xref: /openbmc/linux/drivers/misc/sgi-gru/grufault.c (revision 384740dc)
1 /*
2  * SN Platform GRU Driver
3  *
4  *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
5  *
6  * This file contains code that handles TLB misses within the GRU.
7  * These misses are reported either via interrupts or user polling of
8  * the user CB.
9  *
10  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/spinlock.h>
30 #include <linux/mm.h>
31 #include <linux/hugetlb.h>
32 #include <linux/device.h>
33 #include <linux/io.h>
34 #include <linux/uaccess.h>
35 #include <asm/pgtable.h>
36 #include "gru.h"
37 #include "grutables.h"
38 #include "grulib.h"
39 #include "gru_instructions.h"
40 #include <asm/uv/uv_hub.h>
41 
42 /*
43  * Test if a physical address is a valid GRU GSEG address
44  */
45 static inline int is_gru_paddr(unsigned long paddr)
46 {
47 	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
48 }
49 
50 /*
51  * Find the vma of a GRU segment. Caller must hold mmap_sem.
52  */
53 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
54 {
55 	struct vm_area_struct *vma;
56 
57 	vma = find_vma(current->mm, vaddr);
58 	if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
59 		return vma;
60 	return NULL;
61 }
62 
63 /*
64  * Find and lock the gts that contains the specified user vaddr.
65  *
66  * Returns:
67  * 	- *gts with the mmap_sem locked for read and the GTS locked.
68  *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
69  */
70 
71 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
72 {
73 	struct mm_struct *mm = current->mm;
74 	struct vm_area_struct *vma;
75 	struct gru_thread_state *gts = NULL;
76 
77 	down_read(&mm->mmap_sem);
78 	vma = gru_find_vma(vaddr);
79 	if (vma)
80 		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
81 	if (gts)
82 		mutex_lock(&gts->ts_ctxlock);
83 	else
84 		up_read(&mm->mmap_sem);
85 	return gts;
86 }
87 
88 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
89 {
90 	struct mm_struct *mm = current->mm;
91 	struct vm_area_struct *vma;
92 	struct gru_thread_state *gts = NULL;
93 
94 	down_write(&mm->mmap_sem);
95 	vma = gru_find_vma(vaddr);
96 	if (vma)
97 		gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
98 	if (gts) {
99 		mutex_lock(&gts->ts_ctxlock);
100 		downgrade_write(&mm->mmap_sem);
101 	} else {
102 		up_write(&mm->mmap_sem);
103 	}
104 
105 	return gts;
106 }
107 
108 /*
109  * Unlock a GTS that was previously locked with gru_find_lock_gts().
110  */
111 static void gru_unlock_gts(struct gru_thread_state *gts)
112 {
113 	mutex_unlock(&gts->ts_ctxlock);
114 	up_read(&current->mm->mmap_sem);
115 }
116 
117 /*
118  * Set a CB.istatus to active using a user virtual address. This must be done
119  * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
120  * If the line is evicted, the status may be lost. The in-cache update
121  * is necessary to prevent the user from seeing a stale cb.istatus that will
122  * change as soon as the TFH restart is complete. Races may cause an
123  * occasional failure to clear the cb.istatus, but that is ok.
124  *
125  * If the cb address is not valid (should not happen, but...), nothing
126  * bad will happen.. The get_user()/put_user() will fail but there
127  * are no bad side-effects.
128  */
129 static void gru_cb_set_istatus_active(unsigned long __user *cb)
130 {
131 	union {
132 		struct gru_instruction_bits bits;
133 		unsigned long dw;
134 	} u;
135 
136 	if (cb) {
137 		get_user(u.dw, cb);
138 		u.bits.istatus = CBS_ACTIVE;
139 		put_user(u.dw, cb);
140 	}
141 }
142 
143 /*
144  * Convert a interrupt IRQ to a pointer to the GRU GTS that caused the
145  * interrupt. Interrupts are always sent to a cpu on the blade that contains the
146  * GRU (except for headless blades which are not currently supported). A blade
147  * has N grus; a block of N consecutive IRQs is assigned to the GRUs. The IRQ
148  * number uniquely identifies the GRU chiplet on the local blade that caused the
149  * interrupt. Always called in interrupt context.
150  */
151 static inline struct gru_state *irq_to_gru(int irq)
152 {
153 	return &gru_base[uv_numa_blade_id()]->bs_grus[irq - IRQ_GRU];
154 }
155 
156 /*
157  * Read & clear a TFM
158  *
159  * The GRU has an array of fault maps. A map is private to a cpu
160  * Only one cpu will be accessing a cpu's fault map.
161  *
162  * This function scans the cpu-private fault map & clears all bits that
163  * are set. The function returns a bitmap that indicates the bits that
164  * were cleared. Note that sense the maps may be updated asynchronously by
165  * the GRU, atomic operations must be used to clear bits.
166  */
167 static void get_clear_fault_map(struct gru_state *gru,
168 				struct gru_tlb_fault_map *map)
169 {
170 	unsigned long i, k;
171 	struct gru_tlb_fault_map *tfm;
172 
173 	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
174 	prefetchw(tfm);		/* Helps on hardware, required for emulator */
175 	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
176 		k = tfm->fault_bits[i];
177 		if (k)
178 			k = xchg(&tfm->fault_bits[i], 0UL);
179 		map->fault_bits[i] = k;
180 	}
181 
182 	/*
183 	 * Not functionally required but helps performance. (Required
184 	 * on emulator)
185 	 */
186 	gru_flush_cache(tfm);
187 }
188 
189 /*
190  * Atomic (interrupt context) & non-atomic (user context) functions to
191  * convert a vaddr into a physical address. The size of the page
192  * is returned in pageshift.
193  * 	returns:
194  * 		  0 - successful
195  * 		< 0 - error code
196  * 		  1 - (atomic only) try again in non-atomic context
197  */
198 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
199 				 unsigned long vaddr, int write,
200 				 unsigned long *paddr, int *pageshift)
201 {
202 	struct page *page;
203 
204 	/* ZZZ Need to handle HUGE pages */
205 	if (is_vm_hugetlb_page(vma))
206 		return -EFAULT;
207 	*pageshift = PAGE_SHIFT;
208 	if (get_user_pages
209 	    (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
210 		return -EFAULT;
211 	*paddr = page_to_phys(page);
212 	put_page(page);
213 	return 0;
214 }
215 
216 /*
217  *
218  * atomic_pte_lookup
219  *
220  * Convert a user virtual address to a physical address
221  * Only supports Intel large pages (2MB only) on x86_64.
222  *	ZZZ - hugepage support is incomplete
223  */
224 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
225 	int write, unsigned long *paddr, int *pageshift)
226 {
227 	pgd_t *pgdp;
228 	pmd_t *pmdp;
229 	pud_t *pudp;
230 	pte_t pte;
231 
232 	WARN_ON(irqs_disabled());		/* ZZZ debug */
233 
234 	local_irq_disable();
235 	pgdp = pgd_offset(vma->vm_mm, vaddr);
236 	if (unlikely(pgd_none(*pgdp)))
237 		goto err;
238 
239 	pudp = pud_offset(pgdp, vaddr);
240 	if (unlikely(pud_none(*pudp)))
241 		goto err;
242 
243 	pmdp = pmd_offset(pudp, vaddr);
244 	if (unlikely(pmd_none(*pmdp)))
245 		goto err;
246 #ifdef CONFIG_X86_64
247 	if (unlikely(pmd_large(*pmdp)))
248 		pte = *(pte_t *) pmdp;
249 	else
250 #endif
251 		pte = *pte_offset_kernel(pmdp, vaddr);
252 
253 	local_irq_enable();
254 
255 	if (unlikely(!pte_present(pte) ||
256 		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
257 		return 1;
258 
259 	*paddr = pte_pfn(pte) << PAGE_SHIFT;
260 	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
261 	return 0;
262 
263 err:
264 	local_irq_enable();
265 	return 1;
266 }
267 
268 /*
269  * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
270  *	Input:
271  *		cb    Address of user CBR. Null if not running in user context
272  * 	Return:
273  * 		  0 = dropin, exception, or switch to UPM successful
274  * 		  1 = range invalidate active
275  * 		< 0 = error code
276  *
277  */
278 static int gru_try_dropin(struct gru_thread_state *gts,
279 			  struct gru_tlb_fault_handle *tfh,
280 			  unsigned long __user *cb)
281 {
282 	struct mm_struct *mm = gts->ts_mm;
283 	struct vm_area_struct *vma;
284 	int pageshift, asid, write, ret;
285 	unsigned long paddr, gpa, vaddr;
286 
287 	/*
288 	 * NOTE: The GRU contains magic hardware that eliminates races between
289 	 * TLB invalidates and TLB dropins. If an invalidate occurs
290 	 * in the window between reading the TFH and the subsequent TLB dropin,
291 	 * the dropin is ignored. This eliminates the need for additional locks.
292 	 */
293 
294 	/*
295 	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
296 	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
297 	 * is a transient state.
298 	 */
299 	if (tfh->state == TFHSTATE_IDLE)
300 		goto failidle;
301 	if (tfh->state == TFHSTATE_MISS_FMM && cb)
302 		goto failfmm;
303 
304 	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
305 	vaddr = tfh->missvaddr;
306 	asid = tfh->missasid;
307 	if (asid == 0)
308 		goto failnoasid;
309 
310 	rmb();	/* TFH must be cache resident before reading ms_range_active */
311 
312 	/*
313 	 * TFH is cache resident - at least briefly. Fail the dropin
314 	 * if a range invalidate is active.
315 	 */
316 	if (atomic_read(&gts->ts_gms->ms_range_active))
317 		goto failactive;
318 
319 	vma = find_vma(mm, vaddr);
320 	if (!vma)
321 		goto failinval;
322 
323 	/*
324 	 * Atomic lookup is faster & usually works even if called in non-atomic
325 	 * context.
326 	 */
327 	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &pageshift);
328 	if (ret) {
329 		if (!cb)
330 			goto failupm;
331 		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr,
332 					  &pageshift))
333 			goto failinval;
334 	}
335 	if (is_gru_paddr(paddr))
336 		goto failinval;
337 
338 	paddr = paddr & ~((1UL << pageshift) - 1);
339 	gpa = uv_soc_phys_ram_to_gpa(paddr);
340 	gru_cb_set_istatus_active(cb);
341 	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
342 			  GRU_PAGESIZE(pageshift));
343 	STAT(tlb_dropin);
344 	gru_dbg(grudev,
345 		"%s: tfh 0x%p, vaddr 0x%lx, asid 0x%x, ps %d, gpa 0x%lx\n",
346 		ret ? "non-atomic" : "atomic", tfh, vaddr, asid,
347 		pageshift, gpa);
348 	return 0;
349 
350 failnoasid:
351 	/* No asid (delayed unload). */
352 	STAT(tlb_dropin_fail_no_asid);
353 	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
354 	if (!cb)
355 		tfh_user_polling_mode(tfh);
356 	else
357 		gru_flush_cache(tfh);
358 	return -EAGAIN;
359 
360 failupm:
361 	/* Atomic failure switch CBR to UPM */
362 	tfh_user_polling_mode(tfh);
363 	STAT(tlb_dropin_fail_upm);
364 	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
365 	return 1;
366 
367 failfmm:
368 	/* FMM state on UPM call */
369 	STAT(tlb_dropin_fail_fmm);
370 	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
371 	return 0;
372 
373 failidle:
374 	/* TFH was idle  - no miss pending */
375 	gru_flush_cache(tfh);
376 	if (cb)
377 		gru_flush_cache(cb);
378 	STAT(tlb_dropin_fail_idle);
379 	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
380 	return 0;
381 
382 failinval:
383 	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
384 	tfh_exception(tfh);
385 	STAT(tlb_dropin_fail_invalid);
386 	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
387 	return -EFAULT;
388 
389 failactive:
390 	/* Range invalidate active. Switch to UPM iff atomic */
391 	if (!cb)
392 		tfh_user_polling_mode(tfh);
393 	else
394 		gru_flush_cache(tfh);
395 	STAT(tlb_dropin_fail_range_active);
396 	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
397 		tfh, vaddr);
398 	return 1;
399 }
400 
401 /*
402  * Process an external interrupt from the GRU. This interrupt is
403  * caused by a TLB miss.
404  * Note that this is the interrupt handler that is registered with linux
405  * interrupt handlers.
406  */
407 irqreturn_t gru_intr(int irq, void *dev_id)
408 {
409 	struct gru_state *gru;
410 	struct gru_tlb_fault_map map;
411 	struct gru_thread_state *gts;
412 	struct gru_tlb_fault_handle *tfh = NULL;
413 	int cbrnum, ctxnum;
414 
415 	STAT(intr);
416 
417 	gru = irq_to_gru(irq);
418 	if (!gru) {
419 		dev_err(grudev, "GRU: invalid interrupt: cpu %d, irq %d\n",
420 			raw_smp_processor_id(), irq);
421 		return IRQ_NONE;
422 	}
423 	get_clear_fault_map(gru, &map);
424 	gru_dbg(grudev, "irq %d, gru %x, map 0x%lx\n", irq, gru->gs_gid,
425 		map.fault_bits[0]);
426 
427 	for_each_cbr_in_tfm(cbrnum, map.fault_bits) {
428 		tfh = get_tfh_by_index(gru, cbrnum);
429 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
430 
431 		/*
432 		 * When hardware sets a bit in the faultmap, it implicitly
433 		 * locks the GRU context so that it cannot be unloaded.
434 		 * The gts cannot change until a TFH start/writestart command
435 		 * is issued.
436 		 */
437 		ctxnum = tfh->ctxnum;
438 		gts = gru->gs_gts[ctxnum];
439 
440 		/*
441 		 * This is running in interrupt context. Trylock the mmap_sem.
442 		 * If it fails, retry the fault in user context.
443 		 */
444 		if (down_read_trylock(&gts->ts_mm->mmap_sem)) {
445 			gru_try_dropin(gts, tfh, NULL);
446 			up_read(&gts->ts_mm->mmap_sem);
447 		} else {
448 			tfh_user_polling_mode(tfh);
449 		}
450 	}
451 	return IRQ_HANDLED;
452 }
453 
454 
455 static int gru_user_dropin(struct gru_thread_state *gts,
456 			   struct gru_tlb_fault_handle *tfh,
457 			   unsigned long __user *cb)
458 {
459 	struct gru_mm_struct *gms = gts->ts_gms;
460 	int ret;
461 
462 	while (1) {
463 		wait_event(gms->ms_wait_queue,
464 			   atomic_read(&gms->ms_range_active) == 0);
465 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
466 		ret = gru_try_dropin(gts, tfh, cb);
467 		if (ret <= 0)
468 			return ret;
469 		STAT(call_os_wait_queue);
470 	}
471 }
472 
473 /*
474  * This interface is called as a result of a user detecting a "call OS" bit
475  * in a user CB. Normally means that a TLB fault has occurred.
476  * 	cb - user virtual address of the CB
477  */
478 int gru_handle_user_call_os(unsigned long cb)
479 {
480 	struct gru_tlb_fault_handle *tfh;
481 	struct gru_thread_state *gts;
482 	unsigned long __user *cbp;
483 	int ucbnum, cbrnum, ret = -EINVAL;
484 
485 	STAT(call_os);
486 	gru_dbg(grudev, "address 0x%lx\n", cb);
487 
488 	/* sanity check the cb pointer */
489 	ucbnum = get_cb_number((void *)cb);
490 	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
491 		return -EINVAL;
492 	cbp = (unsigned long *)cb;
493 
494 	gts = gru_find_lock_gts(cb);
495 	if (!gts)
496 		return -EINVAL;
497 
498 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
499 		ret = -EINVAL;
500 		goto exit;
501 	}
502 
503 	/*
504 	 * If force_unload is set, the UPM TLB fault is phony. The task
505 	 * has migrated to another node and the GSEG must be moved. Just
506 	 * unload the context. The task will page fault and assign a new
507 	 * context.
508 	 */
509 	ret = -EAGAIN;
510 	cbrnum = thread_cbr_number(gts, ucbnum);
511 	if (gts->ts_force_unload) {
512 		gru_unload_context(gts, 1);
513 	} else if (gts->ts_gru) {
514 		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
515 		ret = gru_user_dropin(gts, tfh, cbp);
516 	}
517 exit:
518 	gru_unlock_gts(gts);
519 	return ret;
520 }
521 
522 /*
523  * Fetch the exception detail information for a CB that terminated with
524  * an exception.
525  */
526 int gru_get_exception_detail(unsigned long arg)
527 {
528 	struct control_block_extended_exc_detail excdet;
529 	struct gru_control_block_extended *cbe;
530 	struct gru_thread_state *gts;
531 	int ucbnum, cbrnum, ret;
532 
533 	STAT(user_exception);
534 	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
535 		return -EFAULT;
536 
537 	gru_dbg(grudev, "address 0x%lx\n", excdet.cb);
538 	gts = gru_find_lock_gts(excdet.cb);
539 	if (!gts)
540 		return -EINVAL;
541 
542 	if (gts->ts_gru) {
543 		ucbnum = get_cb_number((void *)excdet.cb);
544 		cbrnum = thread_cbr_number(gts, ucbnum);
545 		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
546 		excdet.opc = cbe->opccpy;
547 		excdet.exopc = cbe->exopccpy;
548 		excdet.ecause = cbe->ecause;
549 		excdet.exceptdet0 = cbe->idef1upd;
550 		excdet.exceptdet1 = cbe->idef3upd;
551 		ret = 0;
552 	} else {
553 		ret = -EAGAIN;
554 	}
555 	gru_unlock_gts(gts);
556 
557 	gru_dbg(grudev, "address 0x%lx, ecause 0x%x\n", excdet.cb,
558 		excdet.ecause);
559 	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
560 		ret = -EFAULT;
561 	return ret;
562 }
563 
564 /*
565  * User request to unload a context. Content is saved for possible reload.
566  */
567 int gru_user_unload_context(unsigned long arg)
568 {
569 	struct gru_thread_state *gts;
570 	struct gru_unload_context_req req;
571 
572 	STAT(user_unload_context);
573 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
574 		return -EFAULT;
575 
576 	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
577 
578 	gts = gru_find_lock_gts(req.gseg);
579 	if (!gts)
580 		return -EINVAL;
581 
582 	if (gts->ts_gru)
583 		gru_unload_context(gts, 1);
584 	gru_unlock_gts(gts);
585 
586 	return 0;
587 }
588 
589 /*
590  * User request to flush a range of virtual addresses from the GRU TLB
591  * (Mainly for testing).
592  */
593 int gru_user_flush_tlb(unsigned long arg)
594 {
595 	struct gru_thread_state *gts;
596 	struct gru_flush_tlb_req req;
597 
598 	STAT(user_flush_tlb);
599 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
600 		return -EFAULT;
601 
602 	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
603 		req.vaddr, req.len);
604 
605 	gts = gru_find_lock_gts(req.gseg);
606 	if (!gts)
607 		return -EINVAL;
608 
609 	gru_flush_tlb_range(gts->ts_gms, req.vaddr, req.vaddr + req.len);
610 	gru_unlock_gts(gts);
611 
612 	return 0;
613 }
614 
615 /*
616  * Register the current task as the user of the GSEG slice.
617  * Needed for TLB fault interrupt targeting.
618  */
619 int gru_set_task_slice(long address)
620 {
621 	struct gru_thread_state *gts;
622 
623 	STAT(set_task_slice);
624 	gru_dbg(grudev, "address 0x%lx\n", address);
625 	gts = gru_alloc_locked_gts(address);
626 	if (!gts)
627 		return -EINVAL;
628 
629 	gts->ts_tgid_owner = current->tgid;
630 	gru_unlock_gts(gts);
631 
632 	return 0;
633 }
634