xref: /openbmc/linux/drivers/misc/sgi-gru/grufault.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SN Platform GRU Driver
4  *
5  *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
6  *
7  * This file contains code that handles TLB misses within the GRU.
8  * These misses are reported either via interrupts or user polling of
9  * the user CB.
10  *
11  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/errno.h>
16 #include <linux/spinlock.h>
17 #include <linux/mm.h>
18 #include <linux/hugetlb.h>
19 #include <linux/device.h>
20 #include <linux/io.h>
21 #include <linux/uaccess.h>
22 #include <linux/security.h>
23 #include <linux/prefetch.h>
24 #include "gru.h"
25 #include "grutables.h"
26 #include "grulib.h"
27 #include "gru_instructions.h"
28 #include <asm/uv/uv_hub.h>
29 
30 /* Return codes for vtop functions */
31 #define VTOP_SUCCESS               0
32 #define VTOP_INVALID               -1
33 #define VTOP_RETRY                 -2
34 
35 
36 /*
37  * Test if a physical address is a valid GRU GSEG address
38  */
39 static inline int is_gru_paddr(unsigned long paddr)
40 {
41 	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
42 }
43 
44 /*
45  * Find the vma of a GRU segment. Caller must hold mmap_lock.
46  */
47 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
48 {
49 	struct vm_area_struct *vma;
50 
51 	vma = find_vma(current->mm, vaddr);
52 	if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
53 		return vma;
54 	return NULL;
55 }
56 
57 /*
58  * Find and lock the gts that contains the specified user vaddr.
59  *
60  * Returns:
61  * 	- *gts with the mmap_lock locked for read and the GTS locked.
62  *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
63  */
64 
65 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
66 {
67 	struct mm_struct *mm = current->mm;
68 	struct vm_area_struct *vma;
69 	struct gru_thread_state *gts = NULL;
70 
71 	mmap_read_lock(mm);
72 	vma = gru_find_vma(vaddr);
73 	if (vma)
74 		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
75 	if (gts)
76 		mutex_lock(&gts->ts_ctxlock);
77 	else
78 		mmap_read_unlock(mm);
79 	return gts;
80 }
81 
82 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
83 {
84 	struct mm_struct *mm = current->mm;
85 	struct vm_area_struct *vma;
86 	struct gru_thread_state *gts = ERR_PTR(-EINVAL);
87 
88 	mmap_write_lock(mm);
89 	vma = gru_find_vma(vaddr);
90 	if (!vma)
91 		goto err;
92 
93 	gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
94 	if (IS_ERR(gts))
95 		goto err;
96 	mutex_lock(&gts->ts_ctxlock);
97 	mmap_write_downgrade(mm);
98 	return gts;
99 
100 err:
101 	mmap_write_unlock(mm);
102 	return gts;
103 }
104 
105 /*
106  * Unlock a GTS that was previously locked with gru_find_lock_gts().
107  */
108 static void gru_unlock_gts(struct gru_thread_state *gts)
109 {
110 	mutex_unlock(&gts->ts_ctxlock);
111 	mmap_read_unlock(current->mm);
112 }
113 
114 /*
115  * Set a CB.istatus to active using a user virtual address. This must be done
116  * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
117  * If the line is evicted, the status may be lost. The in-cache update
118  * is necessary to prevent the user from seeing a stale cb.istatus that will
119  * change as soon as the TFH restart is complete. Races may cause an
120  * occasional failure to clear the cb.istatus, but that is ok.
121  */
122 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
123 {
124 	if (cbk) {
125 		cbk->istatus = CBS_ACTIVE;
126 	}
127 }
128 
129 /*
130  * Read & clear a TFM
131  *
132  * The GRU has an array of fault maps. A map is private to a cpu
133  * Only one cpu will be accessing a cpu's fault map.
134  *
135  * This function scans the cpu-private fault map & clears all bits that
136  * are set. The function returns a bitmap that indicates the bits that
137  * were cleared. Note that sense the maps may be updated asynchronously by
138  * the GRU, atomic operations must be used to clear bits.
139  */
140 static void get_clear_fault_map(struct gru_state *gru,
141 				struct gru_tlb_fault_map *imap,
142 				struct gru_tlb_fault_map *dmap)
143 {
144 	unsigned long i, k;
145 	struct gru_tlb_fault_map *tfm;
146 
147 	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
148 	prefetchw(tfm);		/* Helps on hardware, required for emulator */
149 	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
150 		k = tfm->fault_bits[i];
151 		if (k)
152 			k = xchg(&tfm->fault_bits[i], 0UL);
153 		imap->fault_bits[i] = k;
154 		k = tfm->done_bits[i];
155 		if (k)
156 			k = xchg(&tfm->done_bits[i], 0UL);
157 		dmap->fault_bits[i] = k;
158 	}
159 
160 	/*
161 	 * Not functionally required but helps performance. (Required
162 	 * on emulator)
163 	 */
164 	gru_flush_cache(tfm);
165 }
166 
167 /*
168  * Atomic (interrupt context) & non-atomic (user context) functions to
169  * convert a vaddr into a physical address. The size of the page
170  * is returned in pageshift.
171  * 	returns:
172  * 		  0 - successful
173  * 		< 0 - error code
174  * 		  1 - (atomic only) try again in non-atomic context
175  */
176 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
177 				 unsigned long vaddr, int write,
178 				 unsigned long *paddr, int *pageshift)
179 {
180 	struct page *page;
181 
182 #ifdef CONFIG_HUGETLB_PAGE
183 	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
184 #else
185 	*pageshift = PAGE_SHIFT;
186 #endif
187 	if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page, NULL) <= 0)
188 		return -EFAULT;
189 	*paddr = page_to_phys(page);
190 	put_page(page);
191 	return 0;
192 }
193 
194 /*
195  * atomic_pte_lookup
196  *
197  * Convert a user virtual address to a physical address
198  * Only supports Intel large pages (2MB only) on x86_64.
199  *	ZZZ - hugepage support is incomplete
200  *
201  * NOTE: mmap_lock is already held on entry to this function. This
202  * guarantees existence of the page tables.
203  */
204 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
205 	int write, unsigned long *paddr, int *pageshift)
206 {
207 	pgd_t *pgdp;
208 	p4d_t *p4dp;
209 	pud_t *pudp;
210 	pmd_t *pmdp;
211 	pte_t pte;
212 
213 	pgdp = pgd_offset(vma->vm_mm, vaddr);
214 	if (unlikely(pgd_none(*pgdp)))
215 		goto err;
216 
217 	p4dp = p4d_offset(pgdp, vaddr);
218 	if (unlikely(p4d_none(*p4dp)))
219 		goto err;
220 
221 	pudp = pud_offset(p4dp, vaddr);
222 	if (unlikely(pud_none(*pudp)))
223 		goto err;
224 
225 	pmdp = pmd_offset(pudp, vaddr);
226 	if (unlikely(pmd_none(*pmdp)))
227 		goto err;
228 #ifdef CONFIG_X86_64
229 	if (unlikely(pmd_large(*pmdp)))
230 		pte = *(pte_t *) pmdp;
231 	else
232 #endif
233 		pte = *pte_offset_kernel(pmdp, vaddr);
234 
235 	if (unlikely(!pte_present(pte) ||
236 		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
237 		return 1;
238 
239 	*paddr = pte_pfn(pte) << PAGE_SHIFT;
240 #ifdef CONFIG_HUGETLB_PAGE
241 	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
242 #else
243 	*pageshift = PAGE_SHIFT;
244 #endif
245 	return 0;
246 
247 err:
248 	return 1;
249 }
250 
251 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
252 		    int write, int atomic, unsigned long *gpa, int *pageshift)
253 {
254 	struct mm_struct *mm = gts->ts_mm;
255 	struct vm_area_struct *vma;
256 	unsigned long paddr;
257 	int ret, ps;
258 
259 	vma = find_vma(mm, vaddr);
260 	if (!vma)
261 		goto inval;
262 
263 	/*
264 	 * Atomic lookup is faster & usually works even if called in non-atomic
265 	 * context.
266 	 */
267 	rmb();	/* Must/check ms_range_active before loading PTEs */
268 	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
269 	if (ret) {
270 		if (atomic)
271 			goto upm;
272 		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
273 			goto inval;
274 	}
275 	if (is_gru_paddr(paddr))
276 		goto inval;
277 	paddr = paddr & ~((1UL << ps) - 1);
278 	*gpa = uv_soc_phys_ram_to_gpa(paddr);
279 	*pageshift = ps;
280 	return VTOP_SUCCESS;
281 
282 inval:
283 	return VTOP_INVALID;
284 upm:
285 	return VTOP_RETRY;
286 }
287 
288 
289 /*
290  * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
291  * CBE cacheline so that the line will be written back to home agent.
292  * Otherwise the line may be silently dropped. This has no impact
293  * except on performance.
294  */
295 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
296 {
297 	if (unlikely(cbe)) {
298 		cbe->cbrexecstatus = 0;         /* make CL dirty */
299 		gru_flush_cache(cbe);
300 	}
301 }
302 
303 /*
304  * Preload the TLB with entries that may be required. Currently, preloading
305  * is implemented only for BCOPY. Preload  <tlb_preload_count> pages OR to
306  * the end of the bcopy tranfer, whichever is smaller.
307  */
308 static void gru_preload_tlb(struct gru_state *gru,
309 			struct gru_thread_state *gts, int atomic,
310 			unsigned long fault_vaddr, int asid, int write,
311 			unsigned char tlb_preload_count,
312 			struct gru_tlb_fault_handle *tfh,
313 			struct gru_control_block_extended *cbe)
314 {
315 	unsigned long vaddr = 0, gpa;
316 	int ret, pageshift;
317 
318 	if (cbe->opccpy != OP_BCOPY)
319 		return;
320 
321 	if (fault_vaddr == cbe->cbe_baddr0)
322 		vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
323 	else if (fault_vaddr == cbe->cbe_baddr1)
324 		vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
325 
326 	fault_vaddr &= PAGE_MASK;
327 	vaddr &= PAGE_MASK;
328 	vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
329 
330 	while (vaddr > fault_vaddr) {
331 		ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
332 		if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
333 					  GRU_PAGESIZE(pageshift)))
334 			return;
335 		gru_dbg(grudev,
336 			"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
337 			atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
338 			vaddr, asid, write, pageshift, gpa);
339 		vaddr -= PAGE_SIZE;
340 		STAT(tlb_preload_page);
341 	}
342 }
343 
344 /*
345  * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
346  *	Input:
347  *		cb    Address of user CBR. Null if not running in user context
348  * 	Return:
349  * 		  0 = dropin, exception, or switch to UPM successful
350  * 		  1 = range invalidate active
351  * 		< 0 = error code
352  *
353  */
354 static int gru_try_dropin(struct gru_state *gru,
355 			  struct gru_thread_state *gts,
356 			  struct gru_tlb_fault_handle *tfh,
357 			  struct gru_instruction_bits *cbk)
358 {
359 	struct gru_control_block_extended *cbe = NULL;
360 	unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
361 	int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
362 	unsigned long gpa = 0, vaddr = 0;
363 
364 	/*
365 	 * NOTE: The GRU contains magic hardware that eliminates races between
366 	 * TLB invalidates and TLB dropins. If an invalidate occurs
367 	 * in the window between reading the TFH and the subsequent TLB dropin,
368 	 * the dropin is ignored. This eliminates the need for additional locks.
369 	 */
370 
371 	/*
372 	 * Prefetch the CBE if doing TLB preloading
373 	 */
374 	if (unlikely(tlb_preload_count)) {
375 		cbe = gru_tfh_to_cbe(tfh);
376 		prefetchw(cbe);
377 	}
378 
379 	/*
380 	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
381 	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
382 	 * is a transient state.
383 	 */
384 	if (tfh->status != TFHSTATUS_EXCEPTION) {
385 		gru_flush_cache(tfh);
386 		sync_core();
387 		if (tfh->status != TFHSTATUS_EXCEPTION)
388 			goto failnoexception;
389 		STAT(tfh_stale_on_fault);
390 	}
391 	if (tfh->state == TFHSTATE_IDLE)
392 		goto failidle;
393 	if (tfh->state == TFHSTATE_MISS_FMM && cbk)
394 		goto failfmm;
395 
396 	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
397 	vaddr = tfh->missvaddr;
398 	asid = tfh->missasid;
399 	indexway = tfh->indexway;
400 	if (asid == 0)
401 		goto failnoasid;
402 
403 	rmb();	/* TFH must be cache resident before reading ms_range_active */
404 
405 	/*
406 	 * TFH is cache resident - at least briefly. Fail the dropin
407 	 * if a range invalidate is active.
408 	 */
409 	if (atomic_read(&gts->ts_gms->ms_range_active))
410 		goto failactive;
411 
412 	ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
413 	if (ret == VTOP_INVALID)
414 		goto failinval;
415 	if (ret == VTOP_RETRY)
416 		goto failupm;
417 
418 	if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
419 		gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
420 		if (atomic || !gru_update_cch(gts)) {
421 			gts->ts_force_cch_reload = 1;
422 			goto failupm;
423 		}
424 	}
425 
426 	if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
427 		gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
428 		gru_flush_cache_cbe(cbe);
429 	}
430 
431 	gru_cb_set_istatus_active(cbk);
432 	gts->ustats.tlbdropin++;
433 	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
434 			  GRU_PAGESIZE(pageshift));
435 	gru_dbg(grudev,
436 		"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
437 		" rw %d, ps %d, gpa 0x%lx\n",
438 		atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
439 		indexway, write, pageshift, gpa);
440 	STAT(tlb_dropin);
441 	return 0;
442 
443 failnoasid:
444 	/* No asid (delayed unload). */
445 	STAT(tlb_dropin_fail_no_asid);
446 	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
447 	if (!cbk)
448 		tfh_user_polling_mode(tfh);
449 	else
450 		gru_flush_cache(tfh);
451 	gru_flush_cache_cbe(cbe);
452 	return -EAGAIN;
453 
454 failupm:
455 	/* Atomic failure switch CBR to UPM */
456 	tfh_user_polling_mode(tfh);
457 	gru_flush_cache_cbe(cbe);
458 	STAT(tlb_dropin_fail_upm);
459 	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
460 	return 1;
461 
462 failfmm:
463 	/* FMM state on UPM call */
464 	gru_flush_cache(tfh);
465 	gru_flush_cache_cbe(cbe);
466 	STAT(tlb_dropin_fail_fmm);
467 	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
468 	return 0;
469 
470 failnoexception:
471 	/* TFH status did not show exception pending */
472 	gru_flush_cache(tfh);
473 	gru_flush_cache_cbe(cbe);
474 	if (cbk)
475 		gru_flush_cache(cbk);
476 	STAT(tlb_dropin_fail_no_exception);
477 	gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
478 		tfh, tfh->status, tfh->state);
479 	return 0;
480 
481 failidle:
482 	/* TFH state was idle  - no miss pending */
483 	gru_flush_cache(tfh);
484 	gru_flush_cache_cbe(cbe);
485 	if (cbk)
486 		gru_flush_cache(cbk);
487 	STAT(tlb_dropin_fail_idle);
488 	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
489 	return 0;
490 
491 failinval:
492 	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
493 	tfh_exception(tfh);
494 	gru_flush_cache_cbe(cbe);
495 	STAT(tlb_dropin_fail_invalid);
496 	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
497 	return -EFAULT;
498 
499 failactive:
500 	/* Range invalidate active. Switch to UPM iff atomic */
501 	if (!cbk)
502 		tfh_user_polling_mode(tfh);
503 	else
504 		gru_flush_cache(tfh);
505 	gru_flush_cache_cbe(cbe);
506 	STAT(tlb_dropin_fail_range_active);
507 	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
508 		tfh, vaddr);
509 	return 1;
510 }
511 
512 /*
513  * Process an external interrupt from the GRU. This interrupt is
514  * caused by a TLB miss.
515  * Note that this is the interrupt handler that is registered with linux
516  * interrupt handlers.
517  */
518 static irqreturn_t gru_intr(int chiplet, int blade)
519 {
520 	struct gru_state *gru;
521 	struct gru_tlb_fault_map imap, dmap;
522 	struct gru_thread_state *gts;
523 	struct gru_tlb_fault_handle *tfh = NULL;
524 	struct completion *cmp;
525 	int cbrnum, ctxnum;
526 
527 	STAT(intr);
528 
529 	gru = &gru_base[blade]->bs_grus[chiplet];
530 	if (!gru) {
531 		dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
532 			raw_smp_processor_id(), chiplet);
533 		return IRQ_NONE;
534 	}
535 	get_clear_fault_map(gru, &imap, &dmap);
536 	gru_dbg(grudev,
537 		"cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
538 		smp_processor_id(), chiplet, gru->gs_gid,
539 		imap.fault_bits[0], imap.fault_bits[1],
540 		dmap.fault_bits[0], dmap.fault_bits[1]);
541 
542 	for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
543 		STAT(intr_cbr);
544 		cmp = gru->gs_blade->bs_async_wq;
545 		if (cmp)
546 			complete(cmp);
547 		gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
548 			gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
549 	}
550 
551 	for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
552 		STAT(intr_tfh);
553 		tfh = get_tfh_by_index(gru, cbrnum);
554 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
555 
556 		/*
557 		 * When hardware sets a bit in the faultmap, it implicitly
558 		 * locks the GRU context so that it cannot be unloaded.
559 		 * The gts cannot change until a TFH start/writestart command
560 		 * is issued.
561 		 */
562 		ctxnum = tfh->ctxnum;
563 		gts = gru->gs_gts[ctxnum];
564 
565 		/* Spurious interrupts can cause this. Ignore. */
566 		if (!gts) {
567 			STAT(intr_spurious);
568 			continue;
569 		}
570 
571 		/*
572 		 * This is running in interrupt context. Trylock the mmap_lock.
573 		 * If it fails, retry the fault in user context.
574 		 */
575 		gts->ustats.fmm_tlbmiss++;
576 		if (!gts->ts_force_cch_reload &&
577 					mmap_read_trylock(gts->ts_mm)) {
578 			gru_try_dropin(gru, gts, tfh, NULL);
579 			mmap_read_unlock(gts->ts_mm);
580 		} else {
581 			tfh_user_polling_mode(tfh);
582 			STAT(intr_mm_lock_failed);
583 		}
584 	}
585 	return IRQ_HANDLED;
586 }
587 
588 irqreturn_t gru0_intr(int irq, void *dev_id)
589 {
590 	return gru_intr(0, uv_numa_blade_id());
591 }
592 
593 irqreturn_t gru1_intr(int irq, void *dev_id)
594 {
595 	return gru_intr(1, uv_numa_blade_id());
596 }
597 
598 irqreturn_t gru_intr_mblade(int irq, void *dev_id)
599 {
600 	int blade;
601 
602 	for_each_possible_blade(blade) {
603 		if (uv_blade_nr_possible_cpus(blade))
604 			continue;
605 		gru_intr(0, blade);
606 		gru_intr(1, blade);
607 	}
608 	return IRQ_HANDLED;
609 }
610 
611 
612 static int gru_user_dropin(struct gru_thread_state *gts,
613 			   struct gru_tlb_fault_handle *tfh,
614 			   void *cb)
615 {
616 	struct gru_mm_struct *gms = gts->ts_gms;
617 	int ret;
618 
619 	gts->ustats.upm_tlbmiss++;
620 	while (1) {
621 		wait_event(gms->ms_wait_queue,
622 			   atomic_read(&gms->ms_range_active) == 0);
623 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
624 		ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
625 		if (ret <= 0)
626 			return ret;
627 		STAT(call_os_wait_queue);
628 	}
629 }
630 
631 /*
632  * This interface is called as a result of a user detecting a "call OS" bit
633  * in a user CB. Normally means that a TLB fault has occurred.
634  * 	cb - user virtual address of the CB
635  */
636 int gru_handle_user_call_os(unsigned long cb)
637 {
638 	struct gru_tlb_fault_handle *tfh;
639 	struct gru_thread_state *gts;
640 	void *cbk;
641 	int ucbnum, cbrnum, ret = -EINVAL;
642 
643 	STAT(call_os);
644 
645 	/* sanity check the cb pointer */
646 	ucbnum = get_cb_number((void *)cb);
647 	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
648 		return -EINVAL;
649 
650 	gts = gru_find_lock_gts(cb);
651 	if (!gts)
652 		return -EINVAL;
653 	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
654 
655 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
656 		goto exit;
657 
658 	gru_check_context_placement(gts);
659 
660 	/*
661 	 * CCH may contain stale data if ts_force_cch_reload is set.
662 	 */
663 	if (gts->ts_gru && gts->ts_force_cch_reload) {
664 		gts->ts_force_cch_reload = 0;
665 		gru_update_cch(gts);
666 	}
667 
668 	ret = -EAGAIN;
669 	cbrnum = thread_cbr_number(gts, ucbnum);
670 	if (gts->ts_gru) {
671 		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
672 		cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
673 				gts->ts_ctxnum, ucbnum);
674 		ret = gru_user_dropin(gts, tfh, cbk);
675 	}
676 exit:
677 	gru_unlock_gts(gts);
678 	return ret;
679 }
680 
681 /*
682  * Fetch the exception detail information for a CB that terminated with
683  * an exception.
684  */
685 int gru_get_exception_detail(unsigned long arg)
686 {
687 	struct control_block_extended_exc_detail excdet;
688 	struct gru_control_block_extended *cbe;
689 	struct gru_thread_state *gts;
690 	int ucbnum, cbrnum, ret;
691 
692 	STAT(user_exception);
693 	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
694 		return -EFAULT;
695 
696 	gts = gru_find_lock_gts(excdet.cb);
697 	if (!gts)
698 		return -EINVAL;
699 
700 	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
701 	ucbnum = get_cb_number((void *)excdet.cb);
702 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
703 		ret = -EINVAL;
704 	} else if (gts->ts_gru) {
705 		cbrnum = thread_cbr_number(gts, ucbnum);
706 		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
707 		gru_flush_cache(cbe);	/* CBE not coherent */
708 		sync_core();		/* make sure we are have current data */
709 		excdet.opc = cbe->opccpy;
710 		excdet.exopc = cbe->exopccpy;
711 		excdet.ecause = cbe->ecause;
712 		excdet.exceptdet0 = cbe->idef1upd;
713 		excdet.exceptdet1 = cbe->idef3upd;
714 		excdet.cbrstate = cbe->cbrstate;
715 		excdet.cbrexecstatus = cbe->cbrexecstatus;
716 		gru_flush_cache_cbe(cbe);
717 		ret = 0;
718 	} else {
719 		ret = -EAGAIN;
720 	}
721 	gru_unlock_gts(gts);
722 
723 	gru_dbg(grudev,
724 		"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
725 		"exdet0 0x%lx, exdet1 0x%x\n",
726 		excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
727 		excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
728 	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
729 		ret = -EFAULT;
730 	return ret;
731 }
732 
733 /*
734  * User request to unload a context. Content is saved for possible reload.
735  */
736 static int gru_unload_all_contexts(void)
737 {
738 	struct gru_thread_state *gts;
739 	struct gru_state *gru;
740 	int gid, ctxnum;
741 
742 	if (!capable(CAP_SYS_ADMIN))
743 		return -EPERM;
744 	foreach_gid(gid) {
745 		gru = GID_TO_GRU(gid);
746 		spin_lock(&gru->gs_lock);
747 		for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
748 			gts = gru->gs_gts[ctxnum];
749 			if (gts && mutex_trylock(&gts->ts_ctxlock)) {
750 				spin_unlock(&gru->gs_lock);
751 				gru_unload_context(gts, 1);
752 				mutex_unlock(&gts->ts_ctxlock);
753 				spin_lock(&gru->gs_lock);
754 			}
755 		}
756 		spin_unlock(&gru->gs_lock);
757 	}
758 	return 0;
759 }
760 
761 int gru_user_unload_context(unsigned long arg)
762 {
763 	struct gru_thread_state *gts;
764 	struct gru_unload_context_req req;
765 
766 	STAT(user_unload_context);
767 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
768 		return -EFAULT;
769 
770 	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
771 
772 	if (!req.gseg)
773 		return gru_unload_all_contexts();
774 
775 	gts = gru_find_lock_gts(req.gseg);
776 	if (!gts)
777 		return -EINVAL;
778 
779 	if (gts->ts_gru)
780 		gru_unload_context(gts, 1);
781 	gru_unlock_gts(gts);
782 
783 	return 0;
784 }
785 
786 /*
787  * User request to flush a range of virtual addresses from the GRU TLB
788  * (Mainly for testing).
789  */
790 int gru_user_flush_tlb(unsigned long arg)
791 {
792 	struct gru_thread_state *gts;
793 	struct gru_flush_tlb_req req;
794 	struct gru_mm_struct *gms;
795 
796 	STAT(user_flush_tlb);
797 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
798 		return -EFAULT;
799 
800 	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
801 		req.vaddr, req.len);
802 
803 	gts = gru_find_lock_gts(req.gseg);
804 	if (!gts)
805 		return -EINVAL;
806 
807 	gms = gts->ts_gms;
808 	gru_unlock_gts(gts);
809 	gru_flush_tlb_range(gms, req.vaddr, req.len);
810 
811 	return 0;
812 }
813 
814 /*
815  * Fetch GSEG statisticss
816  */
817 long gru_get_gseg_statistics(unsigned long arg)
818 {
819 	struct gru_thread_state *gts;
820 	struct gru_get_gseg_statistics_req req;
821 
822 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
823 		return -EFAULT;
824 
825 	/*
826 	 * The library creates arrays of contexts for threaded programs.
827 	 * If no gts exists in the array, the context has never been used & all
828 	 * statistics are implicitly 0.
829 	 */
830 	gts = gru_find_lock_gts(req.gseg);
831 	if (gts) {
832 		memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
833 		gru_unlock_gts(gts);
834 	} else {
835 		memset(&req.stats, 0, sizeof(gts->ustats));
836 	}
837 
838 	if (copy_to_user((void __user *)arg, &req, sizeof(req)))
839 		return -EFAULT;
840 
841 	return 0;
842 }
843 
844 /*
845  * Register the current task as the user of the GSEG slice.
846  * Needed for TLB fault interrupt targeting.
847  */
848 int gru_set_context_option(unsigned long arg)
849 {
850 	struct gru_thread_state *gts;
851 	struct gru_set_context_option_req req;
852 	int ret = 0;
853 
854 	STAT(set_context_option);
855 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
856 		return -EFAULT;
857 	gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
858 
859 	gts = gru_find_lock_gts(req.gseg);
860 	if (!gts) {
861 		gts = gru_alloc_locked_gts(req.gseg);
862 		if (IS_ERR(gts))
863 			return PTR_ERR(gts);
864 	}
865 
866 	switch (req.op) {
867 	case sco_blade_chiplet:
868 		/* Select blade/chiplet for GRU context */
869 		if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB ||
870 		    req.val1 < -1 || req.val1 >= GRU_MAX_BLADES ||
871 		    (req.val1 >= 0 && !gru_base[req.val1])) {
872 			ret = -EINVAL;
873 		} else {
874 			gts->ts_user_blade_id = req.val1;
875 			gts->ts_user_chiplet_id = req.val0;
876 			gru_check_context_placement(gts);
877 		}
878 		break;
879 	case sco_gseg_owner:
880  		/* Register the current task as the GSEG owner */
881 		gts->ts_tgid_owner = current->tgid;
882 		break;
883 	case sco_cch_req_slice:
884  		/* Set the CCH slice option */
885 		gts->ts_cch_req_slice = req.val1 & 3;
886 		break;
887 	default:
888 		ret = -EINVAL;
889 	}
890 	gru_unlock_gts(gts);
891 
892 	return ret;
893 }
894