xref: /openbmc/linux/drivers/misc/sgi-gru/grufault.c (revision 160b8e75)
1 /*
2  * SN Platform GRU Driver
3  *
4  *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
5  *
6  * This file contains code that handles TLB misses within the GRU.
7  * These misses are reported either via interrupts or user polling of
8  * the user CB.
9  *
10  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/spinlock.h>
30 #include <linux/mm.h>
31 #include <linux/hugetlb.h>
32 #include <linux/device.h>
33 #include <linux/io.h>
34 #include <linux/uaccess.h>
35 #include <linux/security.h>
36 #include <linux/prefetch.h>
37 #include <asm/pgtable.h>
38 #include "gru.h"
39 #include "grutables.h"
40 #include "grulib.h"
41 #include "gru_instructions.h"
42 #include <asm/uv/uv_hub.h>
43 
44 /* Return codes for vtop functions */
45 #define VTOP_SUCCESS               0
46 #define VTOP_INVALID               -1
47 #define VTOP_RETRY                 -2
48 
49 
50 /*
51  * Test if a physical address is a valid GRU GSEG address
52  */
53 static inline int is_gru_paddr(unsigned long paddr)
54 {
55 	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
56 }
57 
58 /*
59  * Find the vma of a GRU segment. Caller must hold mmap_sem.
60  */
61 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
62 {
63 	struct vm_area_struct *vma;
64 
65 	vma = find_vma(current->mm, vaddr);
66 	if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
67 		return vma;
68 	return NULL;
69 }
70 
71 /*
72  * Find and lock the gts that contains the specified user vaddr.
73  *
74  * Returns:
75  * 	- *gts with the mmap_sem locked for read and the GTS locked.
76  *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
77  */
78 
79 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
80 {
81 	struct mm_struct *mm = current->mm;
82 	struct vm_area_struct *vma;
83 	struct gru_thread_state *gts = NULL;
84 
85 	down_read(&mm->mmap_sem);
86 	vma = gru_find_vma(vaddr);
87 	if (vma)
88 		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
89 	if (gts)
90 		mutex_lock(&gts->ts_ctxlock);
91 	else
92 		up_read(&mm->mmap_sem);
93 	return gts;
94 }
95 
96 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
97 {
98 	struct mm_struct *mm = current->mm;
99 	struct vm_area_struct *vma;
100 	struct gru_thread_state *gts = ERR_PTR(-EINVAL);
101 
102 	down_write(&mm->mmap_sem);
103 	vma = gru_find_vma(vaddr);
104 	if (!vma)
105 		goto err;
106 
107 	gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
108 	if (IS_ERR(gts))
109 		goto err;
110 	mutex_lock(&gts->ts_ctxlock);
111 	downgrade_write(&mm->mmap_sem);
112 	return gts;
113 
114 err:
115 	up_write(&mm->mmap_sem);
116 	return gts;
117 }
118 
119 /*
120  * Unlock a GTS that was previously locked with gru_find_lock_gts().
121  */
122 static void gru_unlock_gts(struct gru_thread_state *gts)
123 {
124 	mutex_unlock(&gts->ts_ctxlock);
125 	up_read(&current->mm->mmap_sem);
126 }
127 
128 /*
129  * Set a CB.istatus to active using a user virtual address. This must be done
130  * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
131  * If the line is evicted, the status may be lost. The in-cache update
132  * is necessary to prevent the user from seeing a stale cb.istatus that will
133  * change as soon as the TFH restart is complete. Races may cause an
134  * occasional failure to clear the cb.istatus, but that is ok.
135  */
136 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
137 {
138 	if (cbk) {
139 		cbk->istatus = CBS_ACTIVE;
140 	}
141 }
142 
143 /*
144  * Read & clear a TFM
145  *
146  * The GRU has an array of fault maps. A map is private to a cpu
147  * Only one cpu will be accessing a cpu's fault map.
148  *
149  * This function scans the cpu-private fault map & clears all bits that
150  * are set. The function returns a bitmap that indicates the bits that
151  * were cleared. Note that sense the maps may be updated asynchronously by
152  * the GRU, atomic operations must be used to clear bits.
153  */
154 static void get_clear_fault_map(struct gru_state *gru,
155 				struct gru_tlb_fault_map *imap,
156 				struct gru_tlb_fault_map *dmap)
157 {
158 	unsigned long i, k;
159 	struct gru_tlb_fault_map *tfm;
160 
161 	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
162 	prefetchw(tfm);		/* Helps on hardware, required for emulator */
163 	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
164 		k = tfm->fault_bits[i];
165 		if (k)
166 			k = xchg(&tfm->fault_bits[i], 0UL);
167 		imap->fault_bits[i] = k;
168 		k = tfm->done_bits[i];
169 		if (k)
170 			k = xchg(&tfm->done_bits[i], 0UL);
171 		dmap->fault_bits[i] = k;
172 	}
173 
174 	/*
175 	 * Not functionally required but helps performance. (Required
176 	 * on emulator)
177 	 */
178 	gru_flush_cache(tfm);
179 }
180 
181 /*
182  * Atomic (interrupt context) & non-atomic (user context) functions to
183  * convert a vaddr into a physical address. The size of the page
184  * is returned in pageshift.
185  * 	returns:
186  * 		  0 - successful
187  * 		< 0 - error code
188  * 		  1 - (atomic only) try again in non-atomic context
189  */
190 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
191 				 unsigned long vaddr, int write,
192 				 unsigned long *paddr, int *pageshift)
193 {
194 	struct page *page;
195 
196 #ifdef CONFIG_HUGETLB_PAGE
197 	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
198 #else
199 	*pageshift = PAGE_SHIFT;
200 #endif
201 	if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page, NULL) <= 0)
202 		return -EFAULT;
203 	*paddr = page_to_phys(page);
204 	put_page(page);
205 	return 0;
206 }
207 
208 /*
209  * atomic_pte_lookup
210  *
211  * Convert a user virtual address to a physical address
212  * Only supports Intel large pages (2MB only) on x86_64.
213  *	ZZZ - hugepage support is incomplete
214  *
215  * NOTE: mmap_sem is already held on entry to this function. This
216  * guarantees existence of the page tables.
217  */
218 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
219 	int write, unsigned long *paddr, int *pageshift)
220 {
221 	pgd_t *pgdp;
222 	p4d_t *p4dp;
223 	pud_t *pudp;
224 	pmd_t *pmdp;
225 	pte_t pte;
226 
227 	pgdp = pgd_offset(vma->vm_mm, vaddr);
228 	if (unlikely(pgd_none(*pgdp)))
229 		goto err;
230 
231 	p4dp = p4d_offset(pgdp, vaddr);
232 	if (unlikely(p4d_none(*p4dp)))
233 		goto err;
234 
235 	pudp = pud_offset(p4dp, vaddr);
236 	if (unlikely(pud_none(*pudp)))
237 		goto err;
238 
239 	pmdp = pmd_offset(pudp, vaddr);
240 	if (unlikely(pmd_none(*pmdp)))
241 		goto err;
242 #ifdef CONFIG_X86_64
243 	if (unlikely(pmd_large(*pmdp)))
244 		pte = *(pte_t *) pmdp;
245 	else
246 #endif
247 		pte = *pte_offset_kernel(pmdp, vaddr);
248 
249 	if (unlikely(!pte_present(pte) ||
250 		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
251 		return 1;
252 
253 	*paddr = pte_pfn(pte) << PAGE_SHIFT;
254 #ifdef CONFIG_HUGETLB_PAGE
255 	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
256 #else
257 	*pageshift = PAGE_SHIFT;
258 #endif
259 	return 0;
260 
261 err:
262 	return 1;
263 }
264 
265 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
266 		    int write, int atomic, unsigned long *gpa, int *pageshift)
267 {
268 	struct mm_struct *mm = gts->ts_mm;
269 	struct vm_area_struct *vma;
270 	unsigned long paddr;
271 	int ret, ps;
272 
273 	vma = find_vma(mm, vaddr);
274 	if (!vma)
275 		goto inval;
276 
277 	/*
278 	 * Atomic lookup is faster & usually works even if called in non-atomic
279 	 * context.
280 	 */
281 	rmb();	/* Must/check ms_range_active before loading PTEs */
282 	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
283 	if (ret) {
284 		if (atomic)
285 			goto upm;
286 		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
287 			goto inval;
288 	}
289 	if (is_gru_paddr(paddr))
290 		goto inval;
291 	paddr = paddr & ~((1UL << ps) - 1);
292 	*gpa = uv_soc_phys_ram_to_gpa(paddr);
293 	*pageshift = ps;
294 	return VTOP_SUCCESS;
295 
296 inval:
297 	return VTOP_INVALID;
298 upm:
299 	return VTOP_RETRY;
300 }
301 
302 
303 /*
304  * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
305  * CBE cacheline so that the line will be written back to home agent.
306  * Otherwise the line may be silently dropped. This has no impact
307  * except on performance.
308  */
309 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
310 {
311 	if (unlikely(cbe)) {
312 		cbe->cbrexecstatus = 0;         /* make CL dirty */
313 		gru_flush_cache(cbe);
314 	}
315 }
316 
317 /*
318  * Preload the TLB with entries that may be required. Currently, preloading
319  * is implemented only for BCOPY. Preload  <tlb_preload_count> pages OR to
320  * the end of the bcopy tranfer, whichever is smaller.
321  */
322 static void gru_preload_tlb(struct gru_state *gru,
323 			struct gru_thread_state *gts, int atomic,
324 			unsigned long fault_vaddr, int asid, int write,
325 			unsigned char tlb_preload_count,
326 			struct gru_tlb_fault_handle *tfh,
327 			struct gru_control_block_extended *cbe)
328 {
329 	unsigned long vaddr = 0, gpa;
330 	int ret, pageshift;
331 
332 	if (cbe->opccpy != OP_BCOPY)
333 		return;
334 
335 	if (fault_vaddr == cbe->cbe_baddr0)
336 		vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
337 	else if (fault_vaddr == cbe->cbe_baddr1)
338 		vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
339 
340 	fault_vaddr &= PAGE_MASK;
341 	vaddr &= PAGE_MASK;
342 	vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
343 
344 	while (vaddr > fault_vaddr) {
345 		ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
346 		if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
347 					  GRU_PAGESIZE(pageshift)))
348 			return;
349 		gru_dbg(grudev,
350 			"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
351 			atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
352 			vaddr, asid, write, pageshift, gpa);
353 		vaddr -= PAGE_SIZE;
354 		STAT(tlb_preload_page);
355 	}
356 }
357 
358 /*
359  * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
360  *	Input:
361  *		cb    Address of user CBR. Null if not running in user context
362  * 	Return:
363  * 		  0 = dropin, exception, or switch to UPM successful
364  * 		  1 = range invalidate active
365  * 		< 0 = error code
366  *
367  */
368 static int gru_try_dropin(struct gru_state *gru,
369 			  struct gru_thread_state *gts,
370 			  struct gru_tlb_fault_handle *tfh,
371 			  struct gru_instruction_bits *cbk)
372 {
373 	struct gru_control_block_extended *cbe = NULL;
374 	unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
375 	int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
376 	unsigned long gpa = 0, vaddr = 0;
377 
378 	/*
379 	 * NOTE: The GRU contains magic hardware that eliminates races between
380 	 * TLB invalidates and TLB dropins. If an invalidate occurs
381 	 * in the window between reading the TFH and the subsequent TLB dropin,
382 	 * the dropin is ignored. This eliminates the need for additional locks.
383 	 */
384 
385 	/*
386 	 * Prefetch the CBE if doing TLB preloading
387 	 */
388 	if (unlikely(tlb_preload_count)) {
389 		cbe = gru_tfh_to_cbe(tfh);
390 		prefetchw(cbe);
391 	}
392 
393 	/*
394 	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
395 	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
396 	 * is a transient state.
397 	 */
398 	if (tfh->status != TFHSTATUS_EXCEPTION) {
399 		gru_flush_cache(tfh);
400 		sync_core();
401 		if (tfh->status != TFHSTATUS_EXCEPTION)
402 			goto failnoexception;
403 		STAT(tfh_stale_on_fault);
404 	}
405 	if (tfh->state == TFHSTATE_IDLE)
406 		goto failidle;
407 	if (tfh->state == TFHSTATE_MISS_FMM && cbk)
408 		goto failfmm;
409 
410 	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
411 	vaddr = tfh->missvaddr;
412 	asid = tfh->missasid;
413 	indexway = tfh->indexway;
414 	if (asid == 0)
415 		goto failnoasid;
416 
417 	rmb();	/* TFH must be cache resident before reading ms_range_active */
418 
419 	/*
420 	 * TFH is cache resident - at least briefly. Fail the dropin
421 	 * if a range invalidate is active.
422 	 */
423 	if (atomic_read(&gts->ts_gms->ms_range_active))
424 		goto failactive;
425 
426 	ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
427 	if (ret == VTOP_INVALID)
428 		goto failinval;
429 	if (ret == VTOP_RETRY)
430 		goto failupm;
431 
432 	if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
433 		gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
434 		if (atomic || !gru_update_cch(gts)) {
435 			gts->ts_force_cch_reload = 1;
436 			goto failupm;
437 		}
438 	}
439 
440 	if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
441 		gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
442 		gru_flush_cache_cbe(cbe);
443 	}
444 
445 	gru_cb_set_istatus_active(cbk);
446 	gts->ustats.tlbdropin++;
447 	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
448 			  GRU_PAGESIZE(pageshift));
449 	gru_dbg(grudev,
450 		"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
451 		" rw %d, ps %d, gpa 0x%lx\n",
452 		atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
453 		indexway, write, pageshift, gpa);
454 	STAT(tlb_dropin);
455 	return 0;
456 
457 failnoasid:
458 	/* No asid (delayed unload). */
459 	STAT(tlb_dropin_fail_no_asid);
460 	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
461 	if (!cbk)
462 		tfh_user_polling_mode(tfh);
463 	else
464 		gru_flush_cache(tfh);
465 	gru_flush_cache_cbe(cbe);
466 	return -EAGAIN;
467 
468 failupm:
469 	/* Atomic failure switch CBR to UPM */
470 	tfh_user_polling_mode(tfh);
471 	gru_flush_cache_cbe(cbe);
472 	STAT(tlb_dropin_fail_upm);
473 	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
474 	return 1;
475 
476 failfmm:
477 	/* FMM state on UPM call */
478 	gru_flush_cache(tfh);
479 	gru_flush_cache_cbe(cbe);
480 	STAT(tlb_dropin_fail_fmm);
481 	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
482 	return 0;
483 
484 failnoexception:
485 	/* TFH status did not show exception pending */
486 	gru_flush_cache(tfh);
487 	gru_flush_cache_cbe(cbe);
488 	if (cbk)
489 		gru_flush_cache(cbk);
490 	STAT(tlb_dropin_fail_no_exception);
491 	gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
492 		tfh, tfh->status, tfh->state);
493 	return 0;
494 
495 failidle:
496 	/* TFH state was idle  - no miss pending */
497 	gru_flush_cache(tfh);
498 	gru_flush_cache_cbe(cbe);
499 	if (cbk)
500 		gru_flush_cache(cbk);
501 	STAT(tlb_dropin_fail_idle);
502 	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
503 	return 0;
504 
505 failinval:
506 	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
507 	tfh_exception(tfh);
508 	gru_flush_cache_cbe(cbe);
509 	STAT(tlb_dropin_fail_invalid);
510 	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
511 	return -EFAULT;
512 
513 failactive:
514 	/* Range invalidate active. Switch to UPM iff atomic */
515 	if (!cbk)
516 		tfh_user_polling_mode(tfh);
517 	else
518 		gru_flush_cache(tfh);
519 	gru_flush_cache_cbe(cbe);
520 	STAT(tlb_dropin_fail_range_active);
521 	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
522 		tfh, vaddr);
523 	return 1;
524 }
525 
526 /*
527  * Process an external interrupt from the GRU. This interrupt is
528  * caused by a TLB miss.
529  * Note that this is the interrupt handler that is registered with linux
530  * interrupt handlers.
531  */
532 static irqreturn_t gru_intr(int chiplet, int blade)
533 {
534 	struct gru_state *gru;
535 	struct gru_tlb_fault_map imap, dmap;
536 	struct gru_thread_state *gts;
537 	struct gru_tlb_fault_handle *tfh = NULL;
538 	struct completion *cmp;
539 	int cbrnum, ctxnum;
540 
541 	STAT(intr);
542 
543 	gru = &gru_base[blade]->bs_grus[chiplet];
544 	if (!gru) {
545 		dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
546 			raw_smp_processor_id(), chiplet);
547 		return IRQ_NONE;
548 	}
549 	get_clear_fault_map(gru, &imap, &dmap);
550 	gru_dbg(grudev,
551 		"cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
552 		smp_processor_id(), chiplet, gru->gs_gid,
553 		imap.fault_bits[0], imap.fault_bits[1],
554 		dmap.fault_bits[0], dmap.fault_bits[1]);
555 
556 	for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
557 		STAT(intr_cbr);
558 		cmp = gru->gs_blade->bs_async_wq;
559 		if (cmp)
560 			complete(cmp);
561 		gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
562 			gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
563 	}
564 
565 	for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
566 		STAT(intr_tfh);
567 		tfh = get_tfh_by_index(gru, cbrnum);
568 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
569 
570 		/*
571 		 * When hardware sets a bit in the faultmap, it implicitly
572 		 * locks the GRU context so that it cannot be unloaded.
573 		 * The gts cannot change until a TFH start/writestart command
574 		 * is issued.
575 		 */
576 		ctxnum = tfh->ctxnum;
577 		gts = gru->gs_gts[ctxnum];
578 
579 		/* Spurious interrupts can cause this. Ignore. */
580 		if (!gts) {
581 			STAT(intr_spurious);
582 			continue;
583 		}
584 
585 		/*
586 		 * This is running in interrupt context. Trylock the mmap_sem.
587 		 * If it fails, retry the fault in user context.
588 		 */
589 		gts->ustats.fmm_tlbmiss++;
590 		if (!gts->ts_force_cch_reload &&
591 					down_read_trylock(&gts->ts_mm->mmap_sem)) {
592 			gru_try_dropin(gru, gts, tfh, NULL);
593 			up_read(&gts->ts_mm->mmap_sem);
594 		} else {
595 			tfh_user_polling_mode(tfh);
596 			STAT(intr_mm_lock_failed);
597 		}
598 	}
599 	return IRQ_HANDLED;
600 }
601 
602 irqreturn_t gru0_intr(int irq, void *dev_id)
603 {
604 	return gru_intr(0, uv_numa_blade_id());
605 }
606 
607 irqreturn_t gru1_intr(int irq, void *dev_id)
608 {
609 	return gru_intr(1, uv_numa_blade_id());
610 }
611 
612 irqreturn_t gru_intr_mblade(int irq, void *dev_id)
613 {
614 	int blade;
615 
616 	for_each_possible_blade(blade) {
617 		if (uv_blade_nr_possible_cpus(blade))
618 			continue;
619 		 gru_intr(0, blade);
620 		 gru_intr(1, blade);
621 	}
622 	return IRQ_HANDLED;
623 }
624 
625 
626 static int gru_user_dropin(struct gru_thread_state *gts,
627 			   struct gru_tlb_fault_handle *tfh,
628 			   void *cb)
629 {
630 	struct gru_mm_struct *gms = gts->ts_gms;
631 	int ret;
632 
633 	gts->ustats.upm_tlbmiss++;
634 	while (1) {
635 		wait_event(gms->ms_wait_queue,
636 			   atomic_read(&gms->ms_range_active) == 0);
637 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
638 		ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
639 		if (ret <= 0)
640 			return ret;
641 		STAT(call_os_wait_queue);
642 	}
643 }
644 
645 /*
646  * This interface is called as a result of a user detecting a "call OS" bit
647  * in a user CB. Normally means that a TLB fault has occurred.
648  * 	cb - user virtual address of the CB
649  */
650 int gru_handle_user_call_os(unsigned long cb)
651 {
652 	struct gru_tlb_fault_handle *tfh;
653 	struct gru_thread_state *gts;
654 	void *cbk;
655 	int ucbnum, cbrnum, ret = -EINVAL;
656 
657 	STAT(call_os);
658 
659 	/* sanity check the cb pointer */
660 	ucbnum = get_cb_number((void *)cb);
661 	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
662 		return -EINVAL;
663 
664 	gts = gru_find_lock_gts(cb);
665 	if (!gts)
666 		return -EINVAL;
667 	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
668 
669 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
670 		goto exit;
671 
672 	gru_check_context_placement(gts);
673 
674 	/*
675 	 * CCH may contain stale data if ts_force_cch_reload is set.
676 	 */
677 	if (gts->ts_gru && gts->ts_force_cch_reload) {
678 		gts->ts_force_cch_reload = 0;
679 		gru_update_cch(gts);
680 	}
681 
682 	ret = -EAGAIN;
683 	cbrnum = thread_cbr_number(gts, ucbnum);
684 	if (gts->ts_gru) {
685 		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
686 		cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
687 				gts->ts_ctxnum, ucbnum);
688 		ret = gru_user_dropin(gts, tfh, cbk);
689 	}
690 exit:
691 	gru_unlock_gts(gts);
692 	return ret;
693 }
694 
695 /*
696  * Fetch the exception detail information for a CB that terminated with
697  * an exception.
698  */
699 int gru_get_exception_detail(unsigned long arg)
700 {
701 	struct control_block_extended_exc_detail excdet;
702 	struct gru_control_block_extended *cbe;
703 	struct gru_thread_state *gts;
704 	int ucbnum, cbrnum, ret;
705 
706 	STAT(user_exception);
707 	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
708 		return -EFAULT;
709 
710 	gts = gru_find_lock_gts(excdet.cb);
711 	if (!gts)
712 		return -EINVAL;
713 
714 	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
715 	ucbnum = get_cb_number((void *)excdet.cb);
716 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
717 		ret = -EINVAL;
718 	} else if (gts->ts_gru) {
719 		cbrnum = thread_cbr_number(gts, ucbnum);
720 		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
721 		gru_flush_cache(cbe);	/* CBE not coherent */
722 		sync_core();		/* make sure we are have current data */
723 		excdet.opc = cbe->opccpy;
724 		excdet.exopc = cbe->exopccpy;
725 		excdet.ecause = cbe->ecause;
726 		excdet.exceptdet0 = cbe->idef1upd;
727 		excdet.exceptdet1 = cbe->idef3upd;
728 		excdet.cbrstate = cbe->cbrstate;
729 		excdet.cbrexecstatus = cbe->cbrexecstatus;
730 		gru_flush_cache_cbe(cbe);
731 		ret = 0;
732 	} else {
733 		ret = -EAGAIN;
734 	}
735 	gru_unlock_gts(gts);
736 
737 	gru_dbg(grudev,
738 		"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
739 		"exdet0 0x%lx, exdet1 0x%x\n",
740 		excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
741 		excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
742 	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
743 		ret = -EFAULT;
744 	return ret;
745 }
746 
747 /*
748  * User request to unload a context. Content is saved for possible reload.
749  */
750 static int gru_unload_all_contexts(void)
751 {
752 	struct gru_thread_state *gts;
753 	struct gru_state *gru;
754 	int gid, ctxnum;
755 
756 	if (!capable(CAP_SYS_ADMIN))
757 		return -EPERM;
758 	foreach_gid(gid) {
759 		gru = GID_TO_GRU(gid);
760 		spin_lock(&gru->gs_lock);
761 		for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
762 			gts = gru->gs_gts[ctxnum];
763 			if (gts && mutex_trylock(&gts->ts_ctxlock)) {
764 				spin_unlock(&gru->gs_lock);
765 				gru_unload_context(gts, 1);
766 				mutex_unlock(&gts->ts_ctxlock);
767 				spin_lock(&gru->gs_lock);
768 			}
769 		}
770 		spin_unlock(&gru->gs_lock);
771 	}
772 	return 0;
773 }
774 
775 int gru_user_unload_context(unsigned long arg)
776 {
777 	struct gru_thread_state *gts;
778 	struct gru_unload_context_req req;
779 
780 	STAT(user_unload_context);
781 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
782 		return -EFAULT;
783 
784 	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
785 
786 	if (!req.gseg)
787 		return gru_unload_all_contexts();
788 
789 	gts = gru_find_lock_gts(req.gseg);
790 	if (!gts)
791 		return -EINVAL;
792 
793 	if (gts->ts_gru)
794 		gru_unload_context(gts, 1);
795 	gru_unlock_gts(gts);
796 
797 	return 0;
798 }
799 
800 /*
801  * User request to flush a range of virtual addresses from the GRU TLB
802  * (Mainly for testing).
803  */
804 int gru_user_flush_tlb(unsigned long arg)
805 {
806 	struct gru_thread_state *gts;
807 	struct gru_flush_tlb_req req;
808 	struct gru_mm_struct *gms;
809 
810 	STAT(user_flush_tlb);
811 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
812 		return -EFAULT;
813 
814 	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
815 		req.vaddr, req.len);
816 
817 	gts = gru_find_lock_gts(req.gseg);
818 	if (!gts)
819 		return -EINVAL;
820 
821 	gms = gts->ts_gms;
822 	gru_unlock_gts(gts);
823 	gru_flush_tlb_range(gms, req.vaddr, req.len);
824 
825 	return 0;
826 }
827 
828 /*
829  * Fetch GSEG statisticss
830  */
831 long gru_get_gseg_statistics(unsigned long arg)
832 {
833 	struct gru_thread_state *gts;
834 	struct gru_get_gseg_statistics_req req;
835 
836 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
837 		return -EFAULT;
838 
839 	/*
840 	 * The library creates arrays of contexts for threaded programs.
841 	 * If no gts exists in the array, the context has never been used & all
842 	 * statistics are implicitly 0.
843 	 */
844 	gts = gru_find_lock_gts(req.gseg);
845 	if (gts) {
846 		memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
847 		gru_unlock_gts(gts);
848 	} else {
849 		memset(&req.stats, 0, sizeof(gts->ustats));
850 	}
851 
852 	if (copy_to_user((void __user *)arg, &req, sizeof(req)))
853 		return -EFAULT;
854 
855 	return 0;
856 }
857 
858 /*
859  * Register the current task as the user of the GSEG slice.
860  * Needed for TLB fault interrupt targeting.
861  */
862 int gru_set_context_option(unsigned long arg)
863 {
864 	struct gru_thread_state *gts;
865 	struct gru_set_context_option_req req;
866 	int ret = 0;
867 
868 	STAT(set_context_option);
869 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
870 		return -EFAULT;
871 	gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
872 
873 	gts = gru_find_lock_gts(req.gseg);
874 	if (!gts) {
875 		gts = gru_alloc_locked_gts(req.gseg);
876 		if (IS_ERR(gts))
877 			return PTR_ERR(gts);
878 	}
879 
880 	switch (req.op) {
881 	case sco_blade_chiplet:
882 		/* Select blade/chiplet for GRU context */
883 		if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB ||
884 		    req.val1 < -1 || req.val1 >= GRU_MAX_BLADES ||
885 		    (req.val1 >= 0 && !gru_base[req.val1])) {
886 			ret = -EINVAL;
887 		} else {
888 			gts->ts_user_blade_id = req.val1;
889 			gts->ts_user_chiplet_id = req.val0;
890 			gru_check_context_placement(gts);
891 		}
892 		break;
893 	case sco_gseg_owner:
894  		/* Register the current task as the GSEG owner */
895 		gts->ts_tgid_owner = current->tgid;
896 		break;
897 	case sco_cch_req_slice:
898  		/* Set the CCH slice option */
899 		gts->ts_cch_req_slice = req.val1 & 3;
900 		break;
901 	default:
902 		ret = -EINVAL;
903 	}
904 	gru_unlock_gts(gts);
905 
906 	return ret;
907 }
908