xref: /openbmc/linux/drivers/misc/mei/hw-me.c (revision aac5987a)
1 /*
2  *
3  * Intel Management Engine Interface (Intel MEI) Linux driver
4  * Copyright (c) 2003-2012, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  */
16 
17 #include <linux/pci.h>
18 
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 #include <linux/pm_runtime.h>
22 
23 #include "mei_dev.h"
24 #include "hbm.h"
25 
26 #include "hw-me.h"
27 #include "hw-me-regs.h"
28 
29 #include "mei-trace.h"
30 
31 /**
32  * mei_me_reg_read - Reads 32bit data from the mei device
33  *
34  * @hw: the me hardware structure
35  * @offset: offset from which to read the data
36  *
37  * Return: register value (u32)
38  */
39 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
40 			       unsigned long offset)
41 {
42 	return ioread32(hw->mem_addr + offset);
43 }
44 
45 
46 /**
47  * mei_me_reg_write - Writes 32bit data to the mei device
48  *
49  * @hw: the me hardware structure
50  * @offset: offset from which to write the data
51  * @value: register value to write (u32)
52  */
53 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
54 				 unsigned long offset, u32 value)
55 {
56 	iowrite32(value, hw->mem_addr + offset);
57 }
58 
59 /**
60  * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
61  *  read window register
62  *
63  * @dev: the device structure
64  *
65  * Return: ME_CB_RW register value (u32)
66  */
67 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
68 {
69 	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
70 }
71 
72 /**
73  * mei_me_hcbww_write - write 32bit data to the host circular buffer
74  *
75  * @dev: the device structure
76  * @data: 32bit data to be written to the host circular buffer
77  */
78 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
79 {
80 	mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
81 }
82 
83 /**
84  * mei_me_mecsr_read - Reads 32bit data from the ME CSR
85  *
86  * @dev: the device structure
87  *
88  * Return: ME_CSR_HA register value (u32)
89  */
90 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
91 {
92 	u32 reg;
93 
94 	reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
95 	trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
96 
97 	return reg;
98 }
99 
100 /**
101  * mei_hcsr_read - Reads 32bit data from the host CSR
102  *
103  * @dev: the device structure
104  *
105  * Return: H_CSR register value (u32)
106  */
107 static inline u32 mei_hcsr_read(const struct mei_device *dev)
108 {
109 	u32 reg;
110 
111 	reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
112 	trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
113 
114 	return reg;
115 }
116 
117 /**
118  * mei_hcsr_write - writes H_CSR register to the mei device
119  *
120  * @dev: the device structure
121  * @reg: new register value
122  */
123 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
124 {
125 	trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
126 	mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
127 }
128 
129 /**
130  * mei_hcsr_set - writes H_CSR register to the mei device,
131  * and ignores the H_IS bit for it is write-one-to-zero.
132  *
133  * @dev: the device structure
134  * @reg: new register value
135  */
136 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
137 {
138 	reg &= ~H_CSR_IS_MASK;
139 	mei_hcsr_write(dev, reg);
140 }
141 
142 /**
143  * mei_hcsr_set_hig - set host interrupt (set H_IG)
144  *
145  * @dev: the device structure
146  */
147 static inline void mei_hcsr_set_hig(struct mei_device *dev)
148 {
149 	u32 hcsr;
150 
151 	hcsr = mei_hcsr_read(dev) | H_IG;
152 	mei_hcsr_set(dev, hcsr);
153 }
154 
155 /**
156  * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
157  *
158  * @dev: the device structure
159  *
160  * Return: H_D0I3C register value (u32)
161  */
162 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
163 {
164 	u32 reg;
165 
166 	reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
167 	trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
168 
169 	return reg;
170 }
171 
172 /**
173  * mei_me_d0i3c_write - writes H_D0I3C register to device
174  *
175  * @dev: the device structure
176  * @reg: new register value
177  */
178 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
179 {
180 	trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
181 	mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
182 }
183 
184 /**
185  * mei_me_fw_status - read fw status register from pci config space
186  *
187  * @dev: mei device
188  * @fw_status: fw status register values
189  *
190  * Return: 0 on success, error otherwise
191  */
192 static int mei_me_fw_status(struct mei_device *dev,
193 			    struct mei_fw_status *fw_status)
194 {
195 	struct pci_dev *pdev = to_pci_dev(dev->dev);
196 	struct mei_me_hw *hw = to_me_hw(dev);
197 	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
198 	int ret;
199 	int i;
200 
201 	if (!fw_status)
202 		return -EINVAL;
203 
204 	fw_status->count = fw_src->count;
205 	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
206 		ret = pci_read_config_dword(pdev, fw_src->status[i],
207 					    &fw_status->status[i]);
208 		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
209 				       fw_src->status[i],
210 				       fw_status->status[i]);
211 		if (ret)
212 			return ret;
213 	}
214 
215 	return 0;
216 }
217 
218 /**
219  * mei_me_hw_config - configure hw dependent settings
220  *
221  * @dev: mei device
222  */
223 static void mei_me_hw_config(struct mei_device *dev)
224 {
225 	struct pci_dev *pdev = to_pci_dev(dev->dev);
226 	struct mei_me_hw *hw = to_me_hw(dev);
227 	u32 hcsr, reg;
228 
229 	/* Doesn't change in runtime */
230 	hcsr = mei_hcsr_read(dev);
231 	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
232 
233 	reg = 0;
234 	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
235 	trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
236 	hw->d0i3_supported =
237 		((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
238 
239 	hw->pg_state = MEI_PG_OFF;
240 	if (hw->d0i3_supported) {
241 		reg = mei_me_d0i3c_read(dev);
242 		if (reg & H_D0I3C_I3)
243 			hw->pg_state = MEI_PG_ON;
244 	}
245 }
246 
247 /**
248  * mei_me_pg_state  - translate internal pg state
249  *   to the mei power gating state
250  *
251  * @dev:  mei device
252  *
253  * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
254  */
255 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
256 {
257 	struct mei_me_hw *hw = to_me_hw(dev);
258 
259 	return hw->pg_state;
260 }
261 
262 static inline u32 me_intr_src(u32 hcsr)
263 {
264 	return hcsr & H_CSR_IS_MASK;
265 }
266 
267 /**
268  * me_intr_disable - disables mei device interrupts
269  *      using supplied hcsr register value.
270  *
271  * @dev: the device structure
272  * @hcsr: supplied hcsr register value
273  */
274 static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
275 {
276 	hcsr &= ~H_CSR_IE_MASK;
277 	mei_hcsr_set(dev, hcsr);
278 }
279 
280 /**
281  * mei_me_intr_clear - clear and stop interrupts
282  *
283  * @dev: the device structure
284  * @hcsr: supplied hcsr register value
285  */
286 static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
287 {
288 	if (me_intr_src(hcsr))
289 		mei_hcsr_write(dev, hcsr);
290 }
291 
292 /**
293  * mei_me_intr_clear - clear and stop interrupts
294  *
295  * @dev: the device structure
296  */
297 static void mei_me_intr_clear(struct mei_device *dev)
298 {
299 	u32 hcsr = mei_hcsr_read(dev);
300 
301 	me_intr_clear(dev, hcsr);
302 }
303 /**
304  * mei_me_intr_enable - enables mei device interrupts
305  *
306  * @dev: the device structure
307  */
308 static void mei_me_intr_enable(struct mei_device *dev)
309 {
310 	u32 hcsr = mei_hcsr_read(dev);
311 
312 	hcsr |= H_CSR_IE_MASK;
313 	mei_hcsr_set(dev, hcsr);
314 }
315 
316 /**
317  * mei_me_intr_disable - disables mei device interrupts
318  *
319  * @dev: the device structure
320  */
321 static void mei_me_intr_disable(struct mei_device *dev)
322 {
323 	u32 hcsr = mei_hcsr_read(dev);
324 
325 	me_intr_disable(dev, hcsr);
326 }
327 
328 /**
329  * mei_me_synchronize_irq - wait for pending IRQ handlers
330  *
331  * @dev: the device structure
332  */
333 static void mei_me_synchronize_irq(struct mei_device *dev)
334 {
335 	struct pci_dev *pdev = to_pci_dev(dev->dev);
336 
337 	synchronize_irq(pdev->irq);
338 }
339 
340 /**
341  * mei_me_hw_reset_release - release device from the reset
342  *
343  * @dev: the device structure
344  */
345 static void mei_me_hw_reset_release(struct mei_device *dev)
346 {
347 	u32 hcsr = mei_hcsr_read(dev);
348 
349 	hcsr |= H_IG;
350 	hcsr &= ~H_RST;
351 	mei_hcsr_set(dev, hcsr);
352 
353 	/* complete this write before we set host ready on another CPU */
354 	mmiowb();
355 }
356 
357 /**
358  * mei_me_host_set_ready - enable device
359  *
360  * @dev: mei device
361  */
362 static void mei_me_host_set_ready(struct mei_device *dev)
363 {
364 	u32 hcsr = mei_hcsr_read(dev);
365 
366 	hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
367 	mei_hcsr_set(dev, hcsr);
368 }
369 
370 /**
371  * mei_me_host_is_ready - check whether the host has turned ready
372  *
373  * @dev: mei device
374  * Return: bool
375  */
376 static bool mei_me_host_is_ready(struct mei_device *dev)
377 {
378 	u32 hcsr = mei_hcsr_read(dev);
379 
380 	return (hcsr & H_RDY) == H_RDY;
381 }
382 
383 /**
384  * mei_me_hw_is_ready - check whether the me(hw) has turned ready
385  *
386  * @dev: mei device
387  * Return: bool
388  */
389 static bool mei_me_hw_is_ready(struct mei_device *dev)
390 {
391 	u32 mecsr = mei_me_mecsr_read(dev);
392 
393 	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
394 }
395 
396 /**
397  * mei_me_hw_is_resetting - check whether the me(hw) is in reset
398  *
399  * @dev: mei device
400  * Return: bool
401  */
402 static bool mei_me_hw_is_resetting(struct mei_device *dev)
403 {
404 	u32 mecsr = mei_me_mecsr_read(dev);
405 
406 	return (mecsr & ME_RST_HRA) == ME_RST_HRA;
407 }
408 
409 /**
410  * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
411  *  or timeout is reached
412  *
413  * @dev: mei device
414  * Return: 0 on success, error otherwise
415  */
416 static int mei_me_hw_ready_wait(struct mei_device *dev)
417 {
418 	mutex_unlock(&dev->device_lock);
419 	wait_event_timeout(dev->wait_hw_ready,
420 			dev->recvd_hw_ready,
421 			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
422 	mutex_lock(&dev->device_lock);
423 	if (!dev->recvd_hw_ready) {
424 		dev_err(dev->dev, "wait hw ready failed\n");
425 		return -ETIME;
426 	}
427 
428 	mei_me_hw_reset_release(dev);
429 	dev->recvd_hw_ready = false;
430 	return 0;
431 }
432 
433 /**
434  * mei_me_hw_start - hw start routine
435  *
436  * @dev: mei device
437  * Return: 0 on success, error otherwise
438  */
439 static int mei_me_hw_start(struct mei_device *dev)
440 {
441 	int ret = mei_me_hw_ready_wait(dev);
442 
443 	if (ret)
444 		return ret;
445 	dev_dbg(dev->dev, "hw is ready\n");
446 
447 	mei_me_host_set_ready(dev);
448 	return ret;
449 }
450 
451 
452 /**
453  * mei_hbuf_filled_slots - gets number of device filled buffer slots
454  *
455  * @dev: the device structure
456  *
457  * Return: number of filled slots
458  */
459 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
460 {
461 	u32 hcsr;
462 	char read_ptr, write_ptr;
463 
464 	hcsr = mei_hcsr_read(dev);
465 
466 	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
467 	write_ptr = (char) ((hcsr & H_CBWP) >> 16);
468 
469 	return (unsigned char) (write_ptr - read_ptr);
470 }
471 
472 /**
473  * mei_me_hbuf_is_empty - checks if host buffer is empty.
474  *
475  * @dev: the device structure
476  *
477  * Return: true if empty, false - otherwise.
478  */
479 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
480 {
481 	return mei_hbuf_filled_slots(dev) == 0;
482 }
483 
484 /**
485  * mei_me_hbuf_empty_slots - counts write empty slots.
486  *
487  * @dev: the device structure
488  *
489  * Return: -EOVERFLOW if overflow, otherwise empty slots count
490  */
491 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
492 {
493 	unsigned char filled_slots, empty_slots;
494 
495 	filled_slots = mei_hbuf_filled_slots(dev);
496 	empty_slots = dev->hbuf_depth - filled_slots;
497 
498 	/* check for overflow */
499 	if (filled_slots > dev->hbuf_depth)
500 		return -EOVERFLOW;
501 
502 	return empty_slots;
503 }
504 
505 /**
506  * mei_me_hbuf_max_len - returns size of hw buffer.
507  *
508  * @dev: the device structure
509  *
510  * Return: size of hw buffer in bytes
511  */
512 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
513 {
514 	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
515 }
516 
517 
518 /**
519  * mei_me_hbuf_write - writes a message to host hw buffer.
520  *
521  * @dev: the device structure
522  * @header: mei HECI header of message
523  * @buf: message payload will be written
524  *
525  * Return: -EIO if write has failed
526  */
527 static int mei_me_hbuf_write(struct mei_device *dev,
528 			     struct mei_msg_hdr *header,
529 			     const unsigned char *buf)
530 {
531 	unsigned long rem;
532 	unsigned long length = header->length;
533 	u32 *reg_buf = (u32 *)buf;
534 	u32 dw_cnt;
535 	int i;
536 	int empty_slots;
537 
538 	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
539 
540 	empty_slots = mei_hbuf_empty_slots(dev);
541 	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
542 
543 	dw_cnt = mei_data2slots(length);
544 	if (empty_slots < 0 || dw_cnt > empty_slots)
545 		return -EMSGSIZE;
546 
547 	mei_me_hcbww_write(dev, *((u32 *) header));
548 
549 	for (i = 0; i < length / 4; i++)
550 		mei_me_hcbww_write(dev, reg_buf[i]);
551 
552 	rem = length & 0x3;
553 	if (rem > 0) {
554 		u32 reg = 0;
555 
556 		memcpy(&reg, &buf[length - rem], rem);
557 		mei_me_hcbww_write(dev, reg);
558 	}
559 
560 	mei_hcsr_set_hig(dev);
561 	if (!mei_me_hw_is_ready(dev))
562 		return -EIO;
563 
564 	return 0;
565 }
566 
567 /**
568  * mei_me_count_full_read_slots - counts read full slots.
569  *
570  * @dev: the device structure
571  *
572  * Return: -EOVERFLOW if overflow, otherwise filled slots count
573  */
574 static int mei_me_count_full_read_slots(struct mei_device *dev)
575 {
576 	u32 me_csr;
577 	char read_ptr, write_ptr;
578 	unsigned char buffer_depth, filled_slots;
579 
580 	me_csr = mei_me_mecsr_read(dev);
581 	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
582 	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
583 	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
584 	filled_slots = (unsigned char) (write_ptr - read_ptr);
585 
586 	/* check for overflow */
587 	if (filled_slots > buffer_depth)
588 		return -EOVERFLOW;
589 
590 	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
591 	return (int)filled_slots;
592 }
593 
594 /**
595  * mei_me_read_slots - reads a message from mei device.
596  *
597  * @dev: the device structure
598  * @buffer: message buffer will be written
599  * @buffer_length: message size will be read
600  *
601  * Return: always 0
602  */
603 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
604 		    unsigned long buffer_length)
605 {
606 	u32 *reg_buf = (u32 *)buffer;
607 
608 	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
609 		*reg_buf++ = mei_me_mecbrw_read(dev);
610 
611 	if (buffer_length > 0) {
612 		u32 reg = mei_me_mecbrw_read(dev);
613 
614 		memcpy(reg_buf, &reg, buffer_length);
615 	}
616 
617 	mei_hcsr_set_hig(dev);
618 	return 0;
619 }
620 
621 /**
622  * mei_me_pg_set - write pg enter register
623  *
624  * @dev: the device structure
625  */
626 static void mei_me_pg_set(struct mei_device *dev)
627 {
628 	struct mei_me_hw *hw = to_me_hw(dev);
629 	u32 reg;
630 
631 	reg = mei_me_reg_read(hw, H_HPG_CSR);
632 	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
633 
634 	reg |= H_HPG_CSR_PGI;
635 
636 	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
637 	mei_me_reg_write(hw, H_HPG_CSR, reg);
638 }
639 
640 /**
641  * mei_me_pg_unset - write pg exit register
642  *
643  * @dev: the device structure
644  */
645 static void mei_me_pg_unset(struct mei_device *dev)
646 {
647 	struct mei_me_hw *hw = to_me_hw(dev);
648 	u32 reg;
649 
650 	reg = mei_me_reg_read(hw, H_HPG_CSR);
651 	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
652 
653 	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
654 
655 	reg |= H_HPG_CSR_PGIHEXR;
656 
657 	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
658 	mei_me_reg_write(hw, H_HPG_CSR, reg);
659 }
660 
661 /**
662  * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
663  *
664  * @dev: the device structure
665  *
666  * Return: 0 on success an error code otherwise
667  */
668 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
669 {
670 	struct mei_me_hw *hw = to_me_hw(dev);
671 	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
672 	int ret;
673 
674 	dev->pg_event = MEI_PG_EVENT_WAIT;
675 
676 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
677 	if (ret)
678 		return ret;
679 
680 	mutex_unlock(&dev->device_lock);
681 	wait_event_timeout(dev->wait_pg,
682 		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
683 	mutex_lock(&dev->device_lock);
684 
685 	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
686 		mei_me_pg_set(dev);
687 		ret = 0;
688 	} else {
689 		ret = -ETIME;
690 	}
691 
692 	dev->pg_event = MEI_PG_EVENT_IDLE;
693 	hw->pg_state = MEI_PG_ON;
694 
695 	return ret;
696 }
697 
698 /**
699  * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
700  *
701  * @dev: the device structure
702  *
703  * Return: 0 on success an error code otherwise
704  */
705 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
706 {
707 	struct mei_me_hw *hw = to_me_hw(dev);
708 	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
709 	int ret;
710 
711 	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
712 		goto reply;
713 
714 	dev->pg_event = MEI_PG_EVENT_WAIT;
715 
716 	mei_me_pg_unset(dev);
717 
718 	mutex_unlock(&dev->device_lock);
719 	wait_event_timeout(dev->wait_pg,
720 		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
721 	mutex_lock(&dev->device_lock);
722 
723 reply:
724 	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
725 		ret = -ETIME;
726 		goto out;
727 	}
728 
729 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
730 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
731 	if (ret)
732 		return ret;
733 
734 	mutex_unlock(&dev->device_lock);
735 	wait_event_timeout(dev->wait_pg,
736 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
737 	mutex_lock(&dev->device_lock);
738 
739 	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
740 		ret = 0;
741 	else
742 		ret = -ETIME;
743 
744 out:
745 	dev->pg_event = MEI_PG_EVENT_IDLE;
746 	hw->pg_state = MEI_PG_OFF;
747 
748 	return ret;
749 }
750 
751 /**
752  * mei_me_pg_in_transition - is device now in pg transition
753  *
754  * @dev: the device structure
755  *
756  * Return: true if in pg transition, false otherwise
757  */
758 static bool mei_me_pg_in_transition(struct mei_device *dev)
759 {
760 	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
761 	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
762 }
763 
764 /**
765  * mei_me_pg_is_enabled - detect if PG is supported by HW
766  *
767  * @dev: the device structure
768  *
769  * Return: true is pg supported, false otherwise
770  */
771 static bool mei_me_pg_is_enabled(struct mei_device *dev)
772 {
773 	struct mei_me_hw *hw = to_me_hw(dev);
774 	u32 reg = mei_me_mecsr_read(dev);
775 
776 	if (hw->d0i3_supported)
777 		return true;
778 
779 	if ((reg & ME_PGIC_HRA) == 0)
780 		goto notsupported;
781 
782 	if (!dev->hbm_f_pg_supported)
783 		goto notsupported;
784 
785 	return true;
786 
787 notsupported:
788 	dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
789 		hw->d0i3_supported,
790 		!!(reg & ME_PGIC_HRA),
791 		dev->version.major_version,
792 		dev->version.minor_version,
793 		HBM_MAJOR_VERSION_PGI,
794 		HBM_MINOR_VERSION_PGI);
795 
796 	return false;
797 }
798 
799 /**
800  * mei_me_d0i3_set - write d0i3 register bit on mei device.
801  *
802  * @dev: the device structure
803  * @intr: ask for interrupt
804  *
805  * Return: D0I3C register value
806  */
807 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
808 {
809 	u32 reg = mei_me_d0i3c_read(dev);
810 
811 	reg |= H_D0I3C_I3;
812 	if (intr)
813 		reg |= H_D0I3C_IR;
814 	else
815 		reg &= ~H_D0I3C_IR;
816 	mei_me_d0i3c_write(dev, reg);
817 	/* read it to ensure HW consistency */
818 	reg = mei_me_d0i3c_read(dev);
819 	return reg;
820 }
821 
822 /**
823  * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
824  *
825  * @dev: the device structure
826  *
827  * Return: D0I3C register value
828  */
829 static u32 mei_me_d0i3_unset(struct mei_device *dev)
830 {
831 	u32 reg = mei_me_d0i3c_read(dev);
832 
833 	reg &= ~H_D0I3C_I3;
834 	reg |= H_D0I3C_IR;
835 	mei_me_d0i3c_write(dev, reg);
836 	/* read it to ensure HW consistency */
837 	reg = mei_me_d0i3c_read(dev);
838 	return reg;
839 }
840 
841 /**
842  * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
843  *
844  * @dev: the device structure
845  *
846  * Return: 0 on success an error code otherwise
847  */
848 static int mei_me_d0i3_enter_sync(struct mei_device *dev)
849 {
850 	struct mei_me_hw *hw = to_me_hw(dev);
851 	unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
852 	unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
853 	int ret;
854 	u32 reg;
855 
856 	reg = mei_me_d0i3c_read(dev);
857 	if (reg & H_D0I3C_I3) {
858 		/* we are in d0i3, nothing to do */
859 		dev_dbg(dev->dev, "d0i3 set not needed\n");
860 		ret = 0;
861 		goto on;
862 	}
863 
864 	/* PGI entry procedure */
865 	dev->pg_event = MEI_PG_EVENT_WAIT;
866 
867 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
868 	if (ret)
869 		/* FIXME: should we reset here? */
870 		goto out;
871 
872 	mutex_unlock(&dev->device_lock);
873 	wait_event_timeout(dev->wait_pg,
874 		dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
875 	mutex_lock(&dev->device_lock);
876 
877 	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
878 		ret = -ETIME;
879 		goto out;
880 	}
881 	/* end PGI entry procedure */
882 
883 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
884 
885 	reg = mei_me_d0i3_set(dev, true);
886 	if (!(reg & H_D0I3C_CIP)) {
887 		dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
888 		ret = 0;
889 		goto on;
890 	}
891 
892 	mutex_unlock(&dev->device_lock);
893 	wait_event_timeout(dev->wait_pg,
894 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
895 	mutex_lock(&dev->device_lock);
896 
897 	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
898 		reg = mei_me_d0i3c_read(dev);
899 		if (!(reg & H_D0I3C_I3)) {
900 			ret = -ETIME;
901 			goto out;
902 		}
903 	}
904 
905 	ret = 0;
906 on:
907 	hw->pg_state = MEI_PG_ON;
908 out:
909 	dev->pg_event = MEI_PG_EVENT_IDLE;
910 	dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
911 	return ret;
912 }
913 
914 /**
915  * mei_me_d0i3_enter - perform d0i3 entry procedure
916  *   no hbm PG handshake
917  *   no waiting for confirmation; runs with interrupts
918  *   disabled
919  *
920  * @dev: the device structure
921  *
922  * Return: 0 on success an error code otherwise
923  */
924 static int mei_me_d0i3_enter(struct mei_device *dev)
925 {
926 	struct mei_me_hw *hw = to_me_hw(dev);
927 	u32 reg;
928 
929 	reg = mei_me_d0i3c_read(dev);
930 	if (reg & H_D0I3C_I3) {
931 		/* we are in d0i3, nothing to do */
932 		dev_dbg(dev->dev, "already d0i3 : set not needed\n");
933 		goto on;
934 	}
935 
936 	mei_me_d0i3_set(dev, false);
937 on:
938 	hw->pg_state = MEI_PG_ON;
939 	dev->pg_event = MEI_PG_EVENT_IDLE;
940 	dev_dbg(dev->dev, "d0i3 enter\n");
941 	return 0;
942 }
943 
944 /**
945  * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
946  *
947  * @dev: the device structure
948  *
949  * Return: 0 on success an error code otherwise
950  */
951 static int mei_me_d0i3_exit_sync(struct mei_device *dev)
952 {
953 	struct mei_me_hw *hw = to_me_hw(dev);
954 	unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
955 	int ret;
956 	u32 reg;
957 
958 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
959 
960 	reg = mei_me_d0i3c_read(dev);
961 	if (!(reg & H_D0I3C_I3)) {
962 		/* we are not in d0i3, nothing to do */
963 		dev_dbg(dev->dev, "d0i3 exit not needed\n");
964 		ret = 0;
965 		goto off;
966 	}
967 
968 	reg = mei_me_d0i3_unset(dev);
969 	if (!(reg & H_D0I3C_CIP)) {
970 		dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
971 		ret = 0;
972 		goto off;
973 	}
974 
975 	mutex_unlock(&dev->device_lock);
976 	wait_event_timeout(dev->wait_pg,
977 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
978 	mutex_lock(&dev->device_lock);
979 
980 	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
981 		reg = mei_me_d0i3c_read(dev);
982 		if (reg & H_D0I3C_I3) {
983 			ret = -ETIME;
984 			goto out;
985 		}
986 	}
987 
988 	ret = 0;
989 off:
990 	hw->pg_state = MEI_PG_OFF;
991 out:
992 	dev->pg_event = MEI_PG_EVENT_IDLE;
993 
994 	dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
995 	return ret;
996 }
997 
998 /**
999  * mei_me_pg_legacy_intr - perform legacy pg processing
1000  *			   in interrupt thread handler
1001  *
1002  * @dev: the device structure
1003  */
1004 static void mei_me_pg_legacy_intr(struct mei_device *dev)
1005 {
1006 	struct mei_me_hw *hw = to_me_hw(dev);
1007 
1008 	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1009 		return;
1010 
1011 	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1012 	hw->pg_state = MEI_PG_OFF;
1013 	if (waitqueue_active(&dev->wait_pg))
1014 		wake_up(&dev->wait_pg);
1015 }
1016 
1017 /**
1018  * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1019  *
1020  * @dev: the device structure
1021  * @intr_source: interrupt source
1022  */
1023 static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1024 {
1025 	struct mei_me_hw *hw = to_me_hw(dev);
1026 
1027 	if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1028 	    (intr_source & H_D0I3C_IS)) {
1029 		dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1030 		if (hw->pg_state == MEI_PG_ON) {
1031 			hw->pg_state = MEI_PG_OFF;
1032 			if (dev->hbm_state != MEI_HBM_IDLE) {
1033 				/*
1034 				 * force H_RDY because it could be
1035 				 * wiped off during PG
1036 				 */
1037 				dev_dbg(dev->dev, "d0i3 set host ready\n");
1038 				mei_me_host_set_ready(dev);
1039 			}
1040 		} else {
1041 			hw->pg_state = MEI_PG_ON;
1042 		}
1043 
1044 		wake_up(&dev->wait_pg);
1045 	}
1046 
1047 	if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1048 		/*
1049 		 * HW sent some data and we are in D0i3, so
1050 		 * we got here because of HW initiated exit from D0i3.
1051 		 * Start runtime pm resume sequence to exit low power state.
1052 		 */
1053 		dev_dbg(dev->dev, "d0i3 want resume\n");
1054 		mei_hbm_pg_resume(dev);
1055 	}
1056 }
1057 
1058 /**
1059  * mei_me_pg_intr - perform pg processing in interrupt thread handler
1060  *
1061  * @dev: the device structure
1062  * @intr_source: interrupt source
1063  */
1064 static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1065 {
1066 	struct mei_me_hw *hw = to_me_hw(dev);
1067 
1068 	if (hw->d0i3_supported)
1069 		mei_me_d0i3_intr(dev, intr_source);
1070 	else
1071 		mei_me_pg_legacy_intr(dev);
1072 }
1073 
1074 /**
1075  * mei_me_pg_enter_sync - perform runtime pm entry procedure
1076  *
1077  * @dev: the device structure
1078  *
1079  * Return: 0 on success an error code otherwise
1080  */
1081 int mei_me_pg_enter_sync(struct mei_device *dev)
1082 {
1083 	struct mei_me_hw *hw = to_me_hw(dev);
1084 
1085 	if (hw->d0i3_supported)
1086 		return mei_me_d0i3_enter_sync(dev);
1087 	else
1088 		return mei_me_pg_legacy_enter_sync(dev);
1089 }
1090 
1091 /**
1092  * mei_me_pg_exit_sync - perform runtime pm exit procedure
1093  *
1094  * @dev: the device structure
1095  *
1096  * Return: 0 on success an error code otherwise
1097  */
1098 int mei_me_pg_exit_sync(struct mei_device *dev)
1099 {
1100 	struct mei_me_hw *hw = to_me_hw(dev);
1101 
1102 	if (hw->d0i3_supported)
1103 		return mei_me_d0i3_exit_sync(dev);
1104 	else
1105 		return mei_me_pg_legacy_exit_sync(dev);
1106 }
1107 
1108 /**
1109  * mei_me_hw_reset - resets fw via mei csr register.
1110  *
1111  * @dev: the device structure
1112  * @intr_enable: if interrupt should be enabled after reset.
1113  *
1114  * Return: 0 on success an error code otherwise
1115  */
1116 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1117 {
1118 	struct mei_me_hw *hw = to_me_hw(dev);
1119 	int ret;
1120 	u32 hcsr;
1121 
1122 	if (intr_enable) {
1123 		mei_me_intr_enable(dev);
1124 		if (hw->d0i3_supported) {
1125 			ret = mei_me_d0i3_exit_sync(dev);
1126 			if (ret)
1127 				return ret;
1128 		}
1129 	}
1130 
1131 	pm_runtime_set_active(dev->dev);
1132 
1133 	hcsr = mei_hcsr_read(dev);
1134 	/* H_RST may be found lit before reset is started,
1135 	 * for example if preceding reset flow hasn't completed.
1136 	 * In that case asserting H_RST will be ignored, therefore
1137 	 * we need to clean H_RST bit to start a successful reset sequence.
1138 	 */
1139 	if ((hcsr & H_RST) == H_RST) {
1140 		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1141 		hcsr &= ~H_RST;
1142 		mei_hcsr_set(dev, hcsr);
1143 		hcsr = mei_hcsr_read(dev);
1144 	}
1145 
1146 	hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1147 
1148 	if (!intr_enable)
1149 		hcsr &= ~H_CSR_IE_MASK;
1150 
1151 	dev->recvd_hw_ready = false;
1152 	mei_hcsr_write(dev, hcsr);
1153 
1154 	/*
1155 	 * Host reads the H_CSR once to ensure that the
1156 	 * posted write to H_CSR completes.
1157 	 */
1158 	hcsr = mei_hcsr_read(dev);
1159 
1160 	if ((hcsr & H_RST) == 0)
1161 		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1162 
1163 	if ((hcsr & H_RDY) == H_RDY)
1164 		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1165 
1166 	if (!intr_enable) {
1167 		mei_me_hw_reset_release(dev);
1168 		if (hw->d0i3_supported) {
1169 			ret = mei_me_d0i3_enter(dev);
1170 			if (ret)
1171 				return ret;
1172 		}
1173 	}
1174 	return 0;
1175 }
1176 
1177 /**
1178  * mei_me_irq_quick_handler - The ISR of the MEI device
1179  *
1180  * @irq: The irq number
1181  * @dev_id: pointer to the device structure
1182  *
1183  * Return: irqreturn_t
1184  */
1185 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1186 {
1187 	struct mei_device *dev = (struct mei_device *)dev_id;
1188 	u32 hcsr;
1189 
1190 	hcsr = mei_hcsr_read(dev);
1191 	if (!me_intr_src(hcsr))
1192 		return IRQ_NONE;
1193 
1194 	dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1195 
1196 	/* disable interrupts on device */
1197 	me_intr_disable(dev, hcsr);
1198 	return IRQ_WAKE_THREAD;
1199 }
1200 
1201 /**
1202  * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1203  * processing.
1204  *
1205  * @irq: The irq number
1206  * @dev_id: pointer to the device structure
1207  *
1208  * Return: irqreturn_t
1209  *
1210  */
1211 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1212 {
1213 	struct mei_device *dev = (struct mei_device *) dev_id;
1214 	struct list_head cmpl_list;
1215 	s32 slots;
1216 	u32 hcsr;
1217 	int rets = 0;
1218 
1219 	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1220 	/* initialize our complete list */
1221 	mutex_lock(&dev->device_lock);
1222 
1223 	hcsr = mei_hcsr_read(dev);
1224 	me_intr_clear(dev, hcsr);
1225 
1226 	INIT_LIST_HEAD(&cmpl_list);
1227 
1228 	/* check if ME wants a reset */
1229 	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1230 		dev_warn(dev->dev, "FW not ready: resetting.\n");
1231 		schedule_work(&dev->reset_work);
1232 		goto end;
1233 	}
1234 
1235 	if (mei_me_hw_is_resetting(dev))
1236 		mei_hcsr_set_hig(dev);
1237 
1238 	mei_me_pg_intr(dev, me_intr_src(hcsr));
1239 
1240 	/*  check if we need to start the dev */
1241 	if (!mei_host_is_ready(dev)) {
1242 		if (mei_hw_is_ready(dev)) {
1243 			dev_dbg(dev->dev, "we need to start the dev.\n");
1244 			dev->recvd_hw_ready = true;
1245 			wake_up(&dev->wait_hw_ready);
1246 		} else {
1247 			dev_dbg(dev->dev, "Spurious Interrupt\n");
1248 		}
1249 		goto end;
1250 	}
1251 	/* check slots available for reading */
1252 	slots = mei_count_full_read_slots(dev);
1253 	while (slots > 0) {
1254 		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1255 		rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1256 		/* There is a race between ME write and interrupt delivery:
1257 		 * Not all data is always available immediately after the
1258 		 * interrupt, so try to read again on the next interrupt.
1259 		 */
1260 		if (rets == -ENODATA)
1261 			break;
1262 
1263 		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1264 			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1265 						rets);
1266 			schedule_work(&dev->reset_work);
1267 			goto end;
1268 		}
1269 	}
1270 
1271 	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1272 
1273 	/*
1274 	 * During PG handshake only allowed write is the replay to the
1275 	 * PG exit message, so block calling write function
1276 	 * if the pg event is in PG handshake
1277 	 */
1278 	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1279 	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1280 		rets = mei_irq_write_handler(dev, &cmpl_list);
1281 		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1282 	}
1283 
1284 	mei_irq_compl_handler(dev, &cmpl_list);
1285 
1286 end:
1287 	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1288 	mei_me_intr_enable(dev);
1289 	mutex_unlock(&dev->device_lock);
1290 	return IRQ_HANDLED;
1291 }
1292 
1293 static const struct mei_hw_ops mei_me_hw_ops = {
1294 
1295 	.fw_status = mei_me_fw_status,
1296 	.pg_state  = mei_me_pg_state,
1297 
1298 	.host_is_ready = mei_me_host_is_ready,
1299 
1300 	.hw_is_ready = mei_me_hw_is_ready,
1301 	.hw_reset = mei_me_hw_reset,
1302 	.hw_config = mei_me_hw_config,
1303 	.hw_start = mei_me_hw_start,
1304 
1305 	.pg_in_transition = mei_me_pg_in_transition,
1306 	.pg_is_enabled = mei_me_pg_is_enabled,
1307 
1308 	.intr_clear = mei_me_intr_clear,
1309 	.intr_enable = mei_me_intr_enable,
1310 	.intr_disable = mei_me_intr_disable,
1311 	.synchronize_irq = mei_me_synchronize_irq,
1312 
1313 	.hbuf_free_slots = mei_me_hbuf_empty_slots,
1314 	.hbuf_is_ready = mei_me_hbuf_is_empty,
1315 	.hbuf_max_len = mei_me_hbuf_max_len,
1316 
1317 	.write = mei_me_hbuf_write,
1318 
1319 	.rdbuf_full_slots = mei_me_count_full_read_slots,
1320 	.read_hdr = mei_me_mecbrw_read,
1321 	.read = mei_me_read_slots
1322 };
1323 
1324 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1325 {
1326 	u32 reg;
1327 
1328 	pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1329 	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1330 	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1331 	return (reg & 0x600) == 0x200;
1332 }
1333 
1334 #define MEI_CFG_FW_NM                           \
1335 	.quirk_probe = mei_me_fw_type_nm
1336 
1337 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1338 {
1339 	u32 reg;
1340 	unsigned int devfn;
1341 
1342 	/*
1343 	 * Read ME FW Status register to check for SPS Firmware
1344 	 * The SPS FW is only signaled in pci function 0
1345 	 */
1346 	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1347 	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1348 	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1349 	/* if bits [19:16] = 15, running SPS Firmware */
1350 	return (reg & 0xf0000) == 0xf0000;
1351 }
1352 
1353 #define MEI_CFG_FW_SPS                           \
1354 	.quirk_probe = mei_me_fw_type_sps
1355 
1356 
1357 #define MEI_CFG_LEGACY_HFS                      \
1358 	.fw_status.count = 0
1359 
1360 #define MEI_CFG_ICH_HFS                        \
1361 	.fw_status.count = 1,                   \
1362 	.fw_status.status[0] = PCI_CFG_HFS_1
1363 
1364 #define MEI_CFG_PCH_HFS                         \
1365 	.fw_status.count = 2,                   \
1366 	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1367 	.fw_status.status[1] = PCI_CFG_HFS_2
1368 
1369 #define MEI_CFG_PCH8_HFS                        \
1370 	.fw_status.count = 6,                   \
1371 	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1372 	.fw_status.status[1] = PCI_CFG_HFS_2,   \
1373 	.fw_status.status[2] = PCI_CFG_HFS_3,   \
1374 	.fw_status.status[3] = PCI_CFG_HFS_4,   \
1375 	.fw_status.status[4] = PCI_CFG_HFS_5,   \
1376 	.fw_status.status[5] = PCI_CFG_HFS_6
1377 
1378 /* ICH Legacy devices */
1379 const struct mei_cfg mei_me_legacy_cfg = {
1380 	MEI_CFG_LEGACY_HFS,
1381 };
1382 
1383 /* ICH devices */
1384 const struct mei_cfg mei_me_ich_cfg = {
1385 	MEI_CFG_ICH_HFS,
1386 };
1387 
1388 /* PCH devices */
1389 const struct mei_cfg mei_me_pch_cfg = {
1390 	MEI_CFG_PCH_HFS,
1391 };
1392 
1393 
1394 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1395 const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1396 	MEI_CFG_PCH_HFS,
1397 	MEI_CFG_FW_NM,
1398 };
1399 
1400 /* PCH8 Lynx Point and newer devices */
1401 const struct mei_cfg mei_me_pch8_cfg = {
1402 	MEI_CFG_PCH8_HFS,
1403 };
1404 
1405 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1406 const struct mei_cfg mei_me_pch8_sps_cfg = {
1407 	MEI_CFG_PCH8_HFS,
1408 	MEI_CFG_FW_SPS,
1409 };
1410 
1411 /**
1412  * mei_me_dev_init - allocates and initializes the mei device structure
1413  *
1414  * @pdev: The pci device structure
1415  * @cfg: per device generation config
1416  *
1417  * Return: The mei_device pointer on success, NULL on failure.
1418  */
1419 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1420 				   const struct mei_cfg *cfg)
1421 {
1422 	struct mei_device *dev;
1423 	struct mei_me_hw *hw;
1424 
1425 	dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1426 			   sizeof(struct mei_me_hw), GFP_KERNEL);
1427 	if (!dev)
1428 		return NULL;
1429 	hw = to_me_hw(dev);
1430 
1431 	mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1432 	hw->cfg = cfg;
1433 	return dev;
1434 }
1435 
1436