xref: /openbmc/linux/drivers/misc/mei/hw-txe.c (revision e53134fe)
1 /*
2  *
3  * Intel Management Engine Interface (Intel MEI) Linux driver
4  * Copyright (c) 2013-2014, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  * more details.
14  *
15  */
16 
17 #include <linux/pci.h>
18 #include <linux/jiffies.h>
19 #include <linux/ktime.h>
20 #include <linux/delay.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/pm_runtime.h>
24 
25 #include <linux/mei.h>
26 
27 #include "mei_dev.h"
28 #include "hw-txe.h"
29 #include "client.h"
30 #include "hbm.h"
31 
32 #include "mei-trace.h"
33 
34 #define TXE_HBUF_DEPTH (PAYLOAD_SIZE / MEI_SLOT_SIZE)
35 
36 /**
37  * mei_txe_reg_read - Reads 32bit data from the txe device
38  *
39  * @base_addr: registers base address
40  * @offset: register offset
41  *
42  * Return: register value
43  */
44 static inline u32 mei_txe_reg_read(void __iomem *base_addr,
45 					unsigned long offset)
46 {
47 	return ioread32(base_addr + offset);
48 }
49 
50 /**
51  * mei_txe_reg_write - Writes 32bit data to the txe device
52  *
53  * @base_addr: registers base address
54  * @offset: register offset
55  * @value: the value to write
56  */
57 static inline void mei_txe_reg_write(void __iomem *base_addr,
58 				unsigned long offset, u32 value)
59 {
60 	iowrite32(value, base_addr + offset);
61 }
62 
63 /**
64  * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
65  *
66  * @hw: the txe hardware structure
67  * @offset: register offset
68  *
69  * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
70  *
71  * Return: register value
72  */
73 static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
74 				unsigned long offset)
75 {
76 	return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
77 }
78 
79 /**
80  * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
81  *
82  * @hw: the txe hardware structure
83  * @offset: register offset
84  *
85  * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
86  *
87  * Return: register value
88  */
89 static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
90 				unsigned long offset)
91 {
92 	WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
93 	return mei_txe_sec_reg_read_silent(hw, offset);
94 }
95 /**
96  * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
97  *   doesn't check for aliveness
98  *
99  * @hw: the txe hardware structure
100  * @offset: register offset
101  * @value: value to write
102  *
103  * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
104  */
105 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
106 				unsigned long offset, u32 value)
107 {
108 	mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
109 }
110 
111 /**
112  * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
113  *
114  * @hw: the txe hardware structure
115  * @offset: register offset
116  * @value: value to write
117  *
118  * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
119  */
120 static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
121 				unsigned long offset, u32 value)
122 {
123 	WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
124 	mei_txe_sec_reg_write_silent(hw, offset, value);
125 }
126 /**
127  * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
128  *
129  * @hw: the txe hardware structure
130  * @offset: offset from which to read the data
131  *
132  * Return: the byte read.
133  */
134 static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
135 				unsigned long offset)
136 {
137 	return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
138 }
139 
140 /**
141  * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
142  *
143  * @hw: the txe hardware structure
144  * @offset: offset from which to write the data
145  * @value: the byte to write
146  */
147 static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
148 				unsigned long offset, u32 value)
149 {
150 	mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
151 }
152 
153 /**
154  * mei_txe_aliveness_set - request for aliveness change
155  *
156  * @dev: the device structure
157  * @req: requested aliveness value
158  *
159  * Request for aliveness change and returns true if the change is
160  *   really needed and false if aliveness is already
161  *   in the requested state
162  *
163  * Locking: called under "dev->device_lock" lock
164  *
165  * Return: true if request was send
166  */
167 static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
168 {
169 
170 	struct mei_txe_hw *hw = to_txe_hw(dev);
171 	bool do_req = hw->aliveness != req;
172 
173 	dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
174 				hw->aliveness, req);
175 	if (do_req) {
176 		dev->pg_event = MEI_PG_EVENT_WAIT;
177 		mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
178 	}
179 	return do_req;
180 }
181 
182 
183 /**
184  * mei_txe_aliveness_req_get - get aliveness requested register value
185  *
186  * @dev: the device structure
187  *
188  * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
189  * from HICR_HOST_ALIVENESS_REQ register value
190  *
191  * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
192  */
193 static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
194 {
195 	struct mei_txe_hw *hw = to_txe_hw(dev);
196 	u32 reg;
197 
198 	reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
199 	return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
200 }
201 
202 /**
203  * mei_txe_aliveness_get - get aliveness response register value
204  *
205  * @dev: the device structure
206  *
207  * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
208  *         register
209  */
210 static u32 mei_txe_aliveness_get(struct mei_device *dev)
211 {
212 	struct mei_txe_hw *hw = to_txe_hw(dev);
213 	u32 reg;
214 
215 	reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
216 	return reg & HICR_HOST_ALIVENESS_RESP_ACK;
217 }
218 
219 /**
220  * mei_txe_aliveness_poll - waits for aliveness to settle
221  *
222  * @dev: the device structure
223  * @expected: expected aliveness value
224  *
225  * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
226  *
227  * Return: 0 if the expected value was received, -ETIME otherwise
228  */
229 static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
230 {
231 	struct mei_txe_hw *hw = to_txe_hw(dev);
232 	ktime_t stop, start;
233 
234 	start = ktime_get();
235 	stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
236 	do {
237 		hw->aliveness = mei_txe_aliveness_get(dev);
238 		if (hw->aliveness == expected) {
239 			dev->pg_event = MEI_PG_EVENT_IDLE;
240 			dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
241 				ktime_to_us(ktime_sub(ktime_get(), start)));
242 			return 0;
243 		}
244 		usleep_range(20, 50);
245 	} while (ktime_before(ktime_get(), stop));
246 
247 	dev->pg_event = MEI_PG_EVENT_IDLE;
248 	dev_err(dev->dev, "aliveness timed out\n");
249 	return -ETIME;
250 }
251 
252 /**
253  * mei_txe_aliveness_wait - waits for aliveness to settle
254  *
255  * @dev: the device structure
256  * @expected: expected aliveness value
257  *
258  * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
259  *
260  * Return: 0 on success and < 0 otherwise
261  */
262 static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
263 {
264 	struct mei_txe_hw *hw = to_txe_hw(dev);
265 	const unsigned long timeout =
266 			msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
267 	long err;
268 	int ret;
269 
270 	hw->aliveness = mei_txe_aliveness_get(dev);
271 	if (hw->aliveness == expected)
272 		return 0;
273 
274 	mutex_unlock(&dev->device_lock);
275 	err = wait_event_timeout(hw->wait_aliveness_resp,
276 			dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
277 	mutex_lock(&dev->device_lock);
278 
279 	hw->aliveness = mei_txe_aliveness_get(dev);
280 	ret = hw->aliveness == expected ? 0 : -ETIME;
281 
282 	if (ret)
283 		dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
284 			err, hw->aliveness, dev->pg_event);
285 	else
286 		dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
287 			jiffies_to_msecs(timeout - err),
288 			hw->aliveness, dev->pg_event);
289 
290 	dev->pg_event = MEI_PG_EVENT_IDLE;
291 	return ret;
292 }
293 
294 /**
295  * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
296  *
297  * @dev: the device structure
298  * @req: requested aliveness value
299  *
300  * Return: 0 on success and < 0 otherwise
301  */
302 int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
303 {
304 	if (mei_txe_aliveness_set(dev, req))
305 		return mei_txe_aliveness_wait(dev, req);
306 	return 0;
307 }
308 
309 /**
310  * mei_txe_pg_in_transition - is device now in pg transition
311  *
312  * @dev: the device structure
313  *
314  * Return: true if in pg transition, false otherwise
315  */
316 static bool mei_txe_pg_in_transition(struct mei_device *dev)
317 {
318 	return dev->pg_event == MEI_PG_EVENT_WAIT;
319 }
320 
321 /**
322  * mei_txe_pg_is_enabled - detect if PG is supported by HW
323  *
324  * @dev: the device structure
325  *
326  * Return: true is pg supported, false otherwise
327  */
328 static bool mei_txe_pg_is_enabled(struct mei_device *dev)
329 {
330 	return true;
331 }
332 
333 /**
334  * mei_txe_pg_state  - translate aliveness register value
335  *   to the mei power gating state
336  *
337  * @dev: the device structure
338  *
339  * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
340  */
341 static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
342 {
343 	struct mei_txe_hw *hw = to_txe_hw(dev);
344 
345 	return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
346 }
347 
348 /**
349  * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
350  *
351  * @dev: the device structure
352  */
353 static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
354 {
355 	struct mei_txe_hw *hw = to_txe_hw(dev);
356 	u32 hintmsk;
357 	/* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
358 	hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
359 	hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
360 	mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
361 }
362 
363 /**
364  * mei_txe_input_doorbell_set - sets bit 0 in
365  *    SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
366  *
367  * @hw: the txe hardware structure
368  */
369 static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
370 {
371 	/* Clear the interrupt cause */
372 	clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
373 	mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
374 }
375 
376 /**
377  * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
378  *
379  * @hw: the txe hardware structure
380  */
381 static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
382 {
383 	mei_txe_br_reg_write(hw,
384 			SICR_SEC_IPC_OUTPUT_STATUS_REG,
385 			SEC_IPC_OUTPUT_STATUS_RDY);
386 }
387 
388 /**
389  * mei_txe_is_input_ready - check if TXE is ready for receiving data
390  *
391  * @dev: the device structure
392  *
393  * Return: true if INPUT STATUS READY bit is set
394  */
395 static bool mei_txe_is_input_ready(struct mei_device *dev)
396 {
397 	struct mei_txe_hw *hw = to_txe_hw(dev);
398 	u32 status;
399 
400 	status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
401 	return !!(SEC_IPC_INPUT_STATUS_RDY & status);
402 }
403 
404 /**
405  * mei_txe_intr_clear - clear all interrupts
406  *
407  * @dev: the device structure
408  */
409 static inline void mei_txe_intr_clear(struct mei_device *dev)
410 {
411 	struct mei_txe_hw *hw = to_txe_hw(dev);
412 
413 	mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
414 		SEC_IPC_HOST_INT_STATUS_PENDING);
415 	mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
416 	mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
417 }
418 
419 /**
420  * mei_txe_intr_disable - disable all interrupts
421  *
422  * @dev: the device structure
423  */
424 static void mei_txe_intr_disable(struct mei_device *dev)
425 {
426 	struct mei_txe_hw *hw = to_txe_hw(dev);
427 
428 	mei_txe_br_reg_write(hw, HHIER_REG, 0);
429 	mei_txe_br_reg_write(hw, HIER_REG, 0);
430 }
431 /**
432  * mei_txe_intr_enable - enable all interrupts
433  *
434  * @dev: the device structure
435  */
436 static void mei_txe_intr_enable(struct mei_device *dev)
437 {
438 	struct mei_txe_hw *hw = to_txe_hw(dev);
439 
440 	mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
441 	mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
442 }
443 
444 /**
445  * mei_txe_synchronize_irq - wait for pending IRQ handlers
446  *
447  * @dev: the device structure
448  */
449 static void mei_txe_synchronize_irq(struct mei_device *dev)
450 {
451 	struct pci_dev *pdev = to_pci_dev(dev->dev);
452 
453 	synchronize_irq(pdev->irq);
454 }
455 
456 /**
457  * mei_txe_pending_interrupts - check if there are pending interrupts
458  *	only Aliveness, Input ready, and output doorbell are of relevance
459  *
460  * @dev: the device structure
461  *
462  * Checks if there are pending interrupts
463  * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
464  *
465  * Return: true if there are pending interrupts
466  */
467 static bool mei_txe_pending_interrupts(struct mei_device *dev)
468 {
469 
470 	struct mei_txe_hw *hw = to_txe_hw(dev);
471 	bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
472 				      TXE_INTR_ALIVENESS |
473 				      TXE_INTR_IN_READY  |
474 				      TXE_INTR_OUT_DB));
475 
476 	if (ret) {
477 		dev_dbg(dev->dev,
478 			"Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
479 			!!(hw->intr_cause & TXE_INTR_IN_READY),
480 			!!(hw->intr_cause & TXE_INTR_READINESS),
481 			!!(hw->intr_cause & TXE_INTR_ALIVENESS),
482 			!!(hw->intr_cause & TXE_INTR_OUT_DB));
483 	}
484 	return ret;
485 }
486 
487 /**
488  * mei_txe_input_payload_write - write a dword to the host buffer
489  *	at offset idx
490  *
491  * @dev: the device structure
492  * @idx: index in the host buffer
493  * @value: value
494  */
495 static void mei_txe_input_payload_write(struct mei_device *dev,
496 			unsigned long idx, u32 value)
497 {
498 	struct mei_txe_hw *hw = to_txe_hw(dev);
499 
500 	mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
501 			(idx * sizeof(u32)), value);
502 }
503 
504 /**
505  * mei_txe_out_data_read - read dword from the device buffer
506  *	at offset idx
507  *
508  * @dev: the device structure
509  * @idx: index in the device buffer
510  *
511  * Return: register value at index
512  */
513 static u32 mei_txe_out_data_read(const struct mei_device *dev,
514 					unsigned long idx)
515 {
516 	struct mei_txe_hw *hw = to_txe_hw(dev);
517 
518 	return mei_txe_br_reg_read(hw,
519 		BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
520 }
521 
522 /* Readiness */
523 
524 /**
525  * mei_txe_readiness_set_host_rdy - set host readiness bit
526  *
527  * @dev: the device structure
528  */
529 static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
530 {
531 	struct mei_txe_hw *hw = to_txe_hw(dev);
532 
533 	mei_txe_br_reg_write(hw,
534 		SICR_HOST_IPC_READINESS_REQ_REG,
535 		SICR_HOST_IPC_READINESS_HOST_RDY);
536 }
537 
538 /**
539  * mei_txe_readiness_clear - clear host readiness bit
540  *
541  * @dev: the device structure
542  */
543 static void mei_txe_readiness_clear(struct mei_device *dev)
544 {
545 	struct mei_txe_hw *hw = to_txe_hw(dev);
546 
547 	mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
548 				SICR_HOST_IPC_READINESS_RDY_CLR);
549 }
550 /**
551  * mei_txe_readiness_get - Reads and returns
552  *	the HICR_SEC_IPC_READINESS register value
553  *
554  * @dev: the device structure
555  *
556  * Return: the HICR_SEC_IPC_READINESS register value
557  */
558 static u32 mei_txe_readiness_get(struct mei_device *dev)
559 {
560 	struct mei_txe_hw *hw = to_txe_hw(dev);
561 
562 	return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
563 }
564 
565 
566 /**
567  * mei_txe_readiness_is_sec_rdy - check readiness
568  *  for HICR_SEC_IPC_READINESS_SEC_RDY
569  *
570  * @readiness: cached readiness state
571  *
572  * Return: true if readiness bit is set
573  */
574 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
575 {
576 	return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
577 }
578 
579 /**
580  * mei_txe_hw_is_ready - check if the hw is ready
581  *
582  * @dev: the device structure
583  *
584  * Return: true if sec is ready
585  */
586 static bool mei_txe_hw_is_ready(struct mei_device *dev)
587 {
588 	u32 readiness =  mei_txe_readiness_get(dev);
589 
590 	return mei_txe_readiness_is_sec_rdy(readiness);
591 }
592 
593 /**
594  * mei_txe_host_is_ready - check if the host is ready
595  *
596  * @dev: the device structure
597  *
598  * Return: true if host is ready
599  */
600 static inline bool mei_txe_host_is_ready(struct mei_device *dev)
601 {
602 	struct mei_txe_hw *hw = to_txe_hw(dev);
603 	u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
604 
605 	return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
606 }
607 
608 /**
609  * mei_txe_readiness_wait - wait till readiness settles
610  *
611  * @dev: the device structure
612  *
613  * Return: 0 on success and -ETIME on timeout
614  */
615 static int mei_txe_readiness_wait(struct mei_device *dev)
616 {
617 	if (mei_txe_hw_is_ready(dev))
618 		return 0;
619 
620 	mutex_unlock(&dev->device_lock);
621 	wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
622 			msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
623 	mutex_lock(&dev->device_lock);
624 	if (!dev->recvd_hw_ready) {
625 		dev_err(dev->dev, "wait for readiness failed\n");
626 		return -ETIME;
627 	}
628 
629 	dev->recvd_hw_ready = false;
630 	return 0;
631 }
632 
633 static const struct mei_fw_status mei_txe_fw_sts = {
634 	.count = 2,
635 	.status[0] = PCI_CFG_TXE_FW_STS0,
636 	.status[1] = PCI_CFG_TXE_FW_STS1
637 };
638 
639 /**
640  * mei_txe_fw_status - read fw status register from pci config space
641  *
642  * @dev: mei device
643  * @fw_status: fw status register values
644  *
645  * Return: 0 on success, error otherwise
646  */
647 static int mei_txe_fw_status(struct mei_device *dev,
648 			     struct mei_fw_status *fw_status)
649 {
650 	const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
651 	struct pci_dev *pdev = to_pci_dev(dev->dev);
652 	int ret;
653 	int i;
654 
655 	if (!fw_status)
656 		return -EINVAL;
657 
658 	fw_status->count = fw_src->count;
659 	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
660 		ret = pci_read_config_dword(pdev, fw_src->status[i],
661 					    &fw_status->status[i]);
662 		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
663 				       fw_src->status[i],
664 				       fw_status->status[i]);
665 		if (ret)
666 			return ret;
667 	}
668 
669 	return 0;
670 }
671 
672 /**
673  *  mei_txe_hw_config - configure hardware at the start of the devices
674  *
675  * @dev: the device structure
676  *
677  * Configure hardware at the start of the device should be done only
678  *   once at the device probe time
679  */
680 static void mei_txe_hw_config(struct mei_device *dev)
681 {
682 
683 	struct mei_txe_hw *hw = to_txe_hw(dev);
684 
685 	hw->aliveness = mei_txe_aliveness_get(dev);
686 	hw->readiness = mei_txe_readiness_get(dev);
687 
688 	dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
689 		hw->aliveness, hw->readiness);
690 }
691 
692 /**
693  * mei_txe_write - writes a message to device.
694  *
695  * @dev: the device structure
696  * @hdr: header of message
697  * @hdr_len: header length in bytes - must multiplication of a slot (4bytes)
698  * @data: payload
699  * @data_len: paylead length in bytes
700  *
701  * Return: 0 if success, < 0 - otherwise.
702  */
703 static int mei_txe_write(struct mei_device *dev,
704 			 const void *hdr, size_t hdr_len,
705 			 const void *data, size_t data_len)
706 {
707 	struct mei_txe_hw *hw = to_txe_hw(dev);
708 	unsigned long rem;
709 	const u32 *reg_buf;
710 	u32 slots = TXE_HBUF_DEPTH;
711 	u32 dw_cnt;
712 	unsigned long i, j;
713 
714 	if (WARN_ON(!hdr || !data || hdr_len & 0x3))
715 		return -EINVAL;
716 
717 	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
718 
719 	dw_cnt = mei_data2slots(hdr_len + data_len);
720 	if (dw_cnt > slots)
721 		return -EMSGSIZE;
722 
723 	if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
724 		return -EAGAIN;
725 
726 	/* Enable Input Ready Interrupt. */
727 	mei_txe_input_ready_interrupt_enable(dev);
728 
729 	if (!mei_txe_is_input_ready(dev)) {
730 		char fw_sts_str[MEI_FW_STATUS_STR_SZ];
731 
732 		mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
733 		dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
734 		return -EAGAIN;
735 	}
736 
737 	reg_buf = hdr;
738 	for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
739 		mei_txe_input_payload_write(dev, i, reg_buf[i]);
740 
741 	reg_buf = data;
742 	for (j = 0; j < data_len / MEI_SLOT_SIZE; j++)
743 		mei_txe_input_payload_write(dev, i + j, reg_buf[j]);
744 
745 	rem = data_len & 0x3;
746 	if (rem > 0) {
747 		u32 reg = 0;
748 
749 		memcpy(&reg, (const u8 *)data + data_len - rem, rem);
750 		mei_txe_input_payload_write(dev, i + j, reg);
751 	}
752 
753 	/* after each write the whole buffer is consumed */
754 	hw->slots = 0;
755 
756 	/* Set Input-Doorbell */
757 	mei_txe_input_doorbell_set(hw);
758 
759 	return 0;
760 }
761 
762 /**
763  * mei_txe_hbuf_depth - mimics the me hbuf circular buffer
764  *
765  * @dev: the device structure
766  *
767  * Return: the TXE_HBUF_DEPTH
768  */
769 static u32 mei_txe_hbuf_depth(const struct mei_device *dev)
770 {
771 	return TXE_HBUF_DEPTH;
772 }
773 
774 /**
775  * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
776  *
777  * @dev: the device structure
778  *
779  * Return: always TXE_HBUF_DEPTH
780  */
781 static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
782 {
783 	struct mei_txe_hw *hw = to_txe_hw(dev);
784 
785 	return hw->slots;
786 }
787 
788 /**
789  * mei_txe_count_full_read_slots - mimics the me device circular buffer
790  *
791  * @dev: the device structure
792  *
793  * Return: always buffer size in dwords count
794  */
795 static int mei_txe_count_full_read_slots(struct mei_device *dev)
796 {
797 	/* read buffers has static size */
798 	return TXE_HBUF_DEPTH;
799 }
800 
801 /**
802  * mei_txe_read_hdr - read message header which is always in 4 first bytes
803  *
804  * @dev: the device structure
805  *
806  * Return: mei message header
807  */
808 
809 static u32 mei_txe_read_hdr(const struct mei_device *dev)
810 {
811 	return mei_txe_out_data_read(dev, 0);
812 }
813 /**
814  * mei_txe_read - reads a message from the txe device.
815  *
816  * @dev: the device structure
817  * @buf: message buffer will be written
818  * @len: message size will be read
819  *
820  * Return: -EINVAL on error wrong argument and 0 on success
821  */
822 static int mei_txe_read(struct mei_device *dev,
823 		unsigned char *buf, unsigned long len)
824 {
825 
826 	struct mei_txe_hw *hw = to_txe_hw(dev);
827 	u32 *reg_buf, reg;
828 	u32 rem;
829 	u32 i;
830 
831 	if (WARN_ON(!buf || !len))
832 		return -EINVAL;
833 
834 	reg_buf = (u32 *)buf;
835 	rem = len & 0x3;
836 
837 	dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
838 		len, mei_txe_out_data_read(dev, 0));
839 
840 	for (i = 0; i < len / MEI_SLOT_SIZE; i++) {
841 		/* skip header: index starts from 1 */
842 		reg = mei_txe_out_data_read(dev, i + 1);
843 		dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
844 		*reg_buf++ = reg;
845 	}
846 
847 	if (rem) {
848 		reg = mei_txe_out_data_read(dev, i + 1);
849 		memcpy(reg_buf, &reg, rem);
850 	}
851 
852 	mei_txe_output_ready_set(hw);
853 	return 0;
854 }
855 
856 /**
857  * mei_txe_hw_reset - resets host and fw.
858  *
859  * @dev: the device structure
860  * @intr_enable: if interrupt should be enabled after reset.
861  *
862  * Return: 0 on success and < 0 in case of error
863  */
864 static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
865 {
866 	struct mei_txe_hw *hw = to_txe_hw(dev);
867 
868 	u32 aliveness_req;
869 	/*
870 	 * read input doorbell to ensure consistency between  Bridge and SeC
871 	 * return value might be garbage return
872 	 */
873 	(void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
874 
875 	aliveness_req = mei_txe_aliveness_req_get(dev);
876 	hw->aliveness = mei_txe_aliveness_get(dev);
877 
878 	/* Disable interrupts in this stage we will poll */
879 	mei_txe_intr_disable(dev);
880 
881 	/*
882 	 * If Aliveness Request and Aliveness Response are not equal then
883 	 * wait for them to be equal
884 	 * Since we might have interrupts disabled - poll for it
885 	 */
886 	if (aliveness_req != hw->aliveness)
887 		if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
888 			dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
889 			return -EIO;
890 		}
891 
892 	/*
893 	 * If Aliveness Request and Aliveness Response are set then clear them
894 	 */
895 	if (aliveness_req) {
896 		mei_txe_aliveness_set(dev, 0);
897 		if (mei_txe_aliveness_poll(dev, 0) < 0) {
898 			dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
899 			return -EIO;
900 		}
901 	}
902 
903 	/*
904 	 * Set readiness RDY_CLR bit
905 	 */
906 	mei_txe_readiness_clear(dev);
907 
908 	return 0;
909 }
910 
911 /**
912  * mei_txe_hw_start - start the hardware after reset
913  *
914  * @dev: the device structure
915  *
916  * Return: 0 on success an error code otherwise
917  */
918 static int mei_txe_hw_start(struct mei_device *dev)
919 {
920 	struct mei_txe_hw *hw = to_txe_hw(dev);
921 	int ret;
922 
923 	u32 hisr;
924 
925 	/* bring back interrupts */
926 	mei_txe_intr_enable(dev);
927 
928 	ret = mei_txe_readiness_wait(dev);
929 	if (ret < 0) {
930 		dev_err(dev->dev, "waiting for readiness failed\n");
931 		return ret;
932 	}
933 
934 	/*
935 	 * If HISR.INT2_STS interrupt status bit is set then clear it.
936 	 */
937 	hisr = mei_txe_br_reg_read(hw, HISR_REG);
938 	if (hisr & HISR_INT_2_STS)
939 		mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
940 
941 	/* Clear the interrupt cause of OutputDoorbell */
942 	clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
943 
944 	ret = mei_txe_aliveness_set_sync(dev, 1);
945 	if (ret < 0) {
946 		dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
947 		return ret;
948 	}
949 
950 	pm_runtime_set_active(dev->dev);
951 
952 	/* enable input ready interrupts:
953 	 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
954 	 */
955 	mei_txe_input_ready_interrupt_enable(dev);
956 
957 
958 	/*  Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
959 	mei_txe_output_ready_set(hw);
960 
961 	/* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
962 	 */
963 	mei_txe_readiness_set_host_rdy(dev);
964 
965 	return 0;
966 }
967 
968 /**
969  * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
970  *  single bit mask and acknowledge the interrupts
971  *
972  * @dev: the device structure
973  * @do_ack: acknowledge interrupts
974  *
975  * Return: true if found interrupts to process.
976  */
977 static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
978 {
979 	struct mei_txe_hw *hw = to_txe_hw(dev);
980 	u32 hisr;
981 	u32 hhisr;
982 	u32 ipc_isr;
983 	u32 aliveness;
984 	bool generated;
985 
986 	/* read interrupt registers */
987 	hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
988 	generated = (hhisr & IPC_HHIER_MSK);
989 	if (!generated)
990 		goto out;
991 
992 	hisr = mei_txe_br_reg_read(hw, HISR_REG);
993 
994 	aliveness = mei_txe_aliveness_get(dev);
995 	if (hhisr & IPC_HHIER_SEC && aliveness) {
996 		ipc_isr = mei_txe_sec_reg_read_silent(hw,
997 				SEC_IPC_HOST_INT_STATUS_REG);
998 	} else {
999 		ipc_isr = 0;
1000 		hhisr &= ~IPC_HHIER_SEC;
1001 	}
1002 
1003 	generated = generated ||
1004 		(hisr & HISR_INT_STS_MSK) ||
1005 		(ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
1006 
1007 	if (generated && do_ack) {
1008 		/* Save the interrupt causes */
1009 		hw->intr_cause |= hisr & HISR_INT_STS_MSK;
1010 		if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
1011 			hw->intr_cause |= TXE_INTR_IN_READY;
1012 
1013 
1014 		mei_txe_intr_disable(dev);
1015 		/* Clear the interrupts in hierarchy:
1016 		 * IPC and Bridge, than the High Level */
1017 		mei_txe_sec_reg_write_silent(hw,
1018 			SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1019 		mei_txe_br_reg_write(hw, HISR_REG, hisr);
1020 		mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1021 	}
1022 
1023 out:
1024 	return generated;
1025 }
1026 
1027 /**
1028  * mei_txe_irq_quick_handler - The ISR of the MEI device
1029  *
1030  * @irq: The irq number
1031  * @dev_id: pointer to the device structure
1032  *
1033  * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1034  *         IRQ_NONE otherwise
1035  */
1036 irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1037 {
1038 	struct mei_device *dev = dev_id;
1039 
1040 	if (mei_txe_check_and_ack_intrs(dev, true))
1041 		return IRQ_WAKE_THREAD;
1042 	return IRQ_NONE;
1043 }
1044 
1045 
1046 /**
1047  * mei_txe_irq_thread_handler - txe interrupt thread
1048  *
1049  * @irq: The irq number
1050  * @dev_id: pointer to the device structure
1051  *
1052  * Return: IRQ_HANDLED
1053  */
1054 irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1055 {
1056 	struct mei_device *dev = (struct mei_device *) dev_id;
1057 	struct mei_txe_hw *hw = to_txe_hw(dev);
1058 	struct list_head cmpl_list;
1059 	s32 slots;
1060 	int rets = 0;
1061 
1062 	dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1063 		mei_txe_br_reg_read(hw, HHISR_REG),
1064 		mei_txe_br_reg_read(hw, HISR_REG),
1065 		mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1066 
1067 
1068 	/* initialize our complete list */
1069 	mutex_lock(&dev->device_lock);
1070 	INIT_LIST_HEAD(&cmpl_list);
1071 
1072 	if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1073 		mei_txe_check_and_ack_intrs(dev, true);
1074 
1075 	/* show irq events */
1076 	mei_txe_pending_interrupts(dev);
1077 
1078 	hw->aliveness = mei_txe_aliveness_get(dev);
1079 	hw->readiness = mei_txe_readiness_get(dev);
1080 
1081 	/* Readiness:
1082 	 * Detection of TXE driver going through reset
1083 	 * or TXE driver resetting the HECI interface.
1084 	 */
1085 	if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1086 		dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1087 
1088 		/* Check if SeC is going through reset */
1089 		if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1090 			dev_dbg(dev->dev, "we need to start the dev.\n");
1091 			dev->recvd_hw_ready = true;
1092 		} else {
1093 			dev->recvd_hw_ready = false;
1094 			if (dev->dev_state != MEI_DEV_RESETTING) {
1095 
1096 				dev_warn(dev->dev, "FW not ready: resetting.\n");
1097 				schedule_work(&dev->reset_work);
1098 				goto end;
1099 
1100 			}
1101 		}
1102 		wake_up(&dev->wait_hw_ready);
1103 	}
1104 
1105 	/************************************************************/
1106 	/* Check interrupt cause:
1107 	 * Aliveness: Detection of SeC acknowledge of host request that
1108 	 * it remain alive or host cancellation of that request.
1109 	 */
1110 
1111 	if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1112 		/* Clear the interrupt cause */
1113 		dev_dbg(dev->dev,
1114 			"Aliveness Interrupt: Status: %d\n", hw->aliveness);
1115 		dev->pg_event = MEI_PG_EVENT_RECEIVED;
1116 		if (waitqueue_active(&hw->wait_aliveness_resp))
1117 			wake_up(&hw->wait_aliveness_resp);
1118 	}
1119 
1120 
1121 	/* Output Doorbell:
1122 	 * Detection of SeC having sent output to host
1123 	 */
1124 	slots = mei_count_full_read_slots(dev);
1125 	if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1126 		/* Read from TXE */
1127 		rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1128 		if (rets &&
1129 		    (dev->dev_state != MEI_DEV_RESETTING &&
1130 		     dev->dev_state != MEI_DEV_POWER_DOWN)) {
1131 			dev_err(dev->dev,
1132 				"mei_irq_read_handler ret = %d.\n", rets);
1133 
1134 			schedule_work(&dev->reset_work);
1135 			goto end;
1136 		}
1137 	}
1138 	/* Input Ready: Detection if host can write to SeC */
1139 	if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1140 		dev->hbuf_is_ready = true;
1141 		hw->slots = TXE_HBUF_DEPTH;
1142 	}
1143 
1144 	if (hw->aliveness && dev->hbuf_is_ready) {
1145 		/* get the real register value */
1146 		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1147 		rets = mei_irq_write_handler(dev, &cmpl_list);
1148 		if (rets && rets != -EMSGSIZE)
1149 			dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1150 				rets);
1151 		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1152 	}
1153 
1154 	mei_irq_compl_handler(dev, &cmpl_list);
1155 
1156 end:
1157 	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1158 
1159 	mutex_unlock(&dev->device_lock);
1160 
1161 	mei_enable_interrupts(dev);
1162 	return IRQ_HANDLED;
1163 }
1164 
1165 static const struct mei_hw_ops mei_txe_hw_ops = {
1166 
1167 	.host_is_ready = mei_txe_host_is_ready,
1168 
1169 	.fw_status = mei_txe_fw_status,
1170 	.pg_state = mei_txe_pg_state,
1171 
1172 	.hw_is_ready = mei_txe_hw_is_ready,
1173 	.hw_reset = mei_txe_hw_reset,
1174 	.hw_config = mei_txe_hw_config,
1175 	.hw_start = mei_txe_hw_start,
1176 
1177 	.pg_in_transition = mei_txe_pg_in_transition,
1178 	.pg_is_enabled = mei_txe_pg_is_enabled,
1179 
1180 	.intr_clear = mei_txe_intr_clear,
1181 	.intr_enable = mei_txe_intr_enable,
1182 	.intr_disable = mei_txe_intr_disable,
1183 	.synchronize_irq = mei_txe_synchronize_irq,
1184 
1185 	.hbuf_free_slots = mei_txe_hbuf_empty_slots,
1186 	.hbuf_is_ready = mei_txe_is_input_ready,
1187 	.hbuf_depth = mei_txe_hbuf_depth,
1188 
1189 	.write = mei_txe_write,
1190 
1191 	.rdbuf_full_slots = mei_txe_count_full_read_slots,
1192 	.read_hdr = mei_txe_read_hdr,
1193 
1194 	.read = mei_txe_read,
1195 
1196 };
1197 
1198 /**
1199  * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1200  *
1201  * @pdev: pci device
1202  *
1203  * Return: struct mei_device * on success or NULL
1204  */
1205 struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1206 {
1207 	struct mei_device *dev;
1208 	struct mei_txe_hw *hw;
1209 
1210 	dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1211 			   sizeof(struct mei_txe_hw), GFP_KERNEL);
1212 	if (!dev)
1213 		return NULL;
1214 
1215 	mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1216 
1217 	hw = to_txe_hw(dev);
1218 
1219 	init_waitqueue_head(&hw->wait_aliveness_resp);
1220 
1221 	return dev;
1222 }
1223 
1224 /**
1225  * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1226  *
1227  * @dev:   the device structure
1228  * @addr:  physical address start of the range
1229  * @range: physical range size
1230  *
1231  * Return: 0 on success an error code otherwise
1232  */
1233 int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1234 {
1235 	struct mei_txe_hw *hw = to_txe_hw(dev);
1236 
1237 	u32 lo32 = lower_32_bits(addr);
1238 	u32 hi32 = upper_32_bits(addr);
1239 	u32 ctrl;
1240 
1241 	/* SATT is limited to 36 Bits */
1242 	if (hi32 & ~0xF)
1243 		return -EINVAL;
1244 
1245 	/* SATT has to be 16Byte aligned */
1246 	if (lo32 & 0xF)
1247 		return -EINVAL;
1248 
1249 	/* SATT range has to be 4Bytes aligned */
1250 	if (range & 0x4)
1251 		return -EINVAL;
1252 
1253 	/* SATT is limited to 32 MB range*/
1254 	if (range > SATT_RANGE_MAX)
1255 		return -EINVAL;
1256 
1257 	ctrl = SATT2_CTRL_VALID_MSK;
1258 	ctrl |= hi32  << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1259 
1260 	mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1261 	mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1262 	mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1263 	dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1264 		range, lo32, ctrl);
1265 
1266 	return 0;
1267 }
1268