xref: /openbmc/linux/drivers/misc/ocxl/link.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2017 IBM Corp.
3 #include <linux/sched/mm.h>
4 #include <linux/mutex.h>
5 #include <linux/mm_types.h>
6 #include <linux/mmu_context.h>
7 #include <asm/copro.h>
8 #include <asm/pnv-ocxl.h>
9 #include <misc/ocxl.h>
10 #include "ocxl_internal.h"
11 #include "trace.h"
12 
13 
14 #define SPA_PASID_BITS		15
15 #define SPA_PASID_MAX		((1 << SPA_PASID_BITS) - 1)
16 #define SPA_PE_MASK		SPA_PASID_MAX
17 #define SPA_SPA_SIZE_LOG	22 /* Each SPA is 4 Mb */
18 
19 #define SPA_CFG_SF		(1ull << (63-0))
20 #define SPA_CFG_TA		(1ull << (63-1))
21 #define SPA_CFG_HV		(1ull << (63-3))
22 #define SPA_CFG_UV		(1ull << (63-4))
23 #define SPA_CFG_XLAT_hpt	(0ull << (63-6)) /* Hashed page table (HPT) mode */
24 #define SPA_CFG_XLAT_roh	(2ull << (63-6)) /* Radix on HPT mode */
25 #define SPA_CFG_XLAT_ror	(3ull << (63-6)) /* Radix on Radix mode */
26 #define SPA_CFG_PR		(1ull << (63-49))
27 #define SPA_CFG_TC		(1ull << (63-54))
28 #define SPA_CFG_DR		(1ull << (63-59))
29 
30 #define SPA_XSL_TF		(1ull << (63-3))  /* Translation fault */
31 #define SPA_XSL_S		(1ull << (63-38)) /* Store operation */
32 
33 #define SPA_PE_VALID		0x80000000
34 
35 
36 struct pe_data {
37 	struct mm_struct *mm;
38 	/* callback to trigger when a translation fault occurs */
39 	void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr);
40 	/* opaque pointer to be passed to the above callback */
41 	void *xsl_err_data;
42 	struct rcu_head rcu;
43 };
44 
45 struct spa {
46 	struct ocxl_process_element *spa_mem;
47 	int spa_order;
48 	struct mutex spa_lock;
49 	struct radix_tree_root pe_tree; /* Maps PE handles to pe_data */
50 	char *irq_name;
51 	int virq;
52 	void __iomem *reg_dsisr;
53 	void __iomem *reg_dar;
54 	void __iomem *reg_tfc;
55 	void __iomem *reg_pe_handle;
56 	/*
57 	 * The following field are used by the memory fault
58 	 * interrupt handler. We can only have one interrupt at a
59 	 * time. The NPU won't raise another interrupt until the
60 	 * previous one has been ack'd by writing to the TFC register
61 	 */
62 	struct xsl_fault {
63 		struct work_struct fault_work;
64 		u64 pe;
65 		u64 dsisr;
66 		u64 dar;
67 		struct pe_data pe_data;
68 	} xsl_fault;
69 };
70 
71 /*
72  * A opencapi link can be used be by several PCI functions. We have
73  * one link per device slot.
74  *
75  * A linked list of opencapi links should suffice, as there's a
76  * limited number of opencapi slots on a system and lookup is only
77  * done when the device is probed
78  */
79 struct link {
80 	struct list_head list;
81 	struct kref ref;
82 	int domain;
83 	int bus;
84 	int dev;
85 	atomic_t irq_available;
86 	struct spa *spa;
87 	void *platform_data;
88 };
89 static struct list_head links_list = LIST_HEAD_INIT(links_list);
90 static DEFINE_MUTEX(links_list_lock);
91 
92 enum xsl_response {
93 	CONTINUE,
94 	ADDRESS_ERROR,
95 	RESTART,
96 };
97 
98 
99 static void read_irq(struct spa *spa, u64 *dsisr, u64 *dar, u64 *pe)
100 {
101 	u64 reg;
102 
103 	*dsisr = in_be64(spa->reg_dsisr);
104 	*dar = in_be64(spa->reg_dar);
105 	reg = in_be64(spa->reg_pe_handle);
106 	*pe = reg & SPA_PE_MASK;
107 }
108 
109 static void ack_irq(struct spa *spa, enum xsl_response r)
110 {
111 	u64 reg = 0;
112 
113 	/* continue is not supported */
114 	if (r == RESTART)
115 		reg = PPC_BIT(31);
116 	else if (r == ADDRESS_ERROR)
117 		reg = PPC_BIT(30);
118 	else
119 		WARN(1, "Invalid irq response %d\n", r);
120 
121 	if (reg) {
122 		trace_ocxl_fault_ack(spa->spa_mem, spa->xsl_fault.pe,
123 				spa->xsl_fault.dsisr, spa->xsl_fault.dar, reg);
124 		out_be64(spa->reg_tfc, reg);
125 	}
126 }
127 
128 static void xsl_fault_handler_bh(struct work_struct *fault_work)
129 {
130 	vm_fault_t flt = 0;
131 	unsigned long access, flags, inv_flags = 0;
132 	enum xsl_response r;
133 	struct xsl_fault *fault = container_of(fault_work, struct xsl_fault,
134 					fault_work);
135 	struct spa *spa = container_of(fault, struct spa, xsl_fault);
136 
137 	int rc;
138 
139 	/*
140 	 * We must release a reference on mm_users whenever exiting this
141 	 * function (taken in the memory fault interrupt handler)
142 	 */
143 	rc = copro_handle_mm_fault(fault->pe_data.mm, fault->dar, fault->dsisr,
144 				&flt);
145 	if (rc) {
146 		pr_debug("copro_handle_mm_fault failed: %d\n", rc);
147 		if (fault->pe_data.xsl_err_cb) {
148 			fault->pe_data.xsl_err_cb(
149 				fault->pe_data.xsl_err_data,
150 				fault->dar, fault->dsisr);
151 		}
152 		r = ADDRESS_ERROR;
153 		goto ack;
154 	}
155 
156 	if (!radix_enabled()) {
157 		/*
158 		 * update_mmu_cache() will not have loaded the hash
159 		 * since current->trap is not a 0x400 or 0x300, so
160 		 * just call hash_page_mm() here.
161 		 */
162 		access = _PAGE_PRESENT | _PAGE_READ;
163 		if (fault->dsisr & SPA_XSL_S)
164 			access |= _PAGE_WRITE;
165 
166 		if (REGION_ID(fault->dar) != USER_REGION_ID)
167 			access |= _PAGE_PRIVILEGED;
168 
169 		local_irq_save(flags);
170 		hash_page_mm(fault->pe_data.mm, fault->dar, access, 0x300,
171 			inv_flags);
172 		local_irq_restore(flags);
173 	}
174 	r = RESTART;
175 ack:
176 	mmput(fault->pe_data.mm);
177 	ack_irq(spa, r);
178 }
179 
180 static irqreturn_t xsl_fault_handler(int irq, void *data)
181 {
182 	struct link *link = (struct link *) data;
183 	struct spa *spa = link->spa;
184 	u64 dsisr, dar, pe_handle;
185 	struct pe_data *pe_data;
186 	struct ocxl_process_element *pe;
187 	int lpid, pid, tid;
188 	bool schedule = false;
189 
190 	read_irq(spa, &dsisr, &dar, &pe_handle);
191 	trace_ocxl_fault(spa->spa_mem, pe_handle, dsisr, dar, -1);
192 
193 	WARN_ON(pe_handle > SPA_PE_MASK);
194 	pe = spa->spa_mem + pe_handle;
195 	lpid = be32_to_cpu(pe->lpid);
196 	pid = be32_to_cpu(pe->pid);
197 	tid = be32_to_cpu(pe->tid);
198 	/* We could be reading all null values here if the PE is being
199 	 * removed while an interrupt kicks in. It's not supposed to
200 	 * happen if the driver notified the AFU to terminate the
201 	 * PASID, and the AFU waited for pending operations before
202 	 * acknowledging. But even if it happens, we won't find a
203 	 * memory context below and fail silently, so it should be ok.
204 	 */
205 	if (!(dsisr & SPA_XSL_TF)) {
206 		WARN(1, "Invalid xsl interrupt fault register %#llx\n", dsisr);
207 		ack_irq(spa, ADDRESS_ERROR);
208 		return IRQ_HANDLED;
209 	}
210 
211 	rcu_read_lock();
212 	pe_data = radix_tree_lookup(&spa->pe_tree, pe_handle);
213 	if (!pe_data) {
214 		/*
215 		 * Could only happen if the driver didn't notify the
216 		 * AFU about PASID termination before removing the PE,
217 		 * or the AFU didn't wait for all memory access to
218 		 * have completed.
219 		 *
220 		 * Either way, we fail early, but we shouldn't log an
221 		 * error message, as it is a valid (if unexpected)
222 		 * scenario
223 		 */
224 		rcu_read_unlock();
225 		pr_debug("Unknown mm context for xsl interrupt\n");
226 		ack_irq(spa, ADDRESS_ERROR);
227 		return IRQ_HANDLED;
228 	}
229 	WARN_ON(pe_data->mm->context.id != pid);
230 
231 	if (mmget_not_zero(pe_data->mm)) {
232 			spa->xsl_fault.pe = pe_handle;
233 			spa->xsl_fault.dar = dar;
234 			spa->xsl_fault.dsisr = dsisr;
235 			spa->xsl_fault.pe_data = *pe_data;
236 			schedule = true;
237 			/* mm_users count released by bottom half */
238 	}
239 	rcu_read_unlock();
240 	if (schedule)
241 		schedule_work(&spa->xsl_fault.fault_work);
242 	else
243 		ack_irq(spa, ADDRESS_ERROR);
244 	return IRQ_HANDLED;
245 }
246 
247 static void unmap_irq_registers(struct spa *spa)
248 {
249 	pnv_ocxl_unmap_xsl_regs(spa->reg_dsisr, spa->reg_dar, spa->reg_tfc,
250 				spa->reg_pe_handle);
251 }
252 
253 static int map_irq_registers(struct pci_dev *dev, struct spa *spa)
254 {
255 	return pnv_ocxl_map_xsl_regs(dev, &spa->reg_dsisr, &spa->reg_dar,
256 				&spa->reg_tfc, &spa->reg_pe_handle);
257 }
258 
259 static int setup_xsl_irq(struct pci_dev *dev, struct link *link)
260 {
261 	struct spa *spa = link->spa;
262 	int rc;
263 	int hwirq;
264 
265 	rc = pnv_ocxl_get_xsl_irq(dev, &hwirq);
266 	if (rc)
267 		return rc;
268 
269 	rc = map_irq_registers(dev, spa);
270 	if (rc)
271 		return rc;
272 
273 	spa->irq_name = kasprintf(GFP_KERNEL, "ocxl-xsl-%x-%x-%x",
274 				link->domain, link->bus, link->dev);
275 	if (!spa->irq_name) {
276 		dev_err(&dev->dev, "Can't allocate name for xsl interrupt\n");
277 		rc = -ENOMEM;
278 		goto err_xsl;
279 	}
280 	/*
281 	 * At some point, we'll need to look into allowing a higher
282 	 * number of interrupts. Could we have an IRQ domain per link?
283 	 */
284 	spa->virq = irq_create_mapping(NULL, hwirq);
285 	if (!spa->virq) {
286 		dev_err(&dev->dev,
287 			"irq_create_mapping failed for translation interrupt\n");
288 		rc = -EINVAL;
289 		goto err_name;
290 	}
291 
292 	dev_dbg(&dev->dev, "hwirq %d mapped to virq %d\n", hwirq, spa->virq);
293 
294 	rc = request_irq(spa->virq, xsl_fault_handler, 0, spa->irq_name,
295 			link);
296 	if (rc) {
297 		dev_err(&dev->dev,
298 			"request_irq failed for translation interrupt: %d\n",
299 			rc);
300 		rc = -EINVAL;
301 		goto err_mapping;
302 	}
303 	return 0;
304 
305 err_mapping:
306 	irq_dispose_mapping(spa->virq);
307 err_name:
308 	kfree(spa->irq_name);
309 err_xsl:
310 	unmap_irq_registers(spa);
311 	return rc;
312 }
313 
314 static void release_xsl_irq(struct link *link)
315 {
316 	struct spa *spa = link->spa;
317 
318 	if (spa->virq) {
319 		free_irq(spa->virq, link);
320 		irq_dispose_mapping(spa->virq);
321 	}
322 	kfree(spa->irq_name);
323 	unmap_irq_registers(spa);
324 }
325 
326 static int alloc_spa(struct pci_dev *dev, struct link *link)
327 {
328 	struct spa *spa;
329 
330 	spa = kzalloc(sizeof(struct spa), GFP_KERNEL);
331 	if (!spa)
332 		return -ENOMEM;
333 
334 	mutex_init(&spa->spa_lock);
335 	INIT_RADIX_TREE(&spa->pe_tree, GFP_KERNEL);
336 	INIT_WORK(&spa->xsl_fault.fault_work, xsl_fault_handler_bh);
337 
338 	spa->spa_order = SPA_SPA_SIZE_LOG - PAGE_SHIFT;
339 	spa->spa_mem = (struct ocxl_process_element *)
340 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, spa->spa_order);
341 	if (!spa->spa_mem) {
342 		dev_err(&dev->dev, "Can't allocate Shared Process Area\n");
343 		kfree(spa);
344 		return -ENOMEM;
345 	}
346 	pr_debug("Allocated SPA for %x:%x:%x at %p\n", link->domain, link->bus,
347 		link->dev, spa->spa_mem);
348 
349 	link->spa = spa;
350 	return 0;
351 }
352 
353 static void free_spa(struct link *link)
354 {
355 	struct spa *spa = link->spa;
356 
357 	pr_debug("Freeing SPA for %x:%x:%x\n", link->domain, link->bus,
358 		link->dev);
359 
360 	if (spa && spa->spa_mem) {
361 		free_pages((unsigned long) spa->spa_mem, spa->spa_order);
362 		kfree(spa);
363 		link->spa = NULL;
364 	}
365 }
366 
367 static int alloc_link(struct pci_dev *dev, int PE_mask, struct link **out_link)
368 {
369 	struct link *link;
370 	int rc;
371 
372 	link = kzalloc(sizeof(struct link), GFP_KERNEL);
373 	if (!link)
374 		return -ENOMEM;
375 
376 	kref_init(&link->ref);
377 	link->domain = pci_domain_nr(dev->bus);
378 	link->bus = dev->bus->number;
379 	link->dev = PCI_SLOT(dev->devfn);
380 	atomic_set(&link->irq_available, MAX_IRQ_PER_LINK);
381 
382 	rc = alloc_spa(dev, link);
383 	if (rc)
384 		goto err_free;
385 
386 	rc = setup_xsl_irq(dev, link);
387 	if (rc)
388 		goto err_spa;
389 
390 	/* platform specific hook */
391 	rc = pnv_ocxl_spa_setup(dev, link->spa->spa_mem, PE_mask,
392 				&link->platform_data);
393 	if (rc)
394 		goto err_xsl_irq;
395 
396 	*out_link = link;
397 	return 0;
398 
399 err_xsl_irq:
400 	release_xsl_irq(link);
401 err_spa:
402 	free_spa(link);
403 err_free:
404 	kfree(link);
405 	return rc;
406 }
407 
408 static void free_link(struct link *link)
409 {
410 	release_xsl_irq(link);
411 	free_spa(link);
412 	kfree(link);
413 }
414 
415 int ocxl_link_setup(struct pci_dev *dev, int PE_mask, void **link_handle)
416 {
417 	int rc = 0;
418 	struct link *link;
419 
420 	mutex_lock(&links_list_lock);
421 	list_for_each_entry(link, &links_list, list) {
422 		/* The functions of a device all share the same link */
423 		if (link->domain == pci_domain_nr(dev->bus) &&
424 			link->bus == dev->bus->number &&
425 			link->dev == PCI_SLOT(dev->devfn)) {
426 			kref_get(&link->ref);
427 			*link_handle = link;
428 			goto unlock;
429 		}
430 	}
431 	rc = alloc_link(dev, PE_mask, &link);
432 	if (rc)
433 		goto unlock;
434 
435 	list_add(&link->list, &links_list);
436 	*link_handle = link;
437 unlock:
438 	mutex_unlock(&links_list_lock);
439 	return rc;
440 }
441 EXPORT_SYMBOL_GPL(ocxl_link_setup);
442 
443 static void release_xsl(struct kref *ref)
444 {
445 	struct link *link = container_of(ref, struct link, ref);
446 
447 	list_del(&link->list);
448 	/* call platform code before releasing data */
449 	pnv_ocxl_spa_release(link->platform_data);
450 	free_link(link);
451 }
452 
453 void ocxl_link_release(struct pci_dev *dev, void *link_handle)
454 {
455 	struct link *link = (struct link *) link_handle;
456 
457 	mutex_lock(&links_list_lock);
458 	kref_put(&link->ref, release_xsl);
459 	mutex_unlock(&links_list_lock);
460 }
461 EXPORT_SYMBOL_GPL(ocxl_link_release);
462 
463 static u64 calculate_cfg_state(bool kernel)
464 {
465 	u64 state;
466 
467 	state = SPA_CFG_DR;
468 	if (mfspr(SPRN_LPCR) & LPCR_TC)
469 		state |= SPA_CFG_TC;
470 	if (radix_enabled())
471 		state |= SPA_CFG_XLAT_ror;
472 	else
473 		state |= SPA_CFG_XLAT_hpt;
474 	state |= SPA_CFG_HV;
475 	if (kernel) {
476 		if (mfmsr() & MSR_SF)
477 			state |= SPA_CFG_SF;
478 	} else {
479 		state |= SPA_CFG_PR;
480 		if (!test_tsk_thread_flag(current, TIF_32BIT))
481 			state |= SPA_CFG_SF;
482 	}
483 	return state;
484 }
485 
486 int ocxl_link_add_pe(void *link_handle, int pasid, u32 pidr, u32 tidr,
487 		u64 amr, struct mm_struct *mm,
488 		void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr),
489 		void *xsl_err_data)
490 {
491 	struct link *link = (struct link *) link_handle;
492 	struct spa *spa = link->spa;
493 	struct ocxl_process_element *pe;
494 	int pe_handle, rc = 0;
495 	struct pe_data *pe_data;
496 
497 	BUILD_BUG_ON(sizeof(struct ocxl_process_element) != 128);
498 	if (pasid > SPA_PASID_MAX)
499 		return -EINVAL;
500 
501 	mutex_lock(&spa->spa_lock);
502 	pe_handle = pasid & SPA_PE_MASK;
503 	pe = spa->spa_mem + pe_handle;
504 
505 	if (pe->software_state) {
506 		rc = -EBUSY;
507 		goto unlock;
508 	}
509 
510 	pe_data = kmalloc(sizeof(*pe_data), GFP_KERNEL);
511 	if (!pe_data) {
512 		rc = -ENOMEM;
513 		goto unlock;
514 	}
515 
516 	pe_data->mm = mm;
517 	pe_data->xsl_err_cb = xsl_err_cb;
518 	pe_data->xsl_err_data = xsl_err_data;
519 
520 	memset(pe, 0, sizeof(struct ocxl_process_element));
521 	pe->config_state = cpu_to_be64(calculate_cfg_state(pidr == 0));
522 	pe->lpid = cpu_to_be32(mfspr(SPRN_LPID));
523 	pe->pid = cpu_to_be32(pidr);
524 	pe->tid = cpu_to_be32(tidr);
525 	pe->amr = cpu_to_be64(amr);
526 	pe->software_state = cpu_to_be32(SPA_PE_VALID);
527 
528 	mm_context_add_copro(mm);
529 	/*
530 	 * Barrier is to make sure PE is visible in the SPA before it
531 	 * is used by the device. It also helps with the global TLBI
532 	 * invalidation
533 	 */
534 	mb();
535 	radix_tree_insert(&spa->pe_tree, pe_handle, pe_data);
536 
537 	/*
538 	 * The mm must stay valid for as long as the device uses it. We
539 	 * lower the count when the context is removed from the SPA.
540 	 *
541 	 * We grab mm_count (and not mm_users), as we don't want to
542 	 * end up in a circular dependency if a process mmaps its
543 	 * mmio, therefore incrementing the file ref count when
544 	 * calling mmap(), and forgets to unmap before exiting. In
545 	 * that scenario, when the kernel handles the death of the
546 	 * process, the file is not cleaned because unmap was not
547 	 * called, and the mm wouldn't be freed because we would still
548 	 * have a reference on mm_users. Incrementing mm_count solves
549 	 * the problem.
550 	 */
551 	mmgrab(mm);
552 	trace_ocxl_context_add(current->pid, spa->spa_mem, pasid, pidr, tidr);
553 unlock:
554 	mutex_unlock(&spa->spa_lock);
555 	return rc;
556 }
557 EXPORT_SYMBOL_GPL(ocxl_link_add_pe);
558 
559 int ocxl_link_update_pe(void *link_handle, int pasid, __u16 tid)
560 {
561 	struct link *link = (struct link *) link_handle;
562 	struct spa *spa = link->spa;
563 	struct ocxl_process_element *pe;
564 	int pe_handle, rc;
565 
566 	if (pasid > SPA_PASID_MAX)
567 		return -EINVAL;
568 
569 	pe_handle = pasid & SPA_PE_MASK;
570 	pe = spa->spa_mem + pe_handle;
571 
572 	mutex_lock(&spa->spa_lock);
573 
574 	pe->tid = cpu_to_be32(tid);
575 
576 	/*
577 	 * The barrier makes sure the PE is updated
578 	 * before we clear the NPU context cache below, so that the
579 	 * old PE cannot be reloaded erroneously.
580 	 */
581 	mb();
582 
583 	/*
584 	 * hook to platform code
585 	 * On powerpc, the entry needs to be cleared from the context
586 	 * cache of the NPU.
587 	 */
588 	rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
589 	WARN_ON(rc);
590 
591 	mutex_unlock(&spa->spa_lock);
592 	return rc;
593 }
594 
595 int ocxl_link_remove_pe(void *link_handle, int pasid)
596 {
597 	struct link *link = (struct link *) link_handle;
598 	struct spa *spa = link->spa;
599 	struct ocxl_process_element *pe;
600 	struct pe_data *pe_data;
601 	int pe_handle, rc;
602 
603 	if (pasid > SPA_PASID_MAX)
604 		return -EINVAL;
605 
606 	/*
607 	 * About synchronization with our memory fault handler:
608 	 *
609 	 * Before removing the PE, the driver is supposed to have
610 	 * notified the AFU, which should have cleaned up and make
611 	 * sure the PASID is no longer in use, including pending
612 	 * interrupts. However, there's no way to be sure...
613 	 *
614 	 * We clear the PE and remove the context from our radix
615 	 * tree. From that point on, any new interrupt for that
616 	 * context will fail silently, which is ok. As mentioned
617 	 * above, that's not expected, but it could happen if the
618 	 * driver or AFU didn't do the right thing.
619 	 *
620 	 * There could still be a bottom half running, but we don't
621 	 * need to wait/flush, as it is managing a reference count on
622 	 * the mm it reads from the radix tree.
623 	 */
624 	pe_handle = pasid & SPA_PE_MASK;
625 	pe = spa->spa_mem + pe_handle;
626 
627 	mutex_lock(&spa->spa_lock);
628 
629 	if (!(be32_to_cpu(pe->software_state) & SPA_PE_VALID)) {
630 		rc = -EINVAL;
631 		goto unlock;
632 	}
633 
634 	trace_ocxl_context_remove(current->pid, spa->spa_mem, pasid,
635 				be32_to_cpu(pe->pid), be32_to_cpu(pe->tid));
636 
637 	memset(pe, 0, sizeof(struct ocxl_process_element));
638 	/*
639 	 * The barrier makes sure the PE is removed from the SPA
640 	 * before we clear the NPU context cache below, so that the
641 	 * old PE cannot be reloaded erroneously.
642 	 */
643 	mb();
644 
645 	/*
646 	 * hook to platform code
647 	 * On powerpc, the entry needs to be cleared from the context
648 	 * cache of the NPU.
649 	 */
650 	rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle);
651 	WARN_ON(rc);
652 
653 	pe_data = radix_tree_delete(&spa->pe_tree, pe_handle);
654 	if (!pe_data) {
655 		WARN(1, "Couldn't find pe data when removing PE\n");
656 	} else {
657 		mm_context_remove_copro(pe_data->mm);
658 		mmdrop(pe_data->mm);
659 		kfree_rcu(pe_data, rcu);
660 	}
661 unlock:
662 	mutex_unlock(&spa->spa_lock);
663 	return rc;
664 }
665 EXPORT_SYMBOL_GPL(ocxl_link_remove_pe);
666 
667 int ocxl_link_irq_alloc(void *link_handle, int *hw_irq, u64 *trigger_addr)
668 {
669 	struct link *link = (struct link *) link_handle;
670 	int rc, irq;
671 	u64 addr;
672 
673 	if (atomic_dec_if_positive(&link->irq_available) < 0)
674 		return -ENOSPC;
675 
676 	rc = pnv_ocxl_alloc_xive_irq(&irq, &addr);
677 	if (rc) {
678 		atomic_inc(&link->irq_available);
679 		return rc;
680 	}
681 
682 	*hw_irq = irq;
683 	*trigger_addr = addr;
684 	return 0;
685 }
686 EXPORT_SYMBOL_GPL(ocxl_link_irq_alloc);
687 
688 void ocxl_link_free_irq(void *link_handle, int hw_irq)
689 {
690 	struct link *link = (struct link *) link_handle;
691 
692 	pnv_ocxl_free_xive_irq(hw_irq);
693 	atomic_inc(&link->irq_available);
694 }
695 EXPORT_SYMBOL_GPL(ocxl_link_free_irq);
696