 * is a transient state. 393 */ 394 if (tfh->status != TFHSTATUS_EXCEPTION) { 395 gru_flush_cache(tfh); 396 sync_core(); 397 if (tfh->status != TFHSTATUS_EXCEPTION) 398 goto failnoexception; 399 STAT(tfh_stale_on_fault); 400 } 401 if (tfh->state == TFHSTATE_IDLE) 402 goto failidle; 403 if (tfh->state == TFHSTATE_MISS_FMM && cbk) 404 goto failfmm; 405 406 write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0; 407 vaddr = tfh->missvaddr; 408 asid = tfh->missasid; 409 indexway = tfh->indexway; 410 if (asid == 0) 411 goto failnoasid; 412 413 rmb(); /* TFH must be cache resident before reading ms_range_active */ 414 415 /* 416 * TFH is cache resident - at least briefly. Fail the dropin 417 * if a range invalidate is active. 418 */ 419 if (atomic_read(>s->ts_gms->ms_range_active)) 420 goto failactive; 421 422 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 423 if (ret == VTOP_INVALID) 424 goto failinval; 425 if (ret == VTOP_RETRY) 426 goto failupm; 427 428 if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) { 429 gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift); 430 if (atomic || !gru_update_cch(gts)) { 431 gts->ts_force_cch_reload = 1; 432 goto failupm; 433 } 434 } 435 436 if (unlikely(cbe) && pageshift == PAGE_SHIFT) { 437 gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe); 438 gru_flush_cache_cbe(cbe); 439 } 440 441 gru_cb_set_istatus_active(cbk); 442 gts->ustats.tlbdropin++; 443 tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write, 444 GRU_PAGESIZE(pageshift)); 445 gru_dbg(grudev, 446 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x," 447 " rw %d, ps %d, gpa 0x%lx\n", 448 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid, 449 indexway, write, pageshift, gpa); 450 STAT(tlb_dropin); 451 return 0; 452 453 failnoasid: 454 /* No asid (delayed unload). */ 455 STAT(tlb_dropin_fail_no_asid); 456 gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 457 if (!cbk) 458 tfh_user_polling_mode(tfh); 459 else 460 gru_flush_cache(tfh); 461 gru_flush_cache_cbe(cbe); 462 return -EAGAIN; 463 464 failupm: 465 /* Atomic failure switch CBR to UPM */ 466 tfh_user_polling_mode(tfh); 467 gru_flush_cache_cbe(cbe); 468 STAT(tlb_dropin_fail_upm); 469 gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 470 return 1; 471 472 failfmm: 473 /* FMM state on UPM call */ 474 gru_flush_cache(tfh); 475 gru_flush_cache_cbe(cbe); 476 STAT(tlb_dropin_fail_fmm); 477 gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state); 478 return 0; 479 480 failnoexception: 481 /* TFH status did not show exception pending */ 482 gru_flush_cache(tfh); 483 gru_flush_cache_cbe(cbe); 484 if (cbk) 485 gru_flush_cache(cbk); 486 STAT(tlb_dropin_fail_no_exception); 487 gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n", 488 tfh, tfh->status, tfh->state); 489 return 0; 490 491 failidle: 492 /* TFH state was idle - no miss pending */ 493 gru_flush_cache(tfh); 494 gru_flush_cache_cbe(cbe); 495 if (cbk) 496 gru_flush_cache(cbk); 497 STAT(tlb_dropin_fail_idle); 498 gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state); 499 return 0; 500 501 failinval: 502 /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */ 503 tfh_exception(tfh); 504 gru_flush_cache_cbe(cbe); 505 STAT(tlb_dropin_fail_invalid); 506 gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 507 return -EFAULT; 508 509 failactive: 510 /* Range invalidate active. Switch to UPM iff atomic */ 511 if (!cbk) 512 tfh_user_polling_mode(tfh); 513 else 514 gru_flush_cache(tfh); 515 gru_flush_cache_cbe(cbe); 516 STAT(tlb_dropin_fail_range_active); 517 gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n", 518 tfh, vaddr); 519 return 1; 520 } 521 522 /* 523 * Process an external interrupt from the GRU. This interrupt is 524 * caused by a TLB miss. 525 * Note that this is the interrupt handler that is registered with linux 526 * interrupt handlers. 527 */ 528 static irqreturn_t gru_intr(int chiplet, int blade) 529 { 530 struct gru_state *gru; 531 struct gru_tlb_fault_map imap, dmap; 532 struct gru_thread_state *gts; 533 struct gru_tlb_fault_handle *tfh = NULL; 534 struct completion *cmp; 535 int cbrnum, ctxnum; 536 537 STAT(intr); 538 539 gru = &gru_base[blade]->bs_grus[chiplet]; 540 if (!gru) { 541 dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n", 542 raw_smp_processor_id(), chiplet); 543 return IRQ_NONE; 544 } 545 get_clear_fault_map(gru, &imap, &dmap); 546 gru_dbg(grudev, 547 "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n", 548 smp_processor_id(), chiplet, gru->gs_gid, 549 imap.fault_bits[0], imap.fault_bits[1], 550 dmap.fault_bits[0], dmap.fault_bits[1]); 551 552 for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) { 553 STAT(intr_cbr); 554 cmp = gru->gs_blade->bs_async_wq; 555 if (cmp) 556 complete(cmp); 557 gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n", 558 gru->gs_gid, cbrnum, cmp ? cmp->done : -1); 559 } 560 561 for_each_cbr_in_tfm(cbrnum, imap.fault_bits) { 562 STAT(intr_tfh); 563 tfh = get_tfh_by_index(gru, cbrnum); 564 prefetchw(tfh); /* Helps on hdw, required for emulator */ 565 566 /* 567 * When hardware sets a bit in the faultmap, it implicitly 568 * locks the GRU context so that it cannot be unloaded. 569 * The gts cannot change until a TFH start/writestart command 570 * is issued. 571 */ 572 ctxnum = tfh->ctxnum; 573 gts = gru->gs_gts[ctxnum]; 574 575 /* Spurious interrupts can cause this. Ignore. */ 576 if (!gts) { 577 STAT(intr_spurious); 578 continue; 579 } 580 581 /* 582 * This is running in interrupt context. Trylock the mmap_sem. 583 * If it fails, retry the fault in user context. 584 */ 585 gts->ustats.fmm_tlbmiss++; 586 if (!gts->ts_force_cch_reload && 587 down_read_trylock(>s->ts_mm->mmap_sem)) { 588 gru_try_dropin(gru, gts, tfh, NULL); 589 up_read(>s->ts_mm->mmap_sem); 590 } else { 591 tfh_user_polling_mode(tfh); 592 STAT(intr_mm_lock_failed); 593 } 594 } 595 return IRQ_HANDLED; 596 } 597 598 irqreturn_t gru0_intr(int irq, void *dev_id) 599 { 600 return gru_intr(0, uv_numa_blade_id()); 601 } 602 603 irqreturn_t gru1_intr(int irq, void *dev_id) 604 { 605 return gru_intr(1, uv_numa_blade_id()); 606 } 607 608 irqreturn_t gru_intr_mblade(int irq, void *dev_id) 609 { 610 int blade; 611 612 for_each_possible_blade(blade) { 613 if (uv_blade_nr_possible_cpus(blade)) 614 continue; 615 gru_intr(0, blade); 616 gru_intr(1, blade); 617 } 618 return IRQ_HANDLED; 619 } 620 621 622 static int gru_user_dropin(struct gru_thread_state *gts, 623 struct gru_tlb_fault_handle *tfh, 624 void *cb) 625 { 626 struct gru_mm_struct *gms = gts->ts_gms; 627 int ret; 628 629 gts->ustats.upm_tlbmiss++; 630 while (1) { 631 wait_event(gms->ms_wait_queue, 632 atomic_read(&gms->ms_range_active) == 0); 633 prefetchw(tfh); /* Helps on hdw, required for emulator */ 634 ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb); 635 if (ret <= 0) 636 return ret; 637 STAT(call_os_wait_queue); 638 } 639 } 640 641 /* 642 * This interface is called as a result of a user detecting a "call OS" bit 643 * in a user CB. Normally means that a TLB fault has occurred. 644 * cb - user virtual address of the CB 645 */ 646 int gru_handle_user_call_os(unsigned long cb) 647 { 648 struct gru_tlb_fault_handle *tfh; 649 struct gru_thread_state *gts; 650 void *cbk; 651 int ucbnum, cbrnum, ret = -EINVAL; 652 653 STAT(call_os); 654 655 /* sanity check the cb pointer */ 656 ucbnum = get_cb_number((void *)cb); 657 if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB) 658 return -EINVAL; 659 660 gts = gru_find_lock_gts(cb); 661 if (!gts) 662 return -EINVAL; 663 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 664 665 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) 666 goto exit; 667 668 gru_check_context_placement(gts); 669 670 /* 671 * CCH may contain stale data if ts_force_cch_reload is set. 672 */ 673 if (gts->ts_gru && gts->ts_force_cch_reload) { 674 gts->ts_force_cch_reload = 0; 675 gru_update_cch(gts); 676 } 677 678 ret = -EAGAIN; 679 cbrnum = thread_cbr_number(gts, ucbnum); 680 if (gts->ts_gru) { 681 tfh = get_tfh_by_index(gts->ts_gru, cbrnum); 682 cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr, 683 gts->ts_ctxnum, ucbnum); 684 ret = gru_user_dropin(gts, tfh, cbk); 685 } 686 exit: 687 gru_unlock_gts(gts); 688 return ret; 689 } 690 691 /* 692 * Fetch the exception detail information for a CB that terminated with 693 * an exception. 694 */ 695 int gru_get_exception_detail(unsigned long arg) 696 { 697 struct control_block_extended_exc_detail excdet; 698 struct gru_control_block_extended *cbe; 699 struct gru_thread_state *gts; 700 int ucbnum, cbrnum, ret; 701 702 STAT(user_exception); 703 if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet))) 704 return -EFAULT; 705 706 gts = gru_find_lock_gts(excdet.cb); 707 if (!gts) 708 return -EINVAL; 709 710 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 711 ucbnum = get_cb_number((void *)excdet.cb); 712 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) { 713 ret = -EINVAL; 714 } else if (gts->ts_gru) { 715 cbrnum = thread_cbr_number(gts, ucbnum); 716 cbe = get_cbe_by_index(gts->ts_gru, cbrnum); 717 gru_flush_cache(cbe); /* CBE not coherent */ 718 sync_core(); /* make sure we are have current data */ 719 excdet.opc = cbe->opccpy; 720 excdet.exopc = cbe->exopccpy; 721 excdet.ecause = cbe->ecause; 722 excdet.exceptdet0 = cbe->idef1upd; 723 excdet.exceptdet1 = cbe->idef3upd; 724 excdet.cbrstate = cbe->cbrstate; 725 excdet.cbrexecstatus = cbe->cbrexecstatus; 726 gru_flush_cache_cbe(cbe); 727 ret = 0; 728 } else { 729 ret = -EAGAIN; 730 } 731 gru_unlock_gts(gts); 732 733 gru_dbg(grudev, 734 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, " 735 "exdet0 0x%lx, exdet1 0x%x\n", 736 excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus, 737 excdet.ecause, excdet.exceptdet0, excdet.exceptdet1); 738 if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet))) 739 ret = -EFAULT; 740 return ret; 741 } 742 743 /* 744 * User request to unload a context. Content is saved for possible reload. 745 */ 746 static int gru_unload_all_contexts(void) 747 { 748 struct gru_thread_state *gts; 749 struct gru_state *gru; 750 int gid, ctxnum; 751 752 if (!capable(CAP_SYS_ADMIN)) 753 return -EPERM; 754 foreach_gid(gid) { 755 gru = GID_TO_GRU(gid); 756 spin_lock(&gru->gs_lock); 757 for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) { 758 gts = gru->gs_gts[ctxnum]; 759 if (gts && mutex_trylock(>s->ts_ctxlock)) { 760 spin_unlock(&gru->gs_lock); 761 gru_unload_context(gts, 1); 762 mutex_unlock(>s->ts_ctxlock); 763 spin_lock(&gru->gs_lock); 764 } 765 } 766 spin_unlock(&gru->gs_lock); 767 } 768 return 0; 769 } 770 771 int gru_user_unload_context(unsigned long arg) 772 { 773 struct gru_thread_state *gts; 774 struct gru_unload_context_req req; 775 776 STAT(user_unload_context); 777 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 778 return -EFAULT; 779 780 gru_dbg(grudev, "gseg 0x%lx\n", req.gseg); 781 782 if (!req.gseg) 783 return gru_unload_all_contexts(); 784 785 gts = gru_find_lock_gts(req.gseg); 786 if (!gts) 787 return -EINVAL; 788 789 if (gts->ts_gru) 790 gru_unload_context(gts, 1); 791 gru_unlock_gts(gts); 792 793 return 0; 794 } 795 796 /* 797 * User request to flush a range of virtual addresses from the GRU TLB 798 * (Mainly for testing). 799 */ 800 int gru_user_flush_tlb(unsigned long arg) 801 { 802 struct gru_thread_state *gts; 803 struct gru_flush_tlb_req req; 804 struct gru_mm_struct *gms; 805 806 STAT(user_flush_tlb); 807 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 808 return -EFAULT; 809 810 gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg, 811 req.vaddr, req.len); 812 813 gts = gru_find_lock_gts(req.gseg); 814 if (!gts) 815 return -EINVAL; 816 817 gms = gts->ts_gms; 818 gru_unlock_gts(gts); 819 gru_flush_tlb_range(gms, req.vaddr, req.len); 820 821 return 0; 822 } 823 824 /* 825 * Fetch GSEG statisticss 826 */ 827 long gru_get_gseg_statistics(unsigned long arg) 828 { 829 struct gru_thread_state *gts; 830 struct gru_get_gseg_statistics_req req; 831 832 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 833 return -EFAULT; 834 835 /* 836 * The library creates arrays of contexts for threaded programs. 837 * If no gts exists in the array, the context has never been used & all 838 * statistics are implicitly 0. 839 */ 840 gts = gru_find_lock_gts(req.gseg); 841 if (gts) { 842 memcpy(&req.stats, >s->ustats, sizeof(gts->ustats)); 843 gru_unlock_gts(gts); 844 } else { 845 memset(&req.stats, 0, sizeof(gts->ustats)); 846 } 847 848 if (copy_to_user((void __user *)arg, &req, sizeof(req))) 849 return -EFAULT; 850 851 return 0; 852 } 853 854 /* 855 * Register the current task as the user of the GSEG slice. 856 * Needed for TLB fault interrupt targeting. 857 */ 858 int gru_set_context_option(unsigned long arg) 859 { 860 struct gru_thread_state *gts; 861 struct gru_set_context_option_req req; 862 int ret = 0; 863 864 STAT(set_context_option); 865 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 866 return -EFAULT; 867 gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1); 868 869 gts = gru_find_lock_gts(req.gseg); 870 if (!gts) { 871 gts = gru_alloc_locked_gts(req.gseg); 872 if (IS_ERR(gts)) 873 return PTR_ERR(gts); 874 } 875 876 switch (req.op) { 877 case sco_blade_chiplet: 878 /* Select blade/chiplet for GRU context */ 879 if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB || 880 req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || 881 (req.val1 >= 0 && !gru_base[req.val1])) { 882 ret = -EINVAL; 883 } else { 884 gts->ts_user_blade_id = req.val1; 885 gts->ts_user_chiplet_id = req.val0; 886 gru_check_context_placement(gts); 887 } 888 break; 889 case sco_gseg_owner: 890 /* Register the current task as the GSEG owner */ 891 gts->ts_tgid_owner = current->tgid; 892 break; 893 case sco_cch_req_slice: 894 /* Set the CCH slice option */ 895 gts->ts_cch_req_slice = req.val1 & 3; 896 break; 897 default: 898 ret = -EINVAL; 899 } 900 gru_unlock_gts(gts); 901 902 return ret; 903 } 904