1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright 2017 IBM Corp. 3 #include <linux/sched/mm.h> 4 #include <linux/mutex.h> 5 #include <linux/mm_types.h> 6 #include <linux/mmu_context.h> 7 #include <asm/copro.h> 8 #include <asm/pnv-ocxl.h> 9 #include <misc/ocxl.h> 10 #include "ocxl_internal.h" 11 #include "trace.h" 12 13 14 #define SPA_PASID_BITS 15 15 #define SPA_PASID_MAX ((1 << SPA_PASID_BITS) - 1) 16 #define SPA_PE_MASK SPA_PASID_MAX 17 #define SPA_SPA_SIZE_LOG 22 /* Each SPA is 4 Mb */ 18 19 #define SPA_CFG_SF (1ull << (63-0)) 20 #define SPA_CFG_TA (1ull << (63-1)) 21 #define SPA_CFG_HV (1ull << (63-3)) 22 #define SPA_CFG_UV (1ull << (63-4)) 23 #define SPA_CFG_XLAT_hpt (0ull << (63-6)) /* Hashed page table (HPT) mode */ 24 #define SPA_CFG_XLAT_roh (2ull << (63-6)) /* Radix on HPT mode */ 25 #define SPA_CFG_XLAT_ror (3ull << (63-6)) /* Radix on Radix mode */ 26 #define SPA_CFG_PR (1ull << (63-49)) 27 #define SPA_CFG_TC (1ull << (63-54)) 28 #define SPA_CFG_DR (1ull << (63-59)) 29 30 #define SPA_XSL_TF (1ull << (63-3)) /* Translation fault */ 31 #define SPA_XSL_S (1ull << (63-38)) /* Store operation */ 32 33 #define SPA_PE_VALID 0x80000000 34 35 36 struct pe_data { 37 struct mm_struct *mm; 38 /* callback to trigger when a translation fault occurs */ 39 void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr); 40 /* opaque pointer to be passed to the above callback */ 41 void *xsl_err_data; 42 struct rcu_head rcu; 43 }; 44 45 struct spa { 46 struct ocxl_process_element *spa_mem; 47 int spa_order; 48 struct mutex spa_lock; 49 struct radix_tree_root pe_tree; /* Maps PE handles to pe_data */ 50 char *irq_name; 51 int virq; 52 void __iomem *reg_dsisr; 53 void __iomem *reg_dar; 54 void __iomem *reg_tfc; 55 void __iomem *reg_pe_handle; 56 /* 57 * The following field are used by the memory fault 58 * interrupt handler. We can only have one interrupt at a 59 * time. The NPU won't raise another interrupt until the 60 * previous one has been ack'd by writing to the TFC register 61 */ 62 struct xsl_fault { 63 struct work_struct fault_work; 64 u64 pe; 65 u64 dsisr; 66 u64 dar; 67 struct pe_data pe_data; 68 } xsl_fault; 69 }; 70 71 /* 72 * A opencapi link can be used be by several PCI functions. We have 73 * one link per device slot. 74 * 75 * A linked list of opencapi links should suffice, as there's a 76 * limited number of opencapi slots on a system and lookup is only 77 * done when the device is probed 78 */ 79 struct link { 80 struct list_head list; 81 struct kref ref; 82 int domain; 83 int bus; 84 int dev; 85 atomic_t irq_available; 86 struct spa *spa; 87 void *platform_data; 88 }; 89 static struct list_head links_list = LIST_HEAD_INIT(links_list); 90 static DEFINE_MUTEX(links_list_lock); 91 92 enum xsl_response { 93 CONTINUE, 94 ADDRESS_ERROR, 95 RESTART, 96 }; 97 98 99 static void read_irq(struct spa *spa, u64 *dsisr, u64 *dar, u64 *pe) 100 { 101 u64 reg; 102 103 *dsisr = in_be64(spa->reg_dsisr); 104 *dar = in_be64(spa->reg_dar); 105 reg = in_be64(spa->reg_pe_handle); 106 *pe = reg & SPA_PE_MASK; 107 } 108 109 static void ack_irq(struct spa *spa, enum xsl_response r) 110 { 111 u64 reg = 0; 112 113 /* continue is not supported */ 114 if (r == RESTART) 115 reg = PPC_BIT(31); 116 else if (r == ADDRESS_ERROR) 117 reg = PPC_BIT(30); 118 else 119 WARN(1, "Invalid irq response %d\n", r); 120 121 if (reg) { 122 trace_ocxl_fault_ack(spa->spa_mem, spa->xsl_fault.pe, 123 spa->xsl_fault.dsisr, spa->xsl_fault.dar, reg); 124 out_be64(spa->reg_tfc, reg); 125 } 126 } 127 128 static void xsl_fault_handler_bh(struct work_struct *fault_work) 129 { 130 vm_fault_t flt = 0; 131 unsigned long access, flags, inv_flags = 0; 132 enum xsl_response r; 133 struct xsl_fault *fault = container_of(fault_work, struct xsl_fault, 134 fault_work); 135 struct spa *spa = container_of(fault, struct spa, xsl_fault); 136 137 int rc; 138 139 /* 140 * We must release a reference on mm_users whenever exiting this 141 * function (taken in the memory fault interrupt handler) 142 */ 143 rc = copro_handle_mm_fault(fault->pe_data.mm, fault->dar, fault->dsisr, 144 &flt); 145 if (rc) { 146 pr_debug("copro_handle_mm_fault failed: %d\n", rc); 147 if (fault->pe_data.xsl_err_cb) { 148 fault->pe_data.xsl_err_cb( 149 fault->pe_data.xsl_err_data, 150 fault->dar, fault->dsisr); 151 } 152 r = ADDRESS_ERROR; 153 goto ack; 154 } 155 156 if (!radix_enabled()) { 157 /* 158 * update_mmu_cache() will not have loaded the hash 159 * since current->trap is not a 0x400 or 0x300, so 160 * just call hash_page_mm() here. 161 */ 162 access = _PAGE_PRESENT | _PAGE_READ; 163 if (fault->dsisr & SPA_XSL_S) 164 access |= _PAGE_WRITE; 165 166 if (REGION_ID(fault->dar) != USER_REGION_ID) 167 access |= _PAGE_PRIVILEGED; 168 169 local_irq_save(flags); 170 hash_page_mm(fault->pe_data.mm, fault->dar, access, 0x300, 171 inv_flags); 172 local_irq_restore(flags); 173 } 174 r = RESTART; 175 ack: 176 mmput(fault->pe_data.mm); 177 ack_irq(spa, r); 178 } 179 180 static irqreturn_t xsl_fault_handler(int irq, void *data) 181 { 182 struct link *link = (struct link *) data; 183 struct spa *spa = link->spa; 184 u64 dsisr, dar, pe_handle; 185 struct pe_data *pe_data; 186 struct ocxl_process_element *pe; 187 int lpid, pid, tid; 188 bool schedule = false; 189 190 read_irq(spa, &dsisr, &dar, &pe_handle); 191 trace_ocxl_fault(spa->spa_mem, pe_handle, dsisr, dar, -1); 192 193 WARN_ON(pe_handle > SPA_PE_MASK); 194 pe = spa->spa_mem + pe_handle; 195 lpid = be32_to_cpu(pe->lpid); 196 pid = be32_to_cpu(pe->pid); 197 tid = be32_to_cpu(pe->tid); 198 /* We could be reading all null values here if the PE is being 199 * removed while an interrupt kicks in. It's not supposed to 200 * happen if the driver notified the AFU to terminate the 201 * PASID, and the AFU waited for pending operations before 202 * acknowledging. But even if it happens, we won't find a 203 * memory context below and fail silently, so it should be ok. 204 */ 205 if (!(dsisr & SPA_XSL_TF)) { 206 WARN(1, "Invalid xsl interrupt fault register %#llx\n", dsisr); 207 ack_irq(spa, ADDRESS_ERROR); 208 return IRQ_HANDLED; 209 } 210 211 rcu_read_lock(); 212 pe_data = radix_tree_lookup(&spa->pe_tree, pe_handle); 213 if (!pe_data) { 214 /* 215 * Could only happen if the driver didn't notify the 216 * AFU about PASID termination before removing the PE, 217 * or the AFU didn't wait for all memory access to 218 * have completed. 219 * 220 * Either way, we fail early, but we shouldn't log an 221 * error message, as it is a valid (if unexpected) 222 * scenario 223 */ 224 rcu_read_unlock(); 225 pr_debug("Unknown mm context for xsl interrupt\n"); 226 ack_irq(spa, ADDRESS_ERROR); 227 return IRQ_HANDLED; 228 } 229 WARN_ON(pe_data->mm->context.id != pid); 230 231 if (mmget_not_zero(pe_data->mm)) { 232 spa->xsl_fault.pe = pe_handle; 233 spa->xsl_fault.dar = dar; 234 spa->xsl_fault.dsisr = dsisr; 235 spa->xsl_fault.pe_data = *pe_data; 236 schedule = true; 237 /* mm_users count released by bottom half */ 238 } 239 rcu_read_unlock(); 240 if (schedule) 241 schedule_work(&spa->xsl_fault.fault_work); 242 else 243 ack_irq(spa, ADDRESS_ERROR); 244 return IRQ_HANDLED; 245 } 246 247 static void unmap_irq_registers(struct spa *spa) 248 { 249 pnv_ocxl_unmap_xsl_regs(spa->reg_dsisr, spa->reg_dar, spa->reg_tfc, 250 spa->reg_pe_handle); 251 } 252 253 static int map_irq_registers(struct pci_dev *dev, struct spa *spa) 254 { 255 return pnv_ocxl_map_xsl_regs(dev, &spa->reg_dsisr, &spa->reg_dar, 256 &spa->reg_tfc, &spa->reg_pe_handle); 257 } 258 259 static int setup_xsl_irq(struct pci_dev *dev, struct link *link) 260 { 261 struct spa *spa = link->spa; 262 int rc; 263 int hwirq; 264 265 rc = pnv_ocxl_get_xsl_irq(dev, &hwirq); 266 if (rc) 267 return rc; 268 269 rc = map_irq_registers(dev, spa); 270 if (rc) 271 return rc; 272 273 spa->irq_name = kasprintf(GFP_KERNEL, "ocxl-xsl-%x-%x-%x", 274 link->domain, link->bus, link->dev); 275 if (!spa->irq_name) { 276 unmap_irq_registers(spa); 277 dev_err(&dev->dev, "Can't allocate name for xsl interrupt\n"); 278 return -ENOMEM; 279 } 280 /* 281 * At some point, we'll need to look into allowing a higher 282 * number of interrupts. Could we have an IRQ domain per link? 283 */ 284 spa->virq = irq_create_mapping(NULL, hwirq); 285 if (!spa->virq) { 286 kfree(spa->irq_name); 287 unmap_irq_registers(spa); 288 dev_err(&dev->dev, 289 "irq_create_mapping failed for translation interrupt\n"); 290 return -EINVAL; 291 } 292 293 dev_dbg(&dev->dev, "hwirq %d mapped to virq %d\n", hwirq, spa->virq); 294 295 rc = request_irq(spa->virq, xsl_fault_handler, 0, spa->irq_name, 296 link); 297 if (rc) { 298 irq_dispose_mapping(spa->virq); 299 kfree(spa->irq_name); 300 unmap_irq_registers(spa); 301 dev_err(&dev->dev, 302 "request_irq failed for translation interrupt: %d\n", 303 rc); 304 return -EINVAL; 305 } 306 return 0; 307 } 308 309 static void release_xsl_irq(struct link *link) 310 { 311 struct spa *spa = link->spa; 312 313 if (spa->virq) { 314 free_irq(spa->virq, link); 315 irq_dispose_mapping(spa->virq); 316 } 317 kfree(spa->irq_name); 318 unmap_irq_registers(spa); 319 } 320 321 static int alloc_spa(struct pci_dev *dev, struct link *link) 322 { 323 struct spa *spa; 324 325 spa = kzalloc(sizeof(struct spa), GFP_KERNEL); 326 if (!spa) 327 return -ENOMEM; 328 329 mutex_init(&spa->spa_lock); 330 INIT_RADIX_TREE(&spa->pe_tree, GFP_KERNEL); 331 INIT_WORK(&spa->xsl_fault.fault_work, xsl_fault_handler_bh); 332 333 spa->spa_order = SPA_SPA_SIZE_LOG - PAGE_SHIFT; 334 spa->spa_mem = (struct ocxl_process_element *) 335 __get_free_pages(GFP_KERNEL | __GFP_ZERO, spa->spa_order); 336 if (!spa->spa_mem) { 337 dev_err(&dev->dev, "Can't allocate Shared Process Area\n"); 338 kfree(spa); 339 return -ENOMEM; 340 } 341 pr_debug("Allocated SPA for %x:%x:%x at %p\n", link->domain, link->bus, 342 link->dev, spa->spa_mem); 343 344 link->spa = spa; 345 return 0; 346 } 347 348 static void free_spa(struct link *link) 349 { 350 struct spa *spa = link->spa; 351 352 pr_debug("Freeing SPA for %x:%x:%x\n", link->domain, link->bus, 353 link->dev); 354 355 if (spa && spa->spa_mem) { 356 free_pages((unsigned long) spa->spa_mem, spa->spa_order); 357 kfree(spa); 358 link->spa = NULL; 359 } 360 } 361 362 static int alloc_link(struct pci_dev *dev, int PE_mask, struct link **out_link) 363 { 364 struct link *link; 365 int rc; 366 367 link = kzalloc(sizeof(struct link), GFP_KERNEL); 368 if (!link) 369 return -ENOMEM; 370 371 kref_init(&link->ref); 372 link->domain = pci_domain_nr(dev->bus); 373 link->bus = dev->bus->number; 374 link->dev = PCI_SLOT(dev->devfn); 375 atomic_set(&link->irq_available, MAX_IRQ_PER_LINK); 376 377 rc = alloc_spa(dev, link); 378 if (rc) 379 goto err_free; 380 381 rc = setup_xsl_irq(dev, link); 382 if (rc) 383 goto err_spa; 384 385 /* platform specific hook */ 386 rc = pnv_ocxl_spa_setup(dev, link->spa->spa_mem, PE_mask, 387 &link->platform_data); 388 if (rc) 389 goto err_xsl_irq; 390 391 *out_link = link; 392 return 0; 393 394 err_xsl_irq: 395 release_xsl_irq(link); 396 err_spa: 397 free_spa(link); 398 err_free: 399 kfree(link); 400 return rc; 401 } 402 403 static void free_link(struct link *link) 404 { 405 release_xsl_irq(link); 406 free_spa(link); 407 kfree(link); 408 } 409 410 int ocxl_link_setup(struct pci_dev *dev, int PE_mask, void **link_handle) 411 { 412 int rc = 0; 413 struct link *link; 414 415 mutex_lock(&links_list_lock); 416 list_for_each_entry(link, &links_list, list) { 417 /* The functions of a device all share the same link */ 418 if (link->domain == pci_domain_nr(dev->bus) && 419 link->bus == dev->bus->number && 420 link->dev == PCI_SLOT(dev->devfn)) { 421 kref_get(&link->ref); 422 *link_handle = link; 423 goto unlock; 424 } 425 } 426 rc = alloc_link(dev, PE_mask, &link); 427 if (rc) 428 goto unlock; 429 430 list_add(&link->list, &links_list); 431 *link_handle = link; 432 unlock: 433 mutex_unlock(&links_list_lock); 434 return rc; 435 } 436 EXPORT_SYMBOL_GPL(ocxl_link_setup); 437 438 static void release_xsl(struct kref *ref) 439 { 440 struct link *link = container_of(ref, struct link, ref); 441 442 list_del(&link->list); 443 /* call platform code before releasing data */ 444 pnv_ocxl_spa_release(link->platform_data); 445 free_link(link); 446 } 447 448 void ocxl_link_release(struct pci_dev *dev, void *link_handle) 449 { 450 struct link *link = (struct link *) link_handle; 451 452 mutex_lock(&links_list_lock); 453 kref_put(&link->ref, release_xsl); 454 mutex_unlock(&links_list_lock); 455 } 456 EXPORT_SYMBOL_GPL(ocxl_link_release); 457 458 static u64 calculate_cfg_state(bool kernel) 459 { 460 u64 state; 461 462 state = SPA_CFG_DR; 463 if (mfspr(SPRN_LPCR) & LPCR_TC) 464 state |= SPA_CFG_TC; 465 if (radix_enabled()) 466 state |= SPA_CFG_XLAT_ror; 467 else 468 state |= SPA_CFG_XLAT_hpt; 469 state |= SPA_CFG_HV; 470 if (kernel) { 471 if (mfmsr() & MSR_SF) 472 state |= SPA_CFG_SF; 473 } else { 474 state |= SPA_CFG_PR; 475 if (!test_tsk_thread_flag(current, TIF_32BIT)) 476 state |= SPA_CFG_SF; 477 } 478 return state; 479 } 480 481 int ocxl_link_add_pe(void *link_handle, int pasid, u32 pidr, u32 tidr, 482 u64 amr, struct mm_struct *mm, 483 void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr), 484 void *xsl_err_data) 485 { 486 struct link *link = (struct link *) link_handle; 487 struct spa *spa = link->spa; 488 struct ocxl_process_element *pe; 489 int pe_handle, rc = 0; 490 struct pe_data *pe_data; 491 492 BUILD_BUG_ON(sizeof(struct ocxl_process_element) != 128); 493 if (pasid > SPA_PASID_MAX) 494 return -EINVAL; 495 496 mutex_lock(&spa->spa_lock); 497 pe_handle = pasid & SPA_PE_MASK; 498 pe = spa->spa_mem + pe_handle; 499 500 if (pe->software_state) { 501 rc = -EBUSY; 502 goto unlock; 503 } 504 505 pe_data = kmalloc(sizeof(*pe_data), GFP_KERNEL); 506 if (!pe_data) { 507 rc = -ENOMEM; 508 goto unlock; 509 } 510 511 pe_data->mm = mm; 512 pe_data->xsl_err_cb = xsl_err_cb; 513 pe_data->xsl_err_data = xsl_err_data; 514 515 memset(pe, 0, sizeof(struct ocxl_process_element)); 516 pe->config_state = cpu_to_be64(calculate_cfg_state(pidr == 0)); 517 pe->lpid = cpu_to_be32(mfspr(SPRN_LPID)); 518 pe->pid = cpu_to_be32(pidr); 519 pe->tid = cpu_to_be32(tidr); 520 pe->amr = cpu_to_be64(amr); 521 pe->software_state = cpu_to_be32(SPA_PE_VALID); 522 523 mm_context_add_copro(mm); 524 /* 525 * Barrier is to make sure PE is visible in the SPA before it 526 * is used by the device. It also helps with the global TLBI 527 * invalidation 528 */ 529 mb(); 530 radix_tree_insert(&spa->pe_tree, pe_handle, pe_data); 531 532 /* 533 * The mm must stay valid for as long as the device uses it. We 534 * lower the count when the context is removed from the SPA. 535 * 536 * We grab mm_count (and not mm_users), as we don't want to 537 * end up in a circular dependency if a process mmaps its 538 * mmio, therefore incrementing the file ref count when 539 * calling mmap(), and forgets to unmap before exiting. In 540 * that scenario, when the kernel handles the death of the 541 * process, the file is not cleaned because unmap was not 542 * called, and the mm wouldn't be freed because we would still 543 * have a reference on mm_users. Incrementing mm_count solves 544 * the problem. 545 */ 546 mmgrab(mm); 547 trace_ocxl_context_add(current->pid, spa->spa_mem, pasid, pidr, tidr); 548 unlock: 549 mutex_unlock(&spa->spa_lock); 550 return rc; 551 } 552 EXPORT_SYMBOL_GPL(ocxl_link_add_pe); 553 554 int ocxl_link_update_pe(void *link_handle, int pasid, __u16 tid) 555 { 556 struct link *link = (struct link *) link_handle; 557 struct spa *spa = link->spa; 558 struct ocxl_process_element *pe; 559 int pe_handle, rc; 560 561 if (pasid > SPA_PASID_MAX) 562 return -EINVAL; 563 564 pe_handle = pasid & SPA_PE_MASK; 565 pe = spa->spa_mem + pe_handle; 566 567 mutex_lock(&spa->spa_lock); 568 569 pe->tid = tid; 570 571 /* 572 * The barrier makes sure the PE is updated 573 * before we clear the NPU context cache below, so that the 574 * old PE cannot be reloaded erroneously. 575 */ 576 mb(); 577 578 /* 579 * hook to platform code 580 * On powerpc, the entry needs to be cleared from the context 581 * cache of the NPU. 582 */ 583 rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle); 584 WARN_ON(rc); 585 586 mutex_unlock(&spa->spa_lock); 587 return rc; 588 } 589 590 int ocxl_link_remove_pe(void *link_handle, int pasid) 591 { 592 struct link *link = (struct link *) link_handle; 593 struct spa *spa = link->spa; 594 struct ocxl_process_element *pe; 595 struct pe_data *pe_data; 596 int pe_handle, rc; 597 598 if (pasid > SPA_PASID_MAX) 599 return -EINVAL; 600 601 /* 602 * About synchronization with our memory fault handler: 603 * 604 * Before removing the PE, the driver is supposed to have 605 * notified the AFU, which should have cleaned up and make 606 * sure the PASID is no longer in use, including pending 607 * interrupts. However, there's no way to be sure... 608 * 609 * We clear the PE and remove the context from our radix 610 * tree. From that point on, any new interrupt for that 611 * context will fail silently, which is ok. As mentioned 612 * above, that's not expected, but it could happen if the 613 * driver or AFU didn't do the right thing. 614 * 615 * There could still be a bottom half running, but we don't 616 * need to wait/flush, as it is managing a reference count on 617 * the mm it reads from the radix tree. 618 */ 619 pe_handle = pasid & SPA_PE_MASK; 620 pe = spa->spa_mem + pe_handle; 621 622 mutex_lock(&spa->spa_lock); 623 624 if (!(be32_to_cpu(pe->software_state) & SPA_PE_VALID)) { 625 rc = -EINVAL; 626 goto unlock; 627 } 628 629 trace_ocxl_context_remove(current->pid, spa->spa_mem, pasid, 630 be32_to_cpu(pe->pid), be32_to_cpu(pe->tid)); 631 632 memset(pe, 0, sizeof(struct ocxl_process_element)); 633 /* 634 * The barrier makes sure the PE is removed from the SPA 635 * before we clear the NPU context cache below, so that the 636 * old PE cannot be reloaded erroneously. 637 */ 638 mb(); 639 640 /* 641 * hook to platform code 642 * On powerpc, the entry needs to be cleared from the context 643 * cache of the NPU. 644 */ 645 rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle); 646 WARN_ON(rc); 647 648 pe_data = radix_tree_delete(&spa->pe_tree, pe_handle); 649 if (!pe_data) { 650 WARN(1, "Couldn't find pe data when removing PE\n"); 651 } else { 652 mm_context_remove_copro(pe_data->mm); 653 mmdrop(pe_data->mm); 654 kfree_rcu(pe_data, rcu); 655 } 656 unlock: 657 mutex_unlock(&spa->spa_lock); 658 return rc; 659 } 660 EXPORT_SYMBOL_GPL(ocxl_link_remove_pe); 661 662 int ocxl_link_irq_alloc(void *link_handle, int *hw_irq, u64 *trigger_addr) 663 { 664 struct link *link = (struct link *) link_handle; 665 int rc, irq; 666 u64 addr; 667 668 if (atomic_dec_if_positive(&link->irq_available) < 0) 669 return -ENOSPC; 670 671 rc = pnv_ocxl_alloc_xive_irq(&irq, &addr); 672 if (rc) { 673 atomic_inc(&link->irq_available); 674 return rc; 675 } 676 677 *hw_irq = irq; 678 *trigger_addr = addr; 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(ocxl_link_irq_alloc); 682 683 void ocxl_link_free_irq(void *link_handle, int hw_irq) 684 { 685 struct link *link = (struct link *) link_handle; 686 687 pnv_ocxl_free_xive_irq(hw_irq); 688 atomic_inc(&link->irq_available); 689 } 690 EXPORT_SYMBOL_GPL(ocxl_link_free_irq); 691