1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SN Platform GRU Driver 4 * 5 * FAULT HANDLER FOR GRU DETECTED TLB MISSES 6 * 7 * This file contains code that handles TLB misses within the GRU. 8 * These misses are reported either via interrupts or user polling of 9 * the user CB. 10 * 11 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/spinlock.h> 17 #include <linux/mm.h> 18 #include <linux/hugetlb.h> 19 #include <linux/device.h> 20 #include <linux/io.h> 21 #include <linux/uaccess.h> 22 #include <linux/security.h> 23 #include <linux/prefetch.h> 24 #include "gru.h" 25 #include "grutables.h" 26 #include "grulib.h" 27 #include "gru_instructions.h" 28 #include <asm/uv/uv_hub.h> 29 30 /* Return codes for vtop functions */ 31 #define VTOP_SUCCESS 0 32 #define VTOP_INVALID -1 33 #define VTOP_RETRY -2 34 35 36 /* 37 * Test if a physical address is a valid GRU GSEG address 38 */ 39 static inline int is_gru_paddr(unsigned long paddr) 40 { 41 return paddr >= gru_start_paddr && paddr < gru_end_paddr; 42 } 43 44 /* 45 * Find the vma of a GRU segment. Caller must hold mmap_lock. 46 */ 47 struct vm_area_struct *gru_find_vma(unsigned long vaddr) 48 { 49 struct vm_area_struct *vma; 50 51 vma = find_vma(current->mm, vaddr); 52 if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops) 53 return vma; 54 return NULL; 55 } 56 57 /* 58 * Find and lock the gts that contains the specified user vaddr. 59 * 60 * Returns: 61 * - *gts with the mmap_lock locked for read and the GTS locked. 62 * - NULL if vaddr invalid OR is not a valid GSEG vaddr. 63 */ 64 65 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr) 66 { 67 struct mm_struct *mm = current->mm; 68 struct vm_area_struct *vma; 69 struct gru_thread_state *gts = NULL; 70 71 mmap_read_lock(mm); 72 vma = gru_find_vma(vaddr); 73 if (vma) 74 gts = gru_find_thread_state(vma, TSID(vaddr, vma)); 75 if (gts) 76 mutex_lock(>s->ts_ctxlock); 77 else 78 mmap_read_unlock(mm); 79 return gts; 80 } 81 82 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr) 83 { 84 struct mm_struct *mm = current->mm; 85 struct vm_area_struct *vma; 86 struct gru_thread_state *gts = ERR_PTR(-EINVAL); 87 88 mmap_write_lock(mm); 89 vma = gru_find_vma(vaddr); 90 if (!vma) 91 goto err; 92 93 gts = gru_alloc_thread_state(vma, TSID(vaddr, vma)); 94 if (IS_ERR(gts)) 95 goto err; 96 mutex_lock(>s->ts_ctxlock); 97 mmap_write_downgrade(mm); 98 return gts; 99 100 err: 101 mmap_write_unlock(mm); 102 return gts; 103 } 104 105 /* 106 * Unlock a GTS that was previously locked with gru_find_lock_gts(). 107 */ 108 static void gru_unlock_gts(struct gru_thread_state *gts) 109 { 110 mutex_unlock(>s->ts_ctxlock); 111 mmap_read_unlock(current->mm); 112 } 113 114 /* 115 * Set a CB.istatus to active using a user virtual address. This must be done 116 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY. 117 * If the line is evicted, the status may be lost. The in-cache update 118 * is necessary to prevent the user from seeing a stale cb.istatus that will 119 * change as soon as the TFH restart is complete. Races may cause an 120 * occasional failure to clear the cb.istatus, but that is ok. 121 */ 122 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk) 123 { 124 if (cbk) { 125 cbk->istatus = CBS_ACTIVE; 126 } 127 } 128 129 /* 130 * Read & clear a TFM 131 * 132 * The GRU has an array of fault maps. A map is private to a cpu 133 * Only one cpu will be accessing a cpu's fault map. 134 * 135 * This function scans the cpu-private fault map & clears all bits that 136 * are set. The function returns a bitmap that indicates the bits that 137 * were cleared. Note that sense the maps may be updated asynchronously by 138 * the GRU, atomic operations must be used to clear bits. 139 */ 140 static void get_clear_fault_map(struct gru_state *gru, 141 struct gru_tlb_fault_map *imap, 142 struct gru_tlb_fault_map *dmap) 143 { 144 unsigned long i, k; 145 struct gru_tlb_fault_map *tfm; 146 147 tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id()); 148 prefetchw(tfm); /* Helps on hardware, required for emulator */ 149 for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) { 150 k = tfm->fault_bits[i]; 151 if (k) 152 k = xchg(&tfm->fault_bits[i], 0UL); 153 imap->fault_bits[i] = k; 154 k = tfm->done_bits[i]; 155 if (k) 156 k = xchg(&tfm->done_bits[i], 0UL); 157 dmap->fault_bits[i] = k; 158 } 159 160 /* 161 * Not functionally required but helps performance. (Required 162 * on emulator) 163 */ 164 gru_flush_cache(tfm); 165 } 166 167 /* 168 * Atomic (interrupt context) & non-atomic (user context) functions to 169 * convert a vaddr into a physical address. The size of the page 170 * is returned in pageshift. 171 * returns: 172 * 0 - successful 173 * < 0 - error code 174 * 1 - (atomic only) try again in non-atomic context 175 */ 176 static int non_atomic_pte_lookup(struct vm_area_struct *vma, 177 unsigned long vaddr, int write, 178 unsigned long *paddr, int *pageshift) 179 { 180 struct page *page; 181 182 #ifdef CONFIG_HUGETLB_PAGE 183 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 184 #else 185 *pageshift = PAGE_SHIFT; 186 #endif 187 if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page, NULL) <= 0) 188 return -EFAULT; 189 *paddr = page_to_phys(page); 190 put_page(page); 191 return 0; 192 } 193 194 /* 195 * atomic_pte_lookup 196 * 197 * Convert a user virtual address to a physical address 198 * Only supports Intel large pages (2MB only) on x86_64. 199 * ZZZ - hugepage support is incomplete 200 * 201 * NOTE: mmap_lock is already held on entry to this function. This 202 * guarantees existence of the page tables. 203 */ 204 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, 205 int write, unsigned long *paddr, int *pageshift) 206 { 207 pgd_t *pgdp; 208 p4d_t *p4dp; 209 pud_t *pudp; 210 pmd_t *pmdp; 211 pte_t pte; 212 213 pgdp = pgd_offset(vma->vm_mm, vaddr); 214 if (unlikely(pgd_none(*pgdp))) 215 goto err; 216 217 p4dp = p4d_offset(pgdp, vaddr); 218 if (unlikely(p4d_none(*p4dp))) 219 goto err; 220 221 pudp = pud_offset(p4dp, vaddr); 222 if (unlikely(pud_none(*pudp))) 223 goto err; 224 225 pmdp = pmd_offset(pudp, vaddr); 226 if (unlikely(pmd_none(*pmdp))) 227 goto err; 228 #ifdef CONFIG_X86_64 229 if (unlikely(pmd_large(*pmdp))) 230 pte = *(pte_t *) pmdp; 231 else 232 #endif 233 pte = *pte_offset_kernel(pmdp, vaddr); 234 235 if (unlikely(!pte_present(pte) || 236 (write && (!pte_write(pte) || !pte_dirty(pte))))) 237 return 1; 238 239 *paddr = pte_pfn(pte) << PAGE_SHIFT; 240 #ifdef CONFIG_HUGETLB_PAGE 241 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 242 #else 243 *pageshift = PAGE_SHIFT; 244 #endif 245 return 0; 246 247 err: 248 return 1; 249 } 250 251 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr, 252 int write, int atomic, unsigned long *gpa, int *pageshift) 253 { 254 struct mm_struct *mm = gts->ts_mm; 255 struct vm_area_struct *vma; 256 unsigned long paddr; 257 int ret, ps; 258 259 vma = find_vma(mm, vaddr); 260 if (!vma) 261 goto inval; 262 263 /* 264 * Atomic lookup is faster & usually works even if called in non-atomic 265 * context. 266 */ 267 rmb(); /* Must/check ms_range_active before loading PTEs */ 268 ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps); 269 if (ret) { 270 if (atomic) 271 goto upm; 272 if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps)) 273 goto inval; 274 } 275 if (is_gru_paddr(paddr)) 276 goto inval; 277 paddr = paddr & ~((1UL << ps) - 1); 278 *gpa = uv_soc_phys_ram_to_gpa(paddr); 279 *pageshift = ps; 280 return VTOP_SUCCESS; 281 282 inval: 283 return VTOP_INVALID; 284 upm: 285 return VTOP_RETRY; 286 } 287 288 289 /* 290 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the 291 * CBE cacheline so that the line will be written back to home agent. 292 * Otherwise the line may be silently dropped. This has no impact 293 * except on performance. 294 */ 295 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe) 296 { 297 if (unlikely(cbe)) { 298 cbe->cbrexecstatus = 0; /* make CL dirty */ 299 gru_flush_cache(cbe); 300 } 301 } 302 303 /* 304 * Preload the TLB with entries that may be required. Currently, preloading 305 * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to 306 * the end of the bcopy tranfer, whichever is smaller. 307 */ 308 static void gru_preload_tlb(struct gru_state *gru, 309 struct gru_thread_state *gts, int atomic, 310 unsigned long fault_vaddr, int asid, int write, 311 unsigned char tlb_preload_count, 312 struct gru_tlb_fault_handle *tfh, 313 struct gru_control_block_extended *cbe) 314 { 315 unsigned long vaddr = 0, gpa; 316 int ret, pageshift; 317 318 if (cbe->opccpy != OP_BCOPY) 319 return; 320 321 if (fault_vaddr == cbe->cbe_baddr0) 322 vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1; 323 else if (fault_vaddr == cbe->cbe_baddr1) 324 vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1; 325 326 fault_vaddr &= PAGE_MASK; 327 vaddr &= PAGE_MASK; 328 vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE); 329 330 while (vaddr > fault_vaddr) { 331 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 332 if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write, 333 GRU_PAGESIZE(pageshift))) 334 return; 335 gru_dbg(grudev, 336 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n", 337 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, 338 vaddr, asid, write, pageshift, gpa); 339 vaddr -= PAGE_SIZE; 340 STAT(tlb_preload_page); 341 } 342 } 343 344 /* 345 * Drop a TLB entry into the GRU. The fault is described by info in an TFH. 346 * Input: 347 * cb Address of user CBR. Null if not running in user context 348 * Return: 349 * 0 = dropin, exception, or switch to UPM successful 350 * 1 = range invalidate active 351 * < 0 = error code 352 * 353 */ 354 static int gru_try_dropin(struct gru_state *gru, 355 struct gru_thread_state *gts, 356 struct gru_tlb_fault_handle *tfh, 357 struct gru_instruction_bits *cbk) 358 { 359 struct gru_control_block_extended *cbe = NULL; 360 unsigned char tlb_preload_count = gts->ts_tlb_preload_count; 361 int pageshift = 0, asid, write, ret, atomic = !cbk, indexway; 362 unsigned long gpa = 0, vaddr = 0; 363 364 /* 365 * NOTE: The GRU contains magic hardware that eliminates races between 366 * TLB invalidates and TLB dropins. If an invalidate occurs 367 * in the window between reading the TFH and the subsequent TLB dropin, 368 * the dropin is ignored. This eliminates the need for additional locks. 369 */ 370 371 /* 372 * Prefetch the CBE if doing TLB preloading 373 */ 374 if (unlikely(tlb_preload_count)) { 375 cbe = gru_tfh_to_cbe(tfh); 376 prefetchw(cbe); 377 } 378 379 /* 380 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call. 381 * Might be a hardware race OR a stupid user. Ignore FMM because FMM 382 * is a transient state. 383 */ 384 if (tfh->status != TFHSTATUS_EXCEPTION) { 385 gru_flush_cache(tfh); 386 sync_core(); 387 if (tfh->status != TFHSTATUS_EXCEPTION) 388 goto failnoexception; 389 STAT(tfh_stale_on_fault); 390 } 391 if (tfh->state == TFHSTATE_IDLE) 392 goto failidle; 393 if (tfh->state == TFHSTATE_MISS_FMM && cbk) 394 goto failfmm; 395 396 write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0; 397 vaddr = tfh->missvaddr; 398 asid = tfh->missasid; 399 indexway = tfh->indexway; 400 if (asid == 0) 401 goto failnoasid; 402 403 rmb(); /* TFH must be cache resident before reading ms_range_active */ 404 405 /* 406 * TFH is cache resident - at least briefly. Fail the dropin 407 * if a range invalidate is active. 408 */ 409 if (atomic_read(>s->ts_gms->ms_range_active)) 410 goto failactive; 411 412 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 413 if (ret == VTOP_INVALID) 414 goto failinval; 415 if (ret == VTOP_RETRY) 416 goto failupm; 417 418 if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) { 419 gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift); 420 if (atomic || !gru_update_cch(gts)) { 421 gts->ts_force_cch_reload = 1; 422 goto failupm; 423 } 424 } 425 426 if (unlikely(cbe) && pageshift == PAGE_SHIFT) { 427 gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe); 428 gru_flush_cache_cbe(cbe); 429 } 430 431 gru_cb_set_istatus_active(cbk); 432 gts->ustats.tlbdropin++; 433 tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write, 434 GRU_PAGESIZE(pageshift)); 435 gru_dbg(grudev, 436 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x," 437 " rw %d, ps %d, gpa 0x%lx\n", 438 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid, 439 indexway, write, pageshift, gpa); 440 STAT(tlb_dropin); 441 return 0; 442 443 failnoasid: 444 /* No asid (delayed unload). */ 445 STAT(tlb_dropin_fail_no_asid); 446 gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 447 if (!cbk) 448 tfh_user_polling_mode(tfh); 449 else 450 gru_flush_cache(tfh); 451 gru_flush_cache_cbe(cbe); 452 return -EAGAIN; 453 454 failupm: 455 /* Atomic failure switch CBR to UPM */ 456 tfh_user_polling_mode(tfh); 457 gru_flush_cache_cbe(cbe); 458 STAT(tlb_dropin_fail_upm); 459 gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 460 return 1; 461 462 failfmm: 463 /* FMM state on UPM call */ 464 gru_flush_cache(tfh); 465 gru_flush_cache_cbe(cbe); 466 STAT(tlb_dropin_fail_fmm); 467 gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state); 468 return 0; 469 470 failnoexception: 471 /* TFH status did not show exception pending */ 472 gru_flush_cache(tfh); 473 gru_flush_cache_cbe(cbe); 474 if (cbk) 475 gru_flush_cache(cbk); 476 STAT(tlb_dropin_fail_no_exception); 477 gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n", 478 tfh, tfh->status, tfh->state); 479 return 0; 480 481 failidle: 482 /* TFH state was idle - no miss pending */ 483 gru_flush_cache(tfh); 484 gru_flush_cache_cbe(cbe); 485 if (cbk) 486 gru_flush_cache(cbk); 487 STAT(tlb_dropin_fail_idle); 488 gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state); 489 return 0; 490 491 failinval: 492 /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */ 493 tfh_exception(tfh); 494 gru_flush_cache_cbe(cbe); 495 STAT(tlb_dropin_fail_invalid); 496 gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 497 return -EFAULT; 498 499 failactive: 500 /* Range invalidate active. Switch to UPM iff atomic */ 501 if (!cbk) 502 tfh_user_polling_mode(tfh); 503 else 504 gru_flush_cache(tfh); 505 gru_flush_cache_cbe(cbe); 506 STAT(tlb_dropin_fail_range_active); 507 gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n", 508 tfh, vaddr); 509 return 1; 510 } 511 512 /* 513 * Process an external interrupt from the GRU. This interrupt is 514 * caused by a TLB miss. 515 * Note that this is the interrupt handler that is registered with linux 516 * interrupt handlers. 517 */ 518 static irqreturn_t gru_intr(int chiplet, int blade) 519 { 520 struct gru_state *gru; 521 struct gru_tlb_fault_map imap, dmap; 522 struct gru_thread_state *gts; 523 struct gru_tlb_fault_handle *tfh = NULL; 524 struct completion *cmp; 525 int cbrnum, ctxnum; 526 527 STAT(intr); 528 529 gru = &gru_base[blade]->bs_grus[chiplet]; 530 if (!gru) { 531 dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n", 532 raw_smp_processor_id(), chiplet); 533 return IRQ_NONE; 534 } 535 get_clear_fault_map(gru, &imap, &dmap); 536 gru_dbg(grudev, 537 "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n", 538 smp_processor_id(), chiplet, gru->gs_gid, 539 imap.fault_bits[0], imap.fault_bits[1], 540 dmap.fault_bits[0], dmap.fault_bits[1]); 541 542 for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) { 543 STAT(intr_cbr); 544 cmp = gru->gs_blade->bs_async_wq; 545 if (cmp) 546 complete(cmp); 547 gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n", 548 gru->gs_gid, cbrnum, cmp ? cmp->done : -1); 549 } 550 551 for_each_cbr_in_tfm(cbrnum, imap.fault_bits) { 552 STAT(intr_tfh); 553 tfh = get_tfh_by_index(gru, cbrnum); 554 prefetchw(tfh); /* Helps on hdw, required for emulator */ 555 556 /* 557 * When hardware sets a bit in the faultmap, it implicitly 558 * locks the GRU context so that it cannot be unloaded. 559 * The gts cannot change until a TFH start/writestart command 560 * is issued. 561 */ 562 ctxnum = tfh->ctxnum; 563 gts = gru->gs_gts[ctxnum]; 564 565 /* Spurious interrupts can cause this. Ignore. */ 566 if (!gts) { 567 STAT(intr_spurious); 568 continue; 569 } 570 571 /* 572 * This is running in interrupt context. Trylock the mmap_lock. 573 * If it fails, retry the fault in user context. 574 */ 575 gts->ustats.fmm_tlbmiss++; 576 if (!gts->ts_force_cch_reload && 577 mmap_read_trylock(gts->ts_mm)) { 578 gru_try_dropin(gru, gts, tfh, NULL); 579 mmap_read_unlock(gts->ts_mm); 580 } else { 581 tfh_user_polling_mode(tfh); 582 STAT(intr_mm_lock_failed); 583 } 584 } 585 return IRQ_HANDLED; 586 } 587 588 irqreturn_t gru0_intr(int irq, void *dev_id) 589 { 590 return gru_intr(0, uv_numa_blade_id()); 591 } 592 593 irqreturn_t gru1_intr(int irq, void *dev_id) 594 { 595 return gru_intr(1, uv_numa_blade_id()); 596 } 597 598 irqreturn_t gru_intr_mblade(int irq, void *dev_id) 599 { 600 int blade; 601 602 for_each_possible_blade(blade) { 603 if (uv_blade_nr_possible_cpus(blade)) 604 continue; 605 gru_intr(0, blade); 606 gru_intr(1, blade); 607 } 608 return IRQ_HANDLED; 609 } 610 611 612 static int gru_user_dropin(struct gru_thread_state *gts, 613 struct gru_tlb_fault_handle *tfh, 614 void *cb) 615 { 616 struct gru_mm_struct *gms = gts->ts_gms; 617 int ret; 618 619 gts->ustats.upm_tlbmiss++; 620 while (1) { 621 wait_event(gms->ms_wait_queue, 622 atomic_read(&gms->ms_range_active) == 0); 623 prefetchw(tfh); /* Helps on hdw, required for emulator */ 624 ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb); 625 if (ret <= 0) 626 return ret; 627 STAT(call_os_wait_queue); 628 } 629 } 630 631 /* 632 * This interface is called as a result of a user detecting a "call OS" bit 633 * in a user CB. Normally means that a TLB fault has occurred. 634 * cb - user virtual address of the CB 635 */ 636 int gru_handle_user_call_os(unsigned long cb) 637 { 638 struct gru_tlb_fault_handle *tfh; 639 struct gru_thread_state *gts; 640 void *cbk; 641 int ucbnum, cbrnum, ret = -EINVAL; 642 643 STAT(call_os); 644 645 /* sanity check the cb pointer */ 646 ucbnum = get_cb_number((void *)cb); 647 if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB) 648 return -EINVAL; 649 650 gts = gru_find_lock_gts(cb); 651 if (!gts) 652 return -EINVAL; 653 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 654 655 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) 656 goto exit; 657 658 gru_check_context_placement(gts); 659 660 /* 661 * CCH may contain stale data if ts_force_cch_reload is set. 662 */ 663 if (gts->ts_gru && gts->ts_force_cch_reload) { 664 gts->ts_force_cch_reload = 0; 665 gru_update_cch(gts); 666 } 667 668 ret = -EAGAIN; 669 cbrnum = thread_cbr_number(gts, ucbnum); 670 if (gts->ts_gru) { 671 tfh = get_tfh_by_index(gts->ts_gru, cbrnum); 672 cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr, 673 gts->ts_ctxnum, ucbnum); 674 ret = gru_user_dropin(gts, tfh, cbk); 675 } 676 exit: 677 gru_unlock_gts(gts); 678 return ret; 679 } 680 681 /* 682 * Fetch the exception detail information for a CB that terminated with 683 * an exception. 684 */ 685 int gru_get_exception_detail(unsigned long arg) 686 { 687 struct control_block_extended_exc_detail excdet; 688 struct gru_control_block_extended *cbe; 689 struct gru_thread_state *gts; 690 int ucbnum, cbrnum, ret; 691 692 STAT(user_exception); 693 if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet))) 694 return -EFAULT; 695 696 gts = gru_find_lock_gts(excdet.cb); 697 if (!gts) 698 return -EINVAL; 699 700 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 701 ucbnum = get_cb_number((void *)excdet.cb); 702 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) { 703 ret = -EINVAL; 704 } else if (gts->ts_gru) { 705 cbrnum = thread_cbr_number(gts, ucbnum); 706 cbe = get_cbe_by_index(gts->ts_gru, cbrnum); 707 gru_flush_cache(cbe); /* CBE not coherent */ 708 sync_core(); /* make sure we are have current data */ 709 excdet.opc = cbe->opccpy; 710 excdet.exopc = cbe->exopccpy; 711 excdet.ecause = cbe->ecause; 712 excdet.exceptdet0 = cbe->idef1upd; 713 excdet.exceptdet1 = cbe->idef3upd; 714 excdet.cbrstate = cbe->cbrstate; 715 excdet.cbrexecstatus = cbe->cbrexecstatus; 716 gru_flush_cache_cbe(cbe); 717 ret = 0; 718 } else { 719 ret = -EAGAIN; 720 } 721 gru_unlock_gts(gts); 722 723 gru_dbg(grudev, 724 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, " 725 "exdet0 0x%lx, exdet1 0x%x\n", 726 excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus, 727 excdet.ecause, excdet.exceptdet0, excdet.exceptdet1); 728 if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet))) 729 ret = -EFAULT; 730 return ret; 731 } 732 733 /* 734 * User request to unload a context. Content is saved for possible reload. 735 */ 736 static int gru_unload_all_contexts(void) 737 { 738 struct gru_thread_state *gts; 739 struct gru_state *gru; 740 int gid, ctxnum; 741 742 if (!capable(CAP_SYS_ADMIN)) 743 return -EPERM; 744 foreach_gid(gid) { 745 gru = GID_TO_GRU(gid); 746 spin_lock(&gru->gs_lock); 747 for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) { 748 gts = gru->gs_gts[ctxnum]; 749 if (gts && mutex_trylock(>s->ts_ctxlock)) { 750 spin_unlock(&gru->gs_lock); 751 gru_unload_context(gts, 1); 752 mutex_unlock(>s->ts_ctxlock); 753 spin_lock(&gru->gs_lock); 754 } 755 } 756 spin_unlock(&gru->gs_lock); 757 } 758 return 0; 759 } 760 761 int gru_user_unload_context(unsigned long arg) 762 { 763 struct gru_thread_state *gts; 764 struct gru_unload_context_req req; 765 766 STAT(user_unload_context); 767 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 768 return -EFAULT; 769 770 gru_dbg(grudev, "gseg 0x%lx\n", req.gseg); 771 772 if (!req.gseg) 773 return gru_unload_all_contexts(); 774 775 gts = gru_find_lock_gts(req.gseg); 776 if (!gts) 777 return -EINVAL; 778 779 if (gts->ts_gru) 780 gru_unload_context(gts, 1); 781 gru_unlock_gts(gts); 782 783 return 0; 784 } 785 786 /* 787 * User request to flush a range of virtual addresses from the GRU TLB 788 * (Mainly for testing). 789 */ 790 int gru_user_flush_tlb(unsigned long arg) 791 { 792 struct gru_thread_state *gts; 793 struct gru_flush_tlb_req req; 794 struct gru_mm_struct *gms; 795 796 STAT(user_flush_tlb); 797 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 798 return -EFAULT; 799 800 gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg, 801 req.vaddr, req.len); 802 803 gts = gru_find_lock_gts(req.gseg); 804 if (!gts) 805 return -EINVAL; 806 807 gms = gts->ts_gms; 808 gru_unlock_gts(gts); 809 gru_flush_tlb_range(gms, req.vaddr, req.len); 810 811 return 0; 812 } 813 814 /* 815 * Fetch GSEG statisticss 816 */ 817 long gru_get_gseg_statistics(unsigned long arg) 818 { 819 struct gru_thread_state *gts; 820 struct gru_get_gseg_statistics_req req; 821 822 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 823 return -EFAULT; 824 825 /* 826 * The library creates arrays of contexts for threaded programs. 827 * If no gts exists in the array, the context has never been used & all 828 * statistics are implicitly 0. 829 */ 830 gts = gru_find_lock_gts(req.gseg); 831 if (gts) { 832 memcpy(&req.stats, >s->ustats, sizeof(gts->ustats)); 833 gru_unlock_gts(gts); 834 } else { 835 memset(&req.stats, 0, sizeof(gts->ustats)); 836 } 837 838 if (copy_to_user((void __user *)arg, &req, sizeof(req))) 839 return -EFAULT; 840 841 return 0; 842 } 843 844 /* 845 * Register the current task as the user of the GSEG slice. 846 * Needed for TLB fault interrupt targeting. 847 */ 848 int gru_set_context_option(unsigned long arg) 849 { 850 struct gru_thread_state *gts; 851 struct gru_set_context_option_req req; 852 int ret = 0; 853 854 STAT(set_context_option); 855 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 856 return -EFAULT; 857 gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1); 858 859 gts = gru_find_lock_gts(req.gseg); 860 if (!gts) { 861 gts = gru_alloc_locked_gts(req.gseg); 862 if (IS_ERR(gts)) 863 return PTR_ERR(gts); 864 } 865 866 switch (req.op) { 867 case sco_blade_chiplet: 868 /* Select blade/chiplet for GRU context */ 869 if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB || 870 req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || 871 (req.val1 >= 0 && !gru_base[req.val1])) { 872 ret = -EINVAL; 873 } else { 874 gts->ts_user_blade_id = req.val1; 875 gts->ts_user_chiplet_id = req.val0; 876 gru_check_context_placement(gts); 877 } 878 break; 879 case sco_gseg_owner: 880 /* Register the current task as the GSEG owner */ 881 gts->ts_tgid_owner = current->tgid; 882 break; 883 case sco_cch_req_slice: 884 /* Set the CCH slice option */ 885 gts->ts_cch_req_slice = req.val1 & 3; 886 break; 887 default: 888 ret = -EINVAL; 889 } 890 gru_unlock_gts(gts); 891 892 return ret; 893 } 894