xref: /openbmc/linux/drivers/misc/ocxl/link.c (revision 151f4e2b)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2017 IBM Corp.
3 #include <linux/sched/mm.h>
4 #include <linux/mutex.h>
5 #include <linux/mm_types.h>
6 #include <linux/mmu_context.h>
7 #include <asm/copro.h>
8 #include <asm/pnv-ocxl.h>
9 #include <misc/ocxl.h>
10 #include "ocxl_internal.h"
11 #include "trace.h"
12 
13 
14 #define SPA_PASID_BITS		15
15 #define SPA_PASID_MAX		((1 << SPA_PASID_BITS) - 1)
16 #define SPA_PE_MASK		SPA_PASID_MAX
17 #define SPA_SPA_SIZE_LOG	22 /* Each SPA is 4 Mb */
18 
19 #define SPA_CFG_SF		(1ull << (63-0))
20 #define SPA_CFG_TA		(1ull << (63-1))
21 #define SPA_CFG_HV		(1ull << (63-3))
22 #define SPA_CFG_UV		(1ull << (63-4))
23 #define SPA_CFG_XLAT_hpt	(0ull << (63-6)) /* Hashed page table (HPT) mode */
24 #define SPA_CFG_XLAT_roh	(2ull << (63-6)) /* Radix on HPT mode */
25 #define SPA_CFG_XLAT_ror	(3ull << (63-6)) /* Radix on Radix mode */
26 #define SPA_CFG_PR		(1ull << (63-49))
27 #define SPA_CFG_TC		(1ull << (63-54))
28 #define SPA_CFG_DR		(1ull << (63-59))
29 
30 #define SPA_XSL_TF		(1ull << (63-3))  /* Translation fault */
31 #define SPA_XSL_S		(1ull << (63-38)) /* Store operation */
32 
33 #define SPA_PE_VALID		0x80000000
34 
35 
36 struct pe_data {
37 	struct mm_struct *mm;
38 	/* callback to trigger when a translation fault occurs */
39 	void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr);
40 	/* opaque pointer to be passed to the above callback */
41 	void *xsl_err_data;
42 	struct rcu_head rcu;
43 };
44 
45 struct spa {
46 	struct ocxl_process_element *spa_mem;
47 	int spa_order;
48 	struct mutex spa_lock;
49 	struct radix_tree_root pe_tree; /* Maps PE handles to pe_data */
50 	char *irq_name;
51 	int virq;
52 	void __iomem *reg_dsisr;
53 	void __iomem *reg_dar;
54 	void __iomem *reg_tfc;
55 	void __iomem *reg_pe_handle;
56 	/*
57 	 * The following field are used by the memory fault
58 	 * interrupt handler. We can only have one interrupt at a
59 	 * time. The NPU won't raise another interrupt until the
60 	 * previous one has been ack'd by writing to the TFC register
61 	 */
62 	struct xsl_fault {
63 		struct work_struct fault_work;
64 		u64 pe;
65 		u64 dsisr;
66 		u64 dar;
67 		struct pe_data pe_data;
68 	} xsl_fault;
69 };
70 
71 /*
72  * A opencapi link can be used be by several PCI functions. We have
73  * one link per device slot.
74  *
75  * A linked list of opencapi links should suffice, as there's a
76  * limited number of opencapi slots on a system and lookup is only
77  * done when the device is probed
78  */
79 struct ocxl_link {
80 	struct list_head list;
81 	struct kref ref;
82 	int domain;
83 	int bus;
84 	int dev;
85 	atomic_t irq_available;
86 	struct spa *spa;
87 	void *platform_data;
88 };
89 static struct list_head links_list = LIST_HEAD_INIT(links_list);
90 static DEFINE_MUTEX(links_list_lock);
91 
92 enum xsl_response {
93 	CONTINUE,
94 	ADDRESS_ERROR,
95 	RESTART,
96 };
97 
98 
99 static void read_irq(struct spa *spa, u64 *dsisr, u64 *dar, u64 *pe)
100 {
101 	u64 reg;
102 
103 	*dsisr = in_be64(spa->reg_dsisr);
104 	*dar = in_be64(spa->reg_dar);
105 	reg = in_be64(spa->reg_pe_handle);
106 	*pe = reg & SPA_PE_MASK;
107 }
108 
109 static void ack_irq(struct spa *spa, enum xsl_response r)
110 {
111 	u64 reg = 0;
112 
113 	/* continue is not supported */
114 	if (r == RESTART)
115 		reg = PPC_BIT(31);
116 	else if (r == ADDRESS_ERROR)
117 		reg = PPC_BIT(30);
118 	else
119 		WARN(1, "Invalid irq response %d\n", r);
120 
121 	if (reg) {
122 		trace_ocxl_fault_ack(spa->spa_mem, spa->xsl_fault.pe,
123 				spa->xsl_fault.dsisr, spa->xsl_fault.dar, reg);
124 		out_be64(spa->reg_tfc, reg);
125 	}
126 }
127 
128 static void xsl_fault_handler_bh(struct work_struct *fault_work)
129 {
130 	vm_fault_t flt = 0;
131 	unsigned long access, flags, inv_flags = 0;
132 	enum xsl_response r;
133 	struct xsl_fault *fault = container_of(fault_work, struct xsl_fault,
134 					fault_work);
135 	struct spa *spa = container_of(fault, struct spa, xsl_fault);
136 
137 	int rc;
138 
139 	/*
140 	 * We must release a reference on mm_users whenever exiting this
141 	 * function (taken in the memory fault interrupt handler)
142 	 */
143 	rc = copro_handle_mm_fault(fault->pe_data.mm, fault->dar, fault->dsisr,
144 				&flt);
145 	if (rc) {
146 		pr_debug("copro_handle_mm_fault failed: %d\n", rc);
147 		if (fault->pe_data.xsl_err_cb) {
148 			fault->pe_data.xsl_err_cb(
149 				fault->pe_data.xsl_err_data,
150 				fault->dar, fault->dsisr);
151 		}
152 		r = ADDRESS_ERROR;
153 		goto ack;
154 	}
155 
156 	if (!radix_enabled()) {
157 		/*
158 		 * update_mmu_cache() will not have loaded the hash
159 		 * since current->trap is not a 0x400 or 0x300, so
160 		 * just call hash_page_mm() here.
161 		 */
162 		access = _PAGE_PRESENT | _PAGE_READ;
163 		if (fault->dsisr & SPA_XSL_S)
164 			access |= _PAGE_WRITE;
165 
166 		if (get_region_id(fault->dar) != USER_REGION_ID)
167 			access |= _PAGE_PRIVILEGED;
168 
169 		local_irq_save(flags);
170 		hash_page_mm(fault->pe_data.mm, fault->dar, access, 0x300,
171 			inv_flags);
172 		local_irq_restore(flags);
173 	}
174 	r = RESTART;
175 ack:
176 	mmput(fault->pe_data.mm);
177 	ack_irq(spa, r);
178 }
179 
180 static irqreturn_t xsl_fault_handler(int irq, void *data)
181 {
182 	struct ocxl_link *link = (struct ocxl_link *) data;
183 	struct spa *spa = link->spa;
184 	u64 dsisr, dar, pe_handle;
185 	struct pe_data *pe_data;
186 	struct ocxl_process_element *pe;
187 	int pid;
188 	bool schedule = false;
189 
190 	read_irq(spa, &dsisr, &dar, &pe_handle);
191 	trace_ocxl_fault(spa->spa_mem, pe_handle, dsisr, dar, -1);
192 
193 	WARN_ON(pe_handle > SPA_PE_MASK);
194 	pe = spa->spa_mem + pe_handle;
195 	pid = be32_to_cpu(pe->pid);
196 	/* We could be reading all null values here if the PE is being
197 	 * removed while an interrupt kicks in. It's not supposed to
198 	 * happen if the driver notified the AFU to terminate the
199 	 * PASID, and the AFU waited for pending operations before
200 	 * acknowledging. But even if it happens, we won't find a
201 	 * memory context below and fail silently, so it should be ok.
202 	 */
203 	if (!(dsisr & SPA_XSL_TF)) {
204 		WARN(1, "Invalid xsl interrupt fault register %#llx\n", dsisr);
205 		ack_irq(spa, ADDRESS_ERROR);
206 		return IRQ_HANDLED;
207 	}
208 
209 	rcu_read_lock();
210 	pe_data = radix_tree_lookup(&spa->pe_tree, pe_handle);
211 	if (!pe_data) {
212 		/*
213 		 * Could only happen if the driver didn't notify the
214 		 * AFU about PASID termination before removing the PE,
215 		 * or the AFU didn't wait for all memory access to
216 		 * have completed.
217 		 *
218 		 * Either way, we fail early, but we shouldn't log an
219 		 * error message, as it is a valid (if unexpected)
220 		 * scenario
221 		 */
222 		rcu_read_unlock();
223 		pr_debug("Unknown mm context for xsl interrupt\n");
224 		ack_irq(spa, ADDRESS_ERROR);
225 		return IRQ_HANDLED;
226 	}
227 	WARN_ON(pe_data->mm->context.id != pid);
228 
229 	if (mmget_not_zero(pe_data->mm)) {
230 			spa->xsl_fault.pe = pe_handle;
231 			spa->xsl_fault.dar = dar;
232 			spa->xsl_fault.dsisr = dsisr;
233 			spa->xsl_fault.pe_data = *pe_data;
234 			schedule = true;
235 			/* mm_users count released by bottom half */
236 	}
237 	rcu_read_unlock();
238 	if (schedule)
239 		schedule_work(&spa->xsl_fault.fault_work);
240 	else
241 		ack_irq(spa, ADDRESS_ERROR);
242 	return IRQ_HANDLED;
243 }
244 
245 static void unmap_irq_registers(struct spa *spa)
246 {
247 	pnv_ocxl_unmap_xsl_regs(spa->reg_dsisr, spa->reg_dar, spa->reg_tfc,
248 				spa->reg_pe_handle);
249 }
250 
251 static int map_irq_registers(struct pci_dev *dev, struct spa *spa)
252 {
253 	return pnv_ocxl_map_xsl_regs(dev, &spa->reg_dsisr, &spa->reg_dar,
254 				&spa->reg_tfc, &spa->reg_pe_handle);
255 }
256 
257 static int setup_xsl_irq(struct pci_dev *dev, struct ocxl_link *link)
258 {
259 	struct spa *spa = link->spa;
260 	int rc;
261 	int hwirq;
262 
263 	rc = pnv_ocxl_get_xsl_irq(dev, &hwirq);
264 	if (rc)
265 		return rc;
266 
267 	rc = map_irq_registers(dev, spa);
268 	if (rc)
269 		return rc;
270 
271 	spa->irq_name = kasprintf(GFP_KERNEL, "ocxl-xsl-%x-%x-%x",
272 				link->domain, link->bus, link->dev);
273 	if (!spa->irq_name) {
274 		dev_err(&dev->dev, "Can't allocate name for xsl interrupt\n");
275 		rc = -ENOMEM;
276 		goto err_xsl;
277 	}
278 	/*
279 	 * At some point, we'll need to look into allowing a higher
280 	 * number of interrupts. Could we have an IRQ domain per link?
281 	 */
282 	spa->virq = irq_create_mapping(NULL, hwirq);
283 	if (!spa->virq) {
284 		dev_err(&dev->dev,
285 			"irq_create_mapping failed for translation interrupt\n");
286 		rc = -EINVAL;
287 		goto err_name;
288 	}
289 
290 	dev_dbg(&dev->dev, "hwirq %d mapped to virq %d\n", hwirq, spa->virq);
291 
292 	rc = request_irq(spa->virq, xsl_fault_handler, 0, spa->irq_name,
293 			link);
294 	if (rc) {
295 		dev_err(&dev->dev,
296 			"request_irq failed for translation interrupt: %d\n",
297 			rc);
298 		rc = -EINVAL;
299 		goto err_mapping;
300 	}
301 	return 0;
302 
303 err_mapping:
304 	irq_dispose_mapping(spa->virq);
305 err_name:
306 	kfree(spa->irq_name);
307 err_xsl:
308 	unmap_irq_registers(spa);
309 	return rc;
310 }
311 
312 static void release_xsl_irq(struct ocxl_link *link)
313 {
314 	struct spa *spa = link->spa;
315 
316 	if (spa->virq) {
317 		free_irq(spa->virq, link);
318 		irq_dispose_mapping(spa->virq);
319 	}
320 	kfree(spa->irq_name);
321 	unmap_irq_registers(spa);
322 }
323 
324 static int alloc_spa(struct pci_dev *dev, struct ocxl_link *link)
325 {
326 	struct spa *spa;
327 
328 	spa = kzalloc(sizeof(struct spa), GFP_KERNEL);
329 	if (!spa)
330 		return -ENOMEM;
331 
332 	mutex_init(&spa->spa_lock);
333 	INIT_RADIX_TREE(&spa->pe_tree, GFP_KERNEL);
334 	INIT_WORK(&spa->xsl_fault.fault_work, xsl_fault_handler_bh);
335 
336 	spa->spa_order = SPA_SPA_SIZE_LOG - PAGE_SHIFT;
337 	spa->spa_mem = (struct ocxl_process_element *)
338 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, spa->spa_order);
339 	if (!spa->spa_mem) {
340 		dev_err(&dev->dev, "Can't allocate Shared Process Area\n");
341 		kfree(spa);
342 		return -ENOMEM;
343 	}
344 	pr_debug("Allocated SPA for %x:%x:%x at %p\n", link->domain, link->bus,
345 		link->dev, spa->spa_mem);
346 
347 	link->spa = spa;
348 	return 0;
349 }
350 
351 static void free_spa(struct ocxl_link *link)
352 {
353 	struct spa *spa = link->spa;
354 
355 	pr_debug("Freeing SPA for %x:%x:%x\n", link->domain, link->bus,
356 		link->dev);
357 
358 	if (spa && spa->spa_mem) {
359 		free_pages((unsigned long) spa->spa_mem, spa->spa_order);
360 		kfree(spa);
361 		link->spa = NULL;
362 	}
363 }
364 
365 static int alloc_link(struct pci_dev *dev, int PE_mask, struct ocxl_link **out_link)
366 {
367 	struct ocxl_link *link;
368 	int rc;
369 
370 	link = kzalloc(sizeof(struct ocxl_link), GFP_KERNEL);
371 	if (!link)
372 		return -ENOMEM;
373 
374 	kref_init(&link->ref);
375 	link->domain = pci_domain_nr(dev->bus);
376 	link->bus = dev->bus->number;
377 	link->dev = PCI_SLOT(dev->devfn);
378 	atomic_set(&link->irq_available, MAX_IRQ_PER_LINK);
379 
380 	rc = alloc_spa(dev, link);
381 	if (rc)
382 		goto err_free;
383 
384 	rc = setup_xsl_irq(dev, link);
385 	if (rc)
386 		goto err_spa;
387 
388 	/* platform specific hook */
389 	rc = pnv_ocxl_spa_setup(dev, link->spa->spa_mem, PE_mask,
390 				&link->platform_data);
391 	if (rc)
392 		goto err_xsl_irq;
393 
394 	*out_link = link;
395 	return 0;
396 
397 err_xsl_irq:
398 	release_xsl_irq(link);
399 err_spa:
400 	free_spa(link);
401 err_free:
402 	kfree(link);
403 	return rc;
404 }
405 
406 static void free_link(struct ocxl_link *link)
407 {
408 	release_xsl_irq(link);
409 	free_spa(link);
410 	kfree(link);
411 }
412 
413 int ocxl_link_setup(struct pci_dev *dev, int PE_mask, void **link_handle)
414 {
415 	int rc = 0;
416 	struct ocxl_link *link;
417 
418 	mutex_lock(&links_list_lock);
419 	list_for_each_entry(link, &links_list, list) {
420 		/* The functions of a device all share the same link */
421 		if (link->domain == pci_domain_nr(dev->bus) &&
422 			link->bus == dev->bus->number &&
423 			link->dev == PCI_SLOT(dev->devfn)) {
424 			kref_get(&link->ref);
425 			*link_handle = link;
426 			goto unlock;
427 		}
428 	}
429 	rc = alloc_link(dev, PE_mask, &link);
430 	if (rc)
431 		goto unlock;
432 
433 	list_add(&link->list, &links_list);
434 	*link_handle = link;
435 unlock:
436 	mutex_unlock(&links_list_lock);
437 	return rc;
438 }
439 EXPORT_SYMBOL_GPL(ocxl_link_setup);
440 
441 static void release_xsl(struct kref *ref)
442 {
443 	struct ocxl_link *link = container_of(ref, struct ocxl_link, ref);
444 
445 	list_del(&link->list);
446 	/* call platform code before releasing data */
447 	pnv_ocxl_spa_release(link->platform_data);
448 	free_link(link);
449 }
450 
451 void ocxl_link_release(struct pci_dev *dev, void *link_handle)
452 {
453 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
454 
455 	mutex_lock(&links_list_lock);
456 	kref_put(&link->ref, release_xsl);
457 	mutex_unlock(&links_list_lock);
458 }
459 EXPORT_SYMBOL_GPL(ocxl_link_release);
460 
461 static u64 calculate_cfg_state(bool kernel)
462 {
463 	u64 state;
464 
465 	state = SPA_CFG_DR;
466 	if (mfspr(SPRN_LPCR) & LPCR_TC)
467 		state |= SPA_CFG_TC;
468 	if (radix_enabled())
469 		state |= SPA_CFG_XLAT_ror;
470 	else
471 		state |= SPA_CFG_XLAT_hpt;
472 	state |= SPA_CFG_HV;
473 	if (kernel) {
474 		if (mfmsr() & MSR_SF)
475 			state |= SPA_CFG_SF;
476 	} else {
477 		state |= SPA_CFG_PR;
478 		if (!test_tsk_thread_flag(current, TIF_32BIT))
479 			state |= SPA_CFG_SF;
480 	}
481 	return state;
482 }
483 
484 int ocxl_link_add_pe(void *link_handle, int pasid, u32 pidr, u32 tidr,
485 		u64 amr, struct mm_struct *mm,
486 		void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr),
487 		void *xsl_err_data)
488 {
489 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
490 	struct spa *spa = link->spa;
491 	struct ocxl_process_element *pe;
492 	int pe_handle, rc = 0;
493 	struct pe_data *pe_data;
494 
495 	BUILD_BUG_ON(sizeof(struct ocxl_process_element) != 128);
496 	if (pasid > SPA_PASID_MAX)
497 		return -EINVAL;
498 
499 	mutex_lock(&spa->spa_lock);
500 	pe_handle = pasid & SPA_PE_MASK;
501 	pe = spa->spa_mem + pe_handle;
502 
503 	if (pe->software_state) {
504 		rc = -EBUSY;
505 		goto unlock;
506 	}
507 
508 	pe_data = kmalloc(sizeof(*pe_data), GFP_KERNEL);
509 	if (!pe_data) {
510 		rc = -ENOMEM;
511 		goto unlock;
512 	}
513 
514 	pe_data->mm = mm;
515 	pe_data->xsl_err_cb = xsl_err_cb;
516 	pe_data->xsl_err_data = xsl_err_data;
517 
518 	memset(pe, 0, sizeof(struct ocxl_process_element));
519 	pe->config_state = cpu_to_be64(calculate_cfg_state(pidr == 0));
520 	pe->lpid = cpu_to_be32(mfspr(SPRN_LPID));
521 	pe->pid = cpu_to_be32(pidr);
522 	pe->tid = cpu_to_be32(tidr);
523 	pe->amr = cpu_to_be64(amr);
524 	pe->software_state = cpu_to_be32(SPA_PE_VALID);
525 
526 	mm_context_add_copro(mm);
527 	/*
528 	 * Barrier is to make sure PE is visible in the SPA before it
529 	 * is used by the device. It also helps with the global TLBI
530 	 * invalidation
531 	 */
532 	mb();
533 	radix_tree_insert(&spa->pe_tree, pe_handle, pe_data);
534 
535 	/*
536 	 * The mm must stay valid for as long as the device uses it. We
537 	 * lower the count when the context is removed from the SPA.
538 	 *
539 	 * We grab mm_count (and not mm_users), as we don't want to
540 	 * end up in a circular dependency if a process mmaps its
541 	 * mmio, therefore incrementing the file ref count when
542 	 * calling mmap(), and forgets to unmap before exiting. In
543 	 * that scenario, when the kernel handles the death of the
544 	 * process, the file is not cleaned because unmap was not
545 	 * called, and the mm wouldn't be freed because we would still
546 	 * have a reference on mm_users. Incrementing mm_count solves
547 	 * the problem.
548 	 */
549 	mmgrab(mm);
550 	trace_ocxl_context_add(current->pid, spa->spa_mem, pasid, pidr, tidr);
551 unlock:
552 	mutex_unlock(&spa->spa_lock);
553 	return rc;
554 }
555 EXPORT_SYMBOL_GPL(ocxl_link_add_pe);
556 
557 int ocxl_link_update_pe(void *link_handle, int pasid, __u16 tid)
558 {
559 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
560 	struct spa *spa = link->spa;
561 	struct ocxl_process_element *pe;
562 	int pe_handle, rc;
563 
564 	if (pasid > SPA_PASID_MAX)
565 		return -EINVAL;
566 
567 	pe_handle = pasid & SPA_PE_MASK;
568 	pe = spa->spa_mem + pe_handle;
569 
570 	mutex_lock(&spa->spa_lock);
571 
572 	pe->tid = cpu_to_be32(tid);
573 
574 	/*
575 	 * The barrier makes sure the PE is updated
576 	 * before we clear the NPU context cache below, so that the
577 	 * old PE cannot be reloaded erroneously.
578 	 */
579 	mb();
580 
581 	/*
582 	 * hook to platform code
583 	 * On powerpc, the entry needs to be cleared from the context
584 	 * cache of the NPU.
585 	 */
586 	rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
587 	WARN_ON(rc);
588 
589 	mutex_unlock(&spa->spa_lock);
590 	return rc;
591 }
592 
593 int ocxl_link_remove_pe(void *link_handle, int pasid)
594 {
595 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
596 	struct spa *spa = link->spa;
597 	struct ocxl_process_element *pe;
598 	struct pe_data *pe_data;
599 	int pe_handle, rc;
600 
601 	if (pasid > SPA_PASID_MAX)
602 		return -EINVAL;
603 
604 	/*
605 	 * About synchronization with our memory fault handler:
606 	 *
607 	 * Before removing the PE, the driver is supposed to have
608 	 * notified the AFU, which should have cleaned up and make
609 	 * sure the PASID is no longer in use, including pending
610 	 * interrupts. However, there's no way to be sure...
611 	 *
612 	 * We clear the PE and remove the context from our radix
613 	 * tree. From that point on, any new interrupt for that
614 	 * context will fail silently, which is ok. As mentioned
615 	 * above, that's not expected, but it could happen if the
616 	 * driver or AFU didn't do the right thing.
617 	 *
618 	 * There could still be a bottom half running, but we don't
619 	 * need to wait/flush, as it is managing a reference count on
620 	 * the mm it reads from the radix tree.
621 	 */
622 	pe_handle = pasid & SPA_PE_MASK;
623 	pe = spa->spa_mem + pe_handle;
624 
625 	mutex_lock(&spa->spa_lock);
626 
627 	if (!(be32_to_cpu(pe->software_state) & SPA_PE_VALID)) {
628 		rc = -EINVAL;
629 		goto unlock;
630 	}
631 
632 	trace_ocxl_context_remove(current->pid, spa->spa_mem, pasid,
633 				be32_to_cpu(pe->pid), be32_to_cpu(pe->tid));
634 
635 	memset(pe, 0, sizeof(struct ocxl_process_element));
636 	/*
637 	 * The barrier makes sure the PE is removed from the SPA
638 	 * before we clear the NPU context cache below, so that the
639 	 * old PE cannot be reloaded erroneously.
640 	 */
641 	mb();
642 
643 	/*
644 	 * hook to platform code
645 	 * On powerpc, the entry needs to be cleared from the context
646 	 * cache of the NPU.
647 	 */
648 	rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
649 	WARN_ON(rc);
650 
651 	pe_data = radix_tree_delete(&spa->pe_tree, pe_handle);
652 	if (!pe_data) {
653 		WARN(1, "Couldn't find pe data when removing PE\n");
654 	} else {
655 		mm_context_remove_copro(pe_data->mm);
656 		mmdrop(pe_data->mm);
657 		kfree_rcu(pe_data, rcu);
658 	}
659 unlock:
660 	mutex_unlock(&spa->spa_lock);
661 	return rc;
662 }
663 EXPORT_SYMBOL_GPL(ocxl_link_remove_pe);
664 
665 int ocxl_link_irq_alloc(void *link_handle, int *hw_irq, u64 *trigger_addr)
666 {
667 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
668 	int rc, irq;
669 	u64 addr;
670 
671 	if (atomic_dec_if_positive(&link->irq_available) < 0)
672 		return -ENOSPC;
673 
674 	rc = pnv_ocxl_alloc_xive_irq(&irq, &addr);
675 	if (rc) {
676 		atomic_inc(&link->irq_available);
677 		return rc;
678 	}
679 
680 	*hw_irq = irq;
681 	*trigger_addr = addr;
682 	return 0;
683 }
684 EXPORT_SYMBOL_GPL(ocxl_link_irq_alloc);
685 
686 void ocxl_link_free_irq(void *link_handle, int hw_irq)
687 {
688 	struct ocxl_link *link = (struct ocxl_link *) link_handle;
689 
690 	pnv_ocxl_free_xive_irq(hw_irq);
691 	atomic_inc(&link->irq_available);
692 }
693 EXPORT_SYMBOL_GPL(ocxl_link_free_irq);
694