xref: /openbmc/linux/drivers/misc/mei/hw-me.c (revision ee8a99bd)
1 /*
2  *
3  * Intel Management Engine Interface (Intel MEI) Linux driver
4  * Copyright (c) 2003-2012, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  */
16 
17 #include <linux/pci.h>
18 
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 
22 #include "mei_dev.h"
23 #include "hw-me.h"
24 
25 #include "hbm.h"
26 
27 
28 /**
29  * mei_me_reg_read - Reads 32bit data from the mei device
30  *
31  * @dev: the device structure
32  * @offset: offset from which to read the data
33  *
34  * returns register value (u32)
35  */
36 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
37 			       unsigned long offset)
38 {
39 	return ioread32(hw->mem_addr + offset);
40 }
41 
42 
43 /**
44  * mei_me_reg_write - Writes 32bit data to the mei device
45  *
46  * @dev: the device structure
47  * @offset: offset from which to write the data
48  * @value: register value to write (u32)
49  */
50 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
51 				 unsigned long offset, u32 value)
52 {
53 	iowrite32(value, hw->mem_addr + offset);
54 }
55 
56 /**
57  * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
58  *  read window register
59  *
60  * @dev: the device structure
61  *
62  * returns ME_CB_RW register value (u32)
63  */
64 static u32 mei_me_mecbrw_read(const struct mei_device *dev)
65 {
66 	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
67 }
68 /**
69  * mei_me_mecsr_read - Reads 32bit data from the ME CSR
70  *
71  * @dev: the device structure
72  *
73  * returns ME_CSR_HA register value (u32)
74  */
75 static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
76 {
77 	return mei_me_reg_read(hw, ME_CSR_HA);
78 }
79 
80 /**
81  * mei_hcsr_read - Reads 32bit data from the host CSR
82  *
83  * @dev: the device structure
84  *
85  * returns H_CSR register value (u32)
86  */
87 static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
88 {
89 	return mei_me_reg_read(hw, H_CSR);
90 }
91 
92 /**
93  * mei_hcsr_set - writes H_CSR register to the mei device,
94  * and ignores the H_IS bit for it is write-one-to-zero.
95  *
96  * @dev: the device structure
97  */
98 static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
99 {
100 	hcsr &= ~H_IS;
101 	mei_me_reg_write(hw, H_CSR, hcsr);
102 }
103 
104 
105 /**
106  * mei_me_hw_config - configure hw dependent settings
107  *
108  * @dev: mei device
109  */
110 static void mei_me_hw_config(struct mei_device *dev)
111 {
112 	u32 hcsr = mei_hcsr_read(to_me_hw(dev));
113 	/* Doesn't change in runtime */
114 	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
115 }
116 /**
117  * mei_clear_interrupts - clear and stop interrupts
118  *
119  * @dev: the device structure
120  */
121 static void mei_me_intr_clear(struct mei_device *dev)
122 {
123 	struct mei_me_hw *hw = to_me_hw(dev);
124 	u32 hcsr = mei_hcsr_read(hw);
125 	if ((hcsr & H_IS) == H_IS)
126 		mei_me_reg_write(hw, H_CSR, hcsr);
127 }
128 /**
129  * mei_me_intr_enable - enables mei device interrupts
130  *
131  * @dev: the device structure
132  */
133 static void mei_me_intr_enable(struct mei_device *dev)
134 {
135 	struct mei_me_hw *hw = to_me_hw(dev);
136 	u32 hcsr = mei_hcsr_read(hw);
137 	hcsr |= H_IE;
138 	mei_hcsr_set(hw, hcsr);
139 }
140 
141 /**
142  * mei_disable_interrupts - disables mei device interrupts
143  *
144  * @dev: the device structure
145  */
146 static void mei_me_intr_disable(struct mei_device *dev)
147 {
148 	struct mei_me_hw *hw = to_me_hw(dev);
149 	u32 hcsr = mei_hcsr_read(hw);
150 	hcsr  &= ~H_IE;
151 	mei_hcsr_set(hw, hcsr);
152 }
153 
154 /**
155  * mei_me_hw_reset_release - release device from the reset
156  *
157  * @dev: the device structure
158  */
159 static void mei_me_hw_reset_release(struct mei_device *dev)
160 {
161 	struct mei_me_hw *hw = to_me_hw(dev);
162 	u32 hcsr = mei_hcsr_read(hw);
163 
164 	hcsr |= H_IG;
165 	hcsr &= ~H_RST;
166 	mei_hcsr_set(hw, hcsr);
167 }
168 /**
169  * mei_me_hw_reset - resets fw via mei csr register.
170  *
171  * @dev: the device structure
172  * @intr_enable: if interrupt should be enabled after reset.
173  */
174 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
175 {
176 	struct mei_me_hw *hw = to_me_hw(dev);
177 	u32 hcsr = mei_hcsr_read(hw);
178 
179 	dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
180 
181 	hcsr |= (H_RST | H_IG);
182 
183 	if (intr_enable)
184 		hcsr |= H_IE;
185 	else
186 		hcsr |= ~H_IE;
187 
188 	mei_hcsr_set(hw, hcsr);
189 
190 	if (dev->dev_state == MEI_DEV_POWER_DOWN)
191 		mei_me_hw_reset_release(dev);
192 
193 	dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", mei_hcsr_read(hw));
194 	return 0;
195 }
196 
197 /**
198  * mei_me_host_set_ready - enable device
199  *
200  * @dev - mei device
201  * returns bool
202  */
203 
204 static void mei_me_host_set_ready(struct mei_device *dev)
205 {
206 	struct mei_me_hw *hw = to_me_hw(dev);
207 	hw->host_hw_state |= H_IE | H_IG | H_RDY;
208 	mei_hcsr_set(hw, hw->host_hw_state);
209 }
210 /**
211  * mei_me_host_is_ready - check whether the host has turned ready
212  *
213  * @dev - mei device
214  * returns bool
215  */
216 static bool mei_me_host_is_ready(struct mei_device *dev)
217 {
218 	struct mei_me_hw *hw = to_me_hw(dev);
219 	hw->host_hw_state = mei_hcsr_read(hw);
220 	return (hw->host_hw_state & H_RDY) == H_RDY;
221 }
222 
223 /**
224  * mei_me_hw_is_ready - check whether the me(hw) has turned ready
225  *
226  * @dev - mei device
227  * returns bool
228  */
229 static bool mei_me_hw_is_ready(struct mei_device *dev)
230 {
231 	struct mei_me_hw *hw = to_me_hw(dev);
232 	hw->me_hw_state = mei_me_mecsr_read(hw);
233 	return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
234 }
235 
236 static int mei_me_hw_ready_wait(struct mei_device *dev)
237 {
238 	int err;
239 	if (mei_me_hw_is_ready(dev))
240 		return 0;
241 
242 	dev->recvd_hw_ready = false;
243 	mutex_unlock(&dev->device_lock);
244 	err = wait_event_interruptible_timeout(dev->wait_hw_ready,
245 			dev->recvd_hw_ready,
246 			mei_secs_to_jiffies(MEI_INTEROP_TIMEOUT));
247 	mutex_lock(&dev->device_lock);
248 	if (!err && !dev->recvd_hw_ready) {
249 		if (!err)
250 			err = -ETIMEDOUT;
251 		dev_err(&dev->pdev->dev,
252 			"wait hw ready failed. status = %d\n", err);
253 		return err;
254 	}
255 
256 	dev->recvd_hw_ready = false;
257 	return 0;
258 }
259 
260 static int mei_me_hw_start(struct mei_device *dev)
261 {
262 	int ret = mei_me_hw_ready_wait(dev);
263 	if (ret)
264 		return ret;
265 	dev_dbg(&dev->pdev->dev, "hw is ready\n");
266 
267 	mei_me_host_set_ready(dev);
268 	return ret;
269 }
270 
271 
272 /**
273  * mei_hbuf_filled_slots - gets number of device filled buffer slots
274  *
275  * @dev: the device structure
276  *
277  * returns number of filled slots
278  */
279 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
280 {
281 	struct mei_me_hw *hw = to_me_hw(dev);
282 	char read_ptr, write_ptr;
283 
284 	hw->host_hw_state = mei_hcsr_read(hw);
285 
286 	read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
287 	write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
288 
289 	return (unsigned char) (write_ptr - read_ptr);
290 }
291 
292 /**
293  * mei_me_hbuf_is_empty - checks if host buffer is empty.
294  *
295  * @dev: the device structure
296  *
297  * returns true if empty, false - otherwise.
298  */
299 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
300 {
301 	return mei_hbuf_filled_slots(dev) == 0;
302 }
303 
304 /**
305  * mei_me_hbuf_empty_slots - counts write empty slots.
306  *
307  * @dev: the device structure
308  *
309  * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
310  */
311 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
312 {
313 	unsigned char filled_slots, empty_slots;
314 
315 	filled_slots = mei_hbuf_filled_slots(dev);
316 	empty_slots = dev->hbuf_depth - filled_slots;
317 
318 	/* check for overflow */
319 	if (filled_slots > dev->hbuf_depth)
320 		return -EOVERFLOW;
321 
322 	return empty_slots;
323 }
324 
325 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
326 {
327 	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
328 }
329 
330 
331 /**
332  * mei_write_message - writes a message to mei device.
333  *
334  * @dev: the device structure
335  * @header: mei HECI header of message
336  * @buf: message payload will be written
337  *
338  * This function returns -EIO if write has failed
339  */
340 static int mei_me_write_message(struct mei_device *dev,
341 			struct mei_msg_hdr *header,
342 			unsigned char *buf)
343 {
344 	struct mei_me_hw *hw = to_me_hw(dev);
345 	unsigned long rem;
346 	unsigned long length = header->length;
347 	u32 *reg_buf = (u32 *)buf;
348 	u32 hcsr;
349 	u32 dw_cnt;
350 	int i;
351 	int empty_slots;
352 
353 	dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
354 
355 	empty_slots = mei_hbuf_empty_slots(dev);
356 	dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
357 
358 	dw_cnt = mei_data2slots(length);
359 	if (empty_slots < 0 || dw_cnt > empty_slots)
360 		return -EIO;
361 
362 	mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
363 
364 	for (i = 0; i < length / 4; i++)
365 		mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
366 
367 	rem = length & 0x3;
368 	if (rem > 0) {
369 		u32 reg = 0;
370 		memcpy(&reg, &buf[length - rem], rem);
371 		mei_me_reg_write(hw, H_CB_WW, reg);
372 	}
373 
374 	hcsr = mei_hcsr_read(hw) | H_IG;
375 	mei_hcsr_set(hw, hcsr);
376 	if (!mei_me_hw_is_ready(dev))
377 		return -EIO;
378 
379 	return 0;
380 }
381 
382 /**
383  * mei_me_count_full_read_slots - counts read full slots.
384  *
385  * @dev: the device structure
386  *
387  * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
388  */
389 static int mei_me_count_full_read_slots(struct mei_device *dev)
390 {
391 	struct mei_me_hw *hw = to_me_hw(dev);
392 	char read_ptr, write_ptr;
393 	unsigned char buffer_depth, filled_slots;
394 
395 	hw->me_hw_state = mei_me_mecsr_read(hw);
396 	buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
397 	read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
398 	write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
399 	filled_slots = (unsigned char) (write_ptr - read_ptr);
400 
401 	/* check for overflow */
402 	if (filled_slots > buffer_depth)
403 		return -EOVERFLOW;
404 
405 	dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
406 	return (int)filled_slots;
407 }
408 
409 /**
410  * mei_me_read_slots - reads a message from mei device.
411  *
412  * @dev: the device structure
413  * @buffer: message buffer will be written
414  * @buffer_length: message size will be read
415  */
416 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
417 		    unsigned long buffer_length)
418 {
419 	struct mei_me_hw *hw = to_me_hw(dev);
420 	u32 *reg_buf = (u32 *)buffer;
421 	u32 hcsr;
422 
423 	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
424 		*reg_buf++ = mei_me_mecbrw_read(dev);
425 
426 	if (buffer_length > 0) {
427 		u32 reg = mei_me_mecbrw_read(dev);
428 		memcpy(reg_buf, &reg, buffer_length);
429 	}
430 
431 	hcsr = mei_hcsr_read(hw) | H_IG;
432 	mei_hcsr_set(hw, hcsr);
433 	return 0;
434 }
435 
436 /**
437  * mei_me_irq_quick_handler - The ISR of the MEI device
438  *
439  * @irq: The irq number
440  * @dev_id: pointer to the device structure
441  *
442  * returns irqreturn_t
443  */
444 
445 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
446 {
447 	struct mei_device *dev = (struct mei_device *) dev_id;
448 	struct mei_me_hw *hw = to_me_hw(dev);
449 	u32 csr_reg = mei_hcsr_read(hw);
450 
451 	if ((csr_reg & H_IS) != H_IS)
452 		return IRQ_NONE;
453 
454 	/* clear H_IS bit in H_CSR */
455 	mei_me_reg_write(hw, H_CSR, csr_reg);
456 
457 	return IRQ_WAKE_THREAD;
458 }
459 
460 /**
461  * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
462  * processing.
463  *
464  * @irq: The irq number
465  * @dev_id: pointer to the device structure
466  *
467  * returns irqreturn_t
468  *
469  */
470 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
471 {
472 	struct mei_device *dev = (struct mei_device *) dev_id;
473 	struct mei_cl_cb complete_list;
474 	s32 slots;
475 	int rets;
476 
477 	dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
478 	/* initialize our complete list */
479 	mutex_lock(&dev->device_lock);
480 	mei_io_list_init(&complete_list);
481 
482 	/* Ack the interrupt here
483 	 * In case of MSI we don't go through the quick handler */
484 	if (pci_dev_msi_enabled(dev->pdev))
485 		mei_clear_interrupts(dev);
486 
487 	/* check if ME wants a reset */
488 	if (!mei_hw_is_ready(dev) &&
489 	    dev->dev_state != MEI_DEV_RESETTING &&
490 	    dev->dev_state != MEI_DEV_INITIALIZING &&
491 	    dev->dev_state != MEI_DEV_POWER_DOWN &&
492 	    dev->dev_state != MEI_DEV_POWER_UP) {
493 		dev_dbg(&dev->pdev->dev, "FW not ready.\n");
494 		mei_reset(dev, 1);
495 		mutex_unlock(&dev->device_lock);
496 		return IRQ_HANDLED;
497 	}
498 
499 	/*  check if we need to start the dev */
500 	if (!mei_host_is_ready(dev)) {
501 		if (mei_hw_is_ready(dev)) {
502 			dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
503 
504 			dev->recvd_hw_ready = true;
505 			wake_up_interruptible(&dev->wait_hw_ready);
506 
507 			mutex_unlock(&dev->device_lock);
508 			return IRQ_HANDLED;
509 		} else {
510 			dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
511 			mei_me_hw_reset_release(dev);
512 			mutex_unlock(&dev->device_lock);
513 			return IRQ_HANDLED;
514 		}
515 	}
516 	/* check slots available for reading */
517 	slots = mei_count_full_read_slots(dev);
518 	while (slots > 0) {
519 		/* we have urgent data to send so break the read */
520 		if (dev->wr_ext_msg.hdr.length)
521 			break;
522 		dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
523 		dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
524 		rets = mei_irq_read_handler(dev, &complete_list, &slots);
525 		if (rets)
526 			goto end;
527 	}
528 	rets = mei_irq_write_handler(dev, &complete_list);
529 end:
530 	dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
531 	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
532 
533 	mutex_unlock(&dev->device_lock);
534 
535 	mei_irq_compl_handler(dev, &complete_list);
536 
537 	return IRQ_HANDLED;
538 }
539 static const struct mei_hw_ops mei_me_hw_ops = {
540 
541 	.host_is_ready = mei_me_host_is_ready,
542 
543 	.hw_is_ready = mei_me_hw_is_ready,
544 	.hw_reset = mei_me_hw_reset,
545 	.hw_config = mei_me_hw_config,
546 	.hw_start = mei_me_hw_start,
547 
548 	.intr_clear = mei_me_intr_clear,
549 	.intr_enable = mei_me_intr_enable,
550 	.intr_disable = mei_me_intr_disable,
551 
552 	.hbuf_free_slots = mei_me_hbuf_empty_slots,
553 	.hbuf_is_ready = mei_me_hbuf_is_empty,
554 	.hbuf_max_len = mei_me_hbuf_max_len,
555 
556 	.write = mei_me_write_message,
557 
558 	.rdbuf_full_slots = mei_me_count_full_read_slots,
559 	.read_hdr = mei_me_mecbrw_read,
560 	.read = mei_me_read_slots
561 };
562 
563 /**
564  * mei_me_dev_init - allocates and initializes the mei device structure
565  *
566  * @pdev: The pci device structure
567  *
568  * returns The mei_device_device pointer on success, NULL on failure.
569  */
570 struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
571 {
572 	struct mei_device *dev;
573 
574 	dev = kzalloc(sizeof(struct mei_device) +
575 			 sizeof(struct mei_me_hw), GFP_KERNEL);
576 	if (!dev)
577 		return NULL;
578 
579 	mei_device_init(dev);
580 
581 	dev->ops = &mei_me_hw_ops;
582 
583 	dev->pdev = pdev;
584 	return dev;
585 }
586 
587