xref: /openbmc/linux/drivers/misc/mei/hw-me.c (revision 96ac6d43)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2018, Intel Corporation. All rights reserved.
4  * Intel Management Engine Interface (Intel MEI) Linux driver
5  */
6 
7 #include <linux/pci.h>
8 
9 #include <linux/kthread.h>
10 #include <linux/interrupt.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/sizes.h>
13 
14 #include "mei_dev.h"
15 #include "hbm.h"
16 
17 #include "hw-me.h"
18 #include "hw-me-regs.h"
19 
20 #include "mei-trace.h"
21 
22 /**
23  * mei_me_reg_read - Reads 32bit data from the mei device
24  *
25  * @hw: the me hardware structure
26  * @offset: offset from which to read the data
27  *
28  * Return: register value (u32)
29  */
30 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
31 			       unsigned long offset)
32 {
33 	return ioread32(hw->mem_addr + offset);
34 }
35 
36 
37 /**
38  * mei_me_reg_write - Writes 32bit data to the mei device
39  *
40  * @hw: the me hardware structure
41  * @offset: offset from which to write the data
42  * @value: register value to write (u32)
43  */
44 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
45 				 unsigned long offset, u32 value)
46 {
47 	iowrite32(value, hw->mem_addr + offset);
48 }
49 
50 /**
51  * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
52  *  read window register
53  *
54  * @dev: the device structure
55  *
56  * Return: ME_CB_RW register value (u32)
57  */
58 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
59 {
60 	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
61 }
62 
63 /**
64  * mei_me_hcbww_write - write 32bit data to the host circular buffer
65  *
66  * @dev: the device structure
67  * @data: 32bit data to be written to the host circular buffer
68  */
69 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
70 {
71 	mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
72 }
73 
74 /**
75  * mei_me_mecsr_read - Reads 32bit data from the ME CSR
76  *
77  * @dev: the device structure
78  *
79  * Return: ME_CSR_HA register value (u32)
80  */
81 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
82 {
83 	u32 reg;
84 
85 	reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
86 	trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
87 
88 	return reg;
89 }
90 
91 /**
92  * mei_hcsr_read - Reads 32bit data from the host CSR
93  *
94  * @dev: the device structure
95  *
96  * Return: H_CSR register value (u32)
97  */
98 static inline u32 mei_hcsr_read(const struct mei_device *dev)
99 {
100 	u32 reg;
101 
102 	reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
103 	trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
104 
105 	return reg;
106 }
107 
108 /**
109  * mei_hcsr_write - writes H_CSR register to the mei device
110  *
111  * @dev: the device structure
112  * @reg: new register value
113  */
114 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
115 {
116 	trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
117 	mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
118 }
119 
120 /**
121  * mei_hcsr_set - writes H_CSR register to the mei device,
122  * and ignores the H_IS bit for it is write-one-to-zero.
123  *
124  * @dev: the device structure
125  * @reg: new register value
126  */
127 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
128 {
129 	reg &= ~H_CSR_IS_MASK;
130 	mei_hcsr_write(dev, reg);
131 }
132 
133 /**
134  * mei_hcsr_set_hig - set host interrupt (set H_IG)
135  *
136  * @dev: the device structure
137  */
138 static inline void mei_hcsr_set_hig(struct mei_device *dev)
139 {
140 	u32 hcsr;
141 
142 	hcsr = mei_hcsr_read(dev) | H_IG;
143 	mei_hcsr_set(dev, hcsr);
144 }
145 
146 /**
147  * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
148  *
149  * @dev: the device structure
150  *
151  * Return: H_D0I3C register value (u32)
152  */
153 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
154 {
155 	u32 reg;
156 
157 	reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
158 	trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
159 
160 	return reg;
161 }
162 
163 /**
164  * mei_me_d0i3c_write - writes H_D0I3C register to device
165  *
166  * @dev: the device structure
167  * @reg: new register value
168  */
169 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
170 {
171 	trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
172 	mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
173 }
174 
175 /**
176  * mei_me_fw_status - read fw status register from pci config space
177  *
178  * @dev: mei device
179  * @fw_status: fw status register values
180  *
181  * Return: 0 on success, error otherwise
182  */
183 static int mei_me_fw_status(struct mei_device *dev,
184 			    struct mei_fw_status *fw_status)
185 {
186 	struct pci_dev *pdev = to_pci_dev(dev->dev);
187 	struct mei_me_hw *hw = to_me_hw(dev);
188 	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
189 	int ret;
190 	int i;
191 
192 	if (!fw_status)
193 		return -EINVAL;
194 
195 	fw_status->count = fw_src->count;
196 	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
197 		ret = pci_read_config_dword(pdev, fw_src->status[i],
198 					    &fw_status->status[i]);
199 		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
200 				       fw_src->status[i],
201 				       fw_status->status[i]);
202 		if (ret)
203 			return ret;
204 	}
205 
206 	return 0;
207 }
208 
209 /**
210  * mei_me_hw_config - configure hw dependent settings
211  *
212  * @dev: mei device
213  */
214 static void mei_me_hw_config(struct mei_device *dev)
215 {
216 	struct pci_dev *pdev = to_pci_dev(dev->dev);
217 	struct mei_me_hw *hw = to_me_hw(dev);
218 	u32 hcsr, reg;
219 
220 	/* Doesn't change in runtime */
221 	hcsr = mei_hcsr_read(dev);
222 	hw->hbuf_depth = (hcsr & H_CBD) >> 24;
223 
224 	reg = 0;
225 	pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
226 	trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
227 	hw->d0i3_supported =
228 		((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
229 
230 	hw->pg_state = MEI_PG_OFF;
231 	if (hw->d0i3_supported) {
232 		reg = mei_me_d0i3c_read(dev);
233 		if (reg & H_D0I3C_I3)
234 			hw->pg_state = MEI_PG_ON;
235 	}
236 }
237 
238 /**
239  * mei_me_pg_state  - translate internal pg state
240  *   to the mei power gating state
241  *
242  * @dev:  mei device
243  *
244  * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
245  */
246 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
247 {
248 	struct mei_me_hw *hw = to_me_hw(dev);
249 
250 	return hw->pg_state;
251 }
252 
253 static inline u32 me_intr_src(u32 hcsr)
254 {
255 	return hcsr & H_CSR_IS_MASK;
256 }
257 
258 /**
259  * me_intr_disable - disables mei device interrupts
260  *      using supplied hcsr register value.
261  *
262  * @dev: the device structure
263  * @hcsr: supplied hcsr register value
264  */
265 static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
266 {
267 	hcsr &= ~H_CSR_IE_MASK;
268 	mei_hcsr_set(dev, hcsr);
269 }
270 
271 /**
272  * mei_me_intr_clear - clear and stop interrupts
273  *
274  * @dev: the device structure
275  * @hcsr: supplied hcsr register value
276  */
277 static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
278 {
279 	if (me_intr_src(hcsr))
280 		mei_hcsr_write(dev, hcsr);
281 }
282 
283 /**
284  * mei_me_intr_clear - clear and stop interrupts
285  *
286  * @dev: the device structure
287  */
288 static void mei_me_intr_clear(struct mei_device *dev)
289 {
290 	u32 hcsr = mei_hcsr_read(dev);
291 
292 	me_intr_clear(dev, hcsr);
293 }
294 /**
295  * mei_me_intr_enable - enables mei device interrupts
296  *
297  * @dev: the device structure
298  */
299 static void mei_me_intr_enable(struct mei_device *dev)
300 {
301 	u32 hcsr = mei_hcsr_read(dev);
302 
303 	hcsr |= H_CSR_IE_MASK;
304 	mei_hcsr_set(dev, hcsr);
305 }
306 
307 /**
308  * mei_me_intr_disable - disables mei device interrupts
309  *
310  * @dev: the device structure
311  */
312 static void mei_me_intr_disable(struct mei_device *dev)
313 {
314 	u32 hcsr = mei_hcsr_read(dev);
315 
316 	me_intr_disable(dev, hcsr);
317 }
318 
319 /**
320  * mei_me_synchronize_irq - wait for pending IRQ handlers
321  *
322  * @dev: the device structure
323  */
324 static void mei_me_synchronize_irq(struct mei_device *dev)
325 {
326 	struct pci_dev *pdev = to_pci_dev(dev->dev);
327 
328 	synchronize_irq(pdev->irq);
329 }
330 
331 /**
332  * mei_me_hw_reset_release - release device from the reset
333  *
334  * @dev: the device structure
335  */
336 static void mei_me_hw_reset_release(struct mei_device *dev)
337 {
338 	u32 hcsr = mei_hcsr_read(dev);
339 
340 	hcsr |= H_IG;
341 	hcsr &= ~H_RST;
342 	mei_hcsr_set(dev, hcsr);
343 }
344 
345 /**
346  * mei_me_host_set_ready - enable device
347  *
348  * @dev: mei device
349  */
350 static void mei_me_host_set_ready(struct mei_device *dev)
351 {
352 	u32 hcsr = mei_hcsr_read(dev);
353 
354 	hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
355 	mei_hcsr_set(dev, hcsr);
356 }
357 
358 /**
359  * mei_me_host_is_ready - check whether the host has turned ready
360  *
361  * @dev: mei device
362  * Return: bool
363  */
364 static bool mei_me_host_is_ready(struct mei_device *dev)
365 {
366 	u32 hcsr = mei_hcsr_read(dev);
367 
368 	return (hcsr & H_RDY) == H_RDY;
369 }
370 
371 /**
372  * mei_me_hw_is_ready - check whether the me(hw) has turned ready
373  *
374  * @dev: mei device
375  * Return: bool
376  */
377 static bool mei_me_hw_is_ready(struct mei_device *dev)
378 {
379 	u32 mecsr = mei_me_mecsr_read(dev);
380 
381 	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
382 }
383 
384 /**
385  * mei_me_hw_is_resetting - check whether the me(hw) is in reset
386  *
387  * @dev: mei device
388  * Return: bool
389  */
390 static bool mei_me_hw_is_resetting(struct mei_device *dev)
391 {
392 	u32 mecsr = mei_me_mecsr_read(dev);
393 
394 	return (mecsr & ME_RST_HRA) == ME_RST_HRA;
395 }
396 
397 /**
398  * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
399  *  or timeout is reached
400  *
401  * @dev: mei device
402  * Return: 0 on success, error otherwise
403  */
404 static int mei_me_hw_ready_wait(struct mei_device *dev)
405 {
406 	mutex_unlock(&dev->device_lock);
407 	wait_event_timeout(dev->wait_hw_ready,
408 			dev->recvd_hw_ready,
409 			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
410 	mutex_lock(&dev->device_lock);
411 	if (!dev->recvd_hw_ready) {
412 		dev_err(dev->dev, "wait hw ready failed\n");
413 		return -ETIME;
414 	}
415 
416 	mei_me_hw_reset_release(dev);
417 	dev->recvd_hw_ready = false;
418 	return 0;
419 }
420 
421 /**
422  * mei_me_hw_start - hw start routine
423  *
424  * @dev: mei device
425  * Return: 0 on success, error otherwise
426  */
427 static int mei_me_hw_start(struct mei_device *dev)
428 {
429 	int ret = mei_me_hw_ready_wait(dev);
430 
431 	if (ret)
432 		return ret;
433 	dev_dbg(dev->dev, "hw is ready\n");
434 
435 	mei_me_host_set_ready(dev);
436 	return ret;
437 }
438 
439 
440 /**
441  * mei_hbuf_filled_slots - gets number of device filled buffer slots
442  *
443  * @dev: the device structure
444  *
445  * Return: number of filled slots
446  */
447 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
448 {
449 	u32 hcsr;
450 	char read_ptr, write_ptr;
451 
452 	hcsr = mei_hcsr_read(dev);
453 
454 	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
455 	write_ptr = (char) ((hcsr & H_CBWP) >> 16);
456 
457 	return (unsigned char) (write_ptr - read_ptr);
458 }
459 
460 /**
461  * mei_me_hbuf_is_empty - checks if host buffer is empty.
462  *
463  * @dev: the device structure
464  *
465  * Return: true if empty, false - otherwise.
466  */
467 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
468 {
469 	return mei_hbuf_filled_slots(dev) == 0;
470 }
471 
472 /**
473  * mei_me_hbuf_empty_slots - counts write empty slots.
474  *
475  * @dev: the device structure
476  *
477  * Return: -EOVERFLOW if overflow, otherwise empty slots count
478  */
479 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
480 {
481 	struct mei_me_hw *hw = to_me_hw(dev);
482 	unsigned char filled_slots, empty_slots;
483 
484 	filled_slots = mei_hbuf_filled_slots(dev);
485 	empty_slots = hw->hbuf_depth - filled_slots;
486 
487 	/* check for overflow */
488 	if (filled_slots > hw->hbuf_depth)
489 		return -EOVERFLOW;
490 
491 	return empty_slots;
492 }
493 
494 /**
495  * mei_me_hbuf_depth - returns depth of the hw buffer.
496  *
497  * @dev: the device structure
498  *
499  * Return: size of hw buffer in slots
500  */
501 static u32 mei_me_hbuf_depth(const struct mei_device *dev)
502 {
503 	struct mei_me_hw *hw = to_me_hw(dev);
504 
505 	return hw->hbuf_depth;
506 }
507 
508 /**
509  * mei_me_hbuf_write - writes a message to host hw buffer.
510  *
511  * @dev: the device structure
512  * @hdr: header of message
513  * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
514  * @data: payload
515  * @data_len: payload length in bytes
516  *
517  * Return: 0 if success, < 0 - otherwise.
518  */
519 static int mei_me_hbuf_write(struct mei_device *dev,
520 			     const void *hdr, size_t hdr_len,
521 			     const void *data, size_t data_len)
522 {
523 	unsigned long rem;
524 	unsigned long i;
525 	const u32 *reg_buf;
526 	u32 dw_cnt;
527 	int empty_slots;
528 
529 	if (WARN_ON(!hdr || !data || hdr_len & 0x3))
530 		return -EINVAL;
531 
532 	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
533 
534 	empty_slots = mei_hbuf_empty_slots(dev);
535 	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
536 
537 	if (empty_slots < 0)
538 		return -EOVERFLOW;
539 
540 	dw_cnt = mei_data2slots(hdr_len + data_len);
541 	if (dw_cnt > (u32)empty_slots)
542 		return -EMSGSIZE;
543 
544 	reg_buf = hdr;
545 	for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
546 		mei_me_hcbww_write(dev, reg_buf[i]);
547 
548 	reg_buf = data;
549 	for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
550 		mei_me_hcbww_write(dev, reg_buf[i]);
551 
552 	rem = data_len & 0x3;
553 	if (rem > 0) {
554 		u32 reg = 0;
555 
556 		memcpy(&reg, (const u8 *)data + data_len - rem, rem);
557 		mei_me_hcbww_write(dev, reg);
558 	}
559 
560 	mei_hcsr_set_hig(dev);
561 	if (!mei_me_hw_is_ready(dev))
562 		return -EIO;
563 
564 	return 0;
565 }
566 
567 /**
568  * mei_me_count_full_read_slots - counts read full slots.
569  *
570  * @dev: the device structure
571  *
572  * Return: -EOVERFLOW if overflow, otherwise filled slots count
573  */
574 static int mei_me_count_full_read_slots(struct mei_device *dev)
575 {
576 	u32 me_csr;
577 	char read_ptr, write_ptr;
578 	unsigned char buffer_depth, filled_slots;
579 
580 	me_csr = mei_me_mecsr_read(dev);
581 	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
582 	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
583 	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
584 	filled_slots = (unsigned char) (write_ptr - read_ptr);
585 
586 	/* check for overflow */
587 	if (filled_slots > buffer_depth)
588 		return -EOVERFLOW;
589 
590 	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
591 	return (int)filled_slots;
592 }
593 
594 /**
595  * mei_me_read_slots - reads a message from mei device.
596  *
597  * @dev: the device structure
598  * @buffer: message buffer will be written
599  * @buffer_length: message size will be read
600  *
601  * Return: always 0
602  */
603 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
604 			     unsigned long buffer_length)
605 {
606 	u32 *reg_buf = (u32 *)buffer;
607 
608 	for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
609 		*reg_buf++ = mei_me_mecbrw_read(dev);
610 
611 	if (buffer_length > 0) {
612 		u32 reg = mei_me_mecbrw_read(dev);
613 
614 		memcpy(reg_buf, &reg, buffer_length);
615 	}
616 
617 	mei_hcsr_set_hig(dev);
618 	return 0;
619 }
620 
621 /**
622  * mei_me_pg_set - write pg enter register
623  *
624  * @dev: the device structure
625  */
626 static void mei_me_pg_set(struct mei_device *dev)
627 {
628 	struct mei_me_hw *hw = to_me_hw(dev);
629 	u32 reg;
630 
631 	reg = mei_me_reg_read(hw, H_HPG_CSR);
632 	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
633 
634 	reg |= H_HPG_CSR_PGI;
635 
636 	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
637 	mei_me_reg_write(hw, H_HPG_CSR, reg);
638 }
639 
640 /**
641  * mei_me_pg_unset - write pg exit register
642  *
643  * @dev: the device structure
644  */
645 static void mei_me_pg_unset(struct mei_device *dev)
646 {
647 	struct mei_me_hw *hw = to_me_hw(dev);
648 	u32 reg;
649 
650 	reg = mei_me_reg_read(hw, H_HPG_CSR);
651 	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
652 
653 	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
654 
655 	reg |= H_HPG_CSR_PGIHEXR;
656 
657 	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
658 	mei_me_reg_write(hw, H_HPG_CSR, reg);
659 }
660 
661 /**
662  * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
663  *
664  * @dev: the device structure
665  *
666  * Return: 0 on success an error code otherwise
667  */
668 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
669 {
670 	struct mei_me_hw *hw = to_me_hw(dev);
671 	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
672 	int ret;
673 
674 	dev->pg_event = MEI_PG_EVENT_WAIT;
675 
676 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
677 	if (ret)
678 		return ret;
679 
680 	mutex_unlock(&dev->device_lock);
681 	wait_event_timeout(dev->wait_pg,
682 		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
683 	mutex_lock(&dev->device_lock);
684 
685 	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
686 		mei_me_pg_set(dev);
687 		ret = 0;
688 	} else {
689 		ret = -ETIME;
690 	}
691 
692 	dev->pg_event = MEI_PG_EVENT_IDLE;
693 	hw->pg_state = MEI_PG_ON;
694 
695 	return ret;
696 }
697 
698 /**
699  * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
700  *
701  * @dev: the device structure
702  *
703  * Return: 0 on success an error code otherwise
704  */
705 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
706 {
707 	struct mei_me_hw *hw = to_me_hw(dev);
708 	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
709 	int ret;
710 
711 	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
712 		goto reply;
713 
714 	dev->pg_event = MEI_PG_EVENT_WAIT;
715 
716 	mei_me_pg_unset(dev);
717 
718 	mutex_unlock(&dev->device_lock);
719 	wait_event_timeout(dev->wait_pg,
720 		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
721 	mutex_lock(&dev->device_lock);
722 
723 reply:
724 	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
725 		ret = -ETIME;
726 		goto out;
727 	}
728 
729 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
730 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
731 	if (ret)
732 		return ret;
733 
734 	mutex_unlock(&dev->device_lock);
735 	wait_event_timeout(dev->wait_pg,
736 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
737 	mutex_lock(&dev->device_lock);
738 
739 	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
740 		ret = 0;
741 	else
742 		ret = -ETIME;
743 
744 out:
745 	dev->pg_event = MEI_PG_EVENT_IDLE;
746 	hw->pg_state = MEI_PG_OFF;
747 
748 	return ret;
749 }
750 
751 /**
752  * mei_me_pg_in_transition - is device now in pg transition
753  *
754  * @dev: the device structure
755  *
756  * Return: true if in pg transition, false otherwise
757  */
758 static bool mei_me_pg_in_transition(struct mei_device *dev)
759 {
760 	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
761 	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
762 }
763 
764 /**
765  * mei_me_pg_is_enabled - detect if PG is supported by HW
766  *
767  * @dev: the device structure
768  *
769  * Return: true is pg supported, false otherwise
770  */
771 static bool mei_me_pg_is_enabled(struct mei_device *dev)
772 {
773 	struct mei_me_hw *hw = to_me_hw(dev);
774 	u32 reg = mei_me_mecsr_read(dev);
775 
776 	if (hw->d0i3_supported)
777 		return true;
778 
779 	if ((reg & ME_PGIC_HRA) == 0)
780 		goto notsupported;
781 
782 	if (!dev->hbm_f_pg_supported)
783 		goto notsupported;
784 
785 	return true;
786 
787 notsupported:
788 	dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
789 		hw->d0i3_supported,
790 		!!(reg & ME_PGIC_HRA),
791 		dev->version.major_version,
792 		dev->version.minor_version,
793 		HBM_MAJOR_VERSION_PGI,
794 		HBM_MINOR_VERSION_PGI);
795 
796 	return false;
797 }
798 
799 /**
800  * mei_me_d0i3_set - write d0i3 register bit on mei device.
801  *
802  * @dev: the device structure
803  * @intr: ask for interrupt
804  *
805  * Return: D0I3C register value
806  */
807 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
808 {
809 	u32 reg = mei_me_d0i3c_read(dev);
810 
811 	reg |= H_D0I3C_I3;
812 	if (intr)
813 		reg |= H_D0I3C_IR;
814 	else
815 		reg &= ~H_D0I3C_IR;
816 	mei_me_d0i3c_write(dev, reg);
817 	/* read it to ensure HW consistency */
818 	reg = mei_me_d0i3c_read(dev);
819 	return reg;
820 }
821 
822 /**
823  * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
824  *
825  * @dev: the device structure
826  *
827  * Return: D0I3C register value
828  */
829 static u32 mei_me_d0i3_unset(struct mei_device *dev)
830 {
831 	u32 reg = mei_me_d0i3c_read(dev);
832 
833 	reg &= ~H_D0I3C_I3;
834 	reg |= H_D0I3C_IR;
835 	mei_me_d0i3c_write(dev, reg);
836 	/* read it to ensure HW consistency */
837 	reg = mei_me_d0i3c_read(dev);
838 	return reg;
839 }
840 
841 /**
842  * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
843  *
844  * @dev: the device structure
845  *
846  * Return: 0 on success an error code otherwise
847  */
848 static int mei_me_d0i3_enter_sync(struct mei_device *dev)
849 {
850 	struct mei_me_hw *hw = to_me_hw(dev);
851 	unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
852 	unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
853 	int ret;
854 	u32 reg;
855 
856 	reg = mei_me_d0i3c_read(dev);
857 	if (reg & H_D0I3C_I3) {
858 		/* we are in d0i3, nothing to do */
859 		dev_dbg(dev->dev, "d0i3 set not needed\n");
860 		ret = 0;
861 		goto on;
862 	}
863 
864 	/* PGI entry procedure */
865 	dev->pg_event = MEI_PG_EVENT_WAIT;
866 
867 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
868 	if (ret)
869 		/* FIXME: should we reset here? */
870 		goto out;
871 
872 	mutex_unlock(&dev->device_lock);
873 	wait_event_timeout(dev->wait_pg,
874 		dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
875 	mutex_lock(&dev->device_lock);
876 
877 	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
878 		ret = -ETIME;
879 		goto out;
880 	}
881 	/* end PGI entry procedure */
882 
883 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
884 
885 	reg = mei_me_d0i3_set(dev, true);
886 	if (!(reg & H_D0I3C_CIP)) {
887 		dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
888 		ret = 0;
889 		goto on;
890 	}
891 
892 	mutex_unlock(&dev->device_lock);
893 	wait_event_timeout(dev->wait_pg,
894 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
895 	mutex_lock(&dev->device_lock);
896 
897 	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
898 		reg = mei_me_d0i3c_read(dev);
899 		if (!(reg & H_D0I3C_I3)) {
900 			ret = -ETIME;
901 			goto out;
902 		}
903 	}
904 
905 	ret = 0;
906 on:
907 	hw->pg_state = MEI_PG_ON;
908 out:
909 	dev->pg_event = MEI_PG_EVENT_IDLE;
910 	dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
911 	return ret;
912 }
913 
914 /**
915  * mei_me_d0i3_enter - perform d0i3 entry procedure
916  *   no hbm PG handshake
917  *   no waiting for confirmation; runs with interrupts
918  *   disabled
919  *
920  * @dev: the device structure
921  *
922  * Return: 0 on success an error code otherwise
923  */
924 static int mei_me_d0i3_enter(struct mei_device *dev)
925 {
926 	struct mei_me_hw *hw = to_me_hw(dev);
927 	u32 reg;
928 
929 	reg = mei_me_d0i3c_read(dev);
930 	if (reg & H_D0I3C_I3) {
931 		/* we are in d0i3, nothing to do */
932 		dev_dbg(dev->dev, "already d0i3 : set not needed\n");
933 		goto on;
934 	}
935 
936 	mei_me_d0i3_set(dev, false);
937 on:
938 	hw->pg_state = MEI_PG_ON;
939 	dev->pg_event = MEI_PG_EVENT_IDLE;
940 	dev_dbg(dev->dev, "d0i3 enter\n");
941 	return 0;
942 }
943 
944 /**
945  * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
946  *
947  * @dev: the device structure
948  *
949  * Return: 0 on success an error code otherwise
950  */
951 static int mei_me_d0i3_exit_sync(struct mei_device *dev)
952 {
953 	struct mei_me_hw *hw = to_me_hw(dev);
954 	unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
955 	int ret;
956 	u32 reg;
957 
958 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
959 
960 	reg = mei_me_d0i3c_read(dev);
961 	if (!(reg & H_D0I3C_I3)) {
962 		/* we are not in d0i3, nothing to do */
963 		dev_dbg(dev->dev, "d0i3 exit not needed\n");
964 		ret = 0;
965 		goto off;
966 	}
967 
968 	reg = mei_me_d0i3_unset(dev);
969 	if (!(reg & H_D0I3C_CIP)) {
970 		dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
971 		ret = 0;
972 		goto off;
973 	}
974 
975 	mutex_unlock(&dev->device_lock);
976 	wait_event_timeout(dev->wait_pg,
977 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
978 	mutex_lock(&dev->device_lock);
979 
980 	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
981 		reg = mei_me_d0i3c_read(dev);
982 		if (reg & H_D0I3C_I3) {
983 			ret = -ETIME;
984 			goto out;
985 		}
986 	}
987 
988 	ret = 0;
989 off:
990 	hw->pg_state = MEI_PG_OFF;
991 out:
992 	dev->pg_event = MEI_PG_EVENT_IDLE;
993 
994 	dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
995 	return ret;
996 }
997 
998 /**
999  * mei_me_pg_legacy_intr - perform legacy pg processing
1000  *			   in interrupt thread handler
1001  *
1002  * @dev: the device structure
1003  */
1004 static void mei_me_pg_legacy_intr(struct mei_device *dev)
1005 {
1006 	struct mei_me_hw *hw = to_me_hw(dev);
1007 
1008 	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1009 		return;
1010 
1011 	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1012 	hw->pg_state = MEI_PG_OFF;
1013 	if (waitqueue_active(&dev->wait_pg))
1014 		wake_up(&dev->wait_pg);
1015 }
1016 
1017 /**
1018  * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1019  *
1020  * @dev: the device structure
1021  * @intr_source: interrupt source
1022  */
1023 static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1024 {
1025 	struct mei_me_hw *hw = to_me_hw(dev);
1026 
1027 	if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1028 	    (intr_source & H_D0I3C_IS)) {
1029 		dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1030 		if (hw->pg_state == MEI_PG_ON) {
1031 			hw->pg_state = MEI_PG_OFF;
1032 			if (dev->hbm_state != MEI_HBM_IDLE) {
1033 				/*
1034 				 * force H_RDY because it could be
1035 				 * wiped off during PG
1036 				 */
1037 				dev_dbg(dev->dev, "d0i3 set host ready\n");
1038 				mei_me_host_set_ready(dev);
1039 			}
1040 		} else {
1041 			hw->pg_state = MEI_PG_ON;
1042 		}
1043 
1044 		wake_up(&dev->wait_pg);
1045 	}
1046 
1047 	if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1048 		/*
1049 		 * HW sent some data and we are in D0i3, so
1050 		 * we got here because of HW initiated exit from D0i3.
1051 		 * Start runtime pm resume sequence to exit low power state.
1052 		 */
1053 		dev_dbg(dev->dev, "d0i3 want resume\n");
1054 		mei_hbm_pg_resume(dev);
1055 	}
1056 }
1057 
1058 /**
1059  * mei_me_pg_intr - perform pg processing in interrupt thread handler
1060  *
1061  * @dev: the device structure
1062  * @intr_source: interrupt source
1063  */
1064 static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1065 {
1066 	struct mei_me_hw *hw = to_me_hw(dev);
1067 
1068 	if (hw->d0i3_supported)
1069 		mei_me_d0i3_intr(dev, intr_source);
1070 	else
1071 		mei_me_pg_legacy_intr(dev);
1072 }
1073 
1074 /**
1075  * mei_me_pg_enter_sync - perform runtime pm entry procedure
1076  *
1077  * @dev: the device structure
1078  *
1079  * Return: 0 on success an error code otherwise
1080  */
1081 int mei_me_pg_enter_sync(struct mei_device *dev)
1082 {
1083 	struct mei_me_hw *hw = to_me_hw(dev);
1084 
1085 	if (hw->d0i3_supported)
1086 		return mei_me_d0i3_enter_sync(dev);
1087 	else
1088 		return mei_me_pg_legacy_enter_sync(dev);
1089 }
1090 
1091 /**
1092  * mei_me_pg_exit_sync - perform runtime pm exit procedure
1093  *
1094  * @dev: the device structure
1095  *
1096  * Return: 0 on success an error code otherwise
1097  */
1098 int mei_me_pg_exit_sync(struct mei_device *dev)
1099 {
1100 	struct mei_me_hw *hw = to_me_hw(dev);
1101 
1102 	if (hw->d0i3_supported)
1103 		return mei_me_d0i3_exit_sync(dev);
1104 	else
1105 		return mei_me_pg_legacy_exit_sync(dev);
1106 }
1107 
1108 /**
1109  * mei_me_hw_reset - resets fw via mei csr register.
1110  *
1111  * @dev: the device structure
1112  * @intr_enable: if interrupt should be enabled after reset.
1113  *
1114  * Return: 0 on success an error code otherwise
1115  */
1116 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1117 {
1118 	struct mei_me_hw *hw = to_me_hw(dev);
1119 	int ret;
1120 	u32 hcsr;
1121 
1122 	if (intr_enable) {
1123 		mei_me_intr_enable(dev);
1124 		if (hw->d0i3_supported) {
1125 			ret = mei_me_d0i3_exit_sync(dev);
1126 			if (ret)
1127 				return ret;
1128 		}
1129 	}
1130 
1131 	pm_runtime_set_active(dev->dev);
1132 
1133 	hcsr = mei_hcsr_read(dev);
1134 	/* H_RST may be found lit before reset is started,
1135 	 * for example if preceding reset flow hasn't completed.
1136 	 * In that case asserting H_RST will be ignored, therefore
1137 	 * we need to clean H_RST bit to start a successful reset sequence.
1138 	 */
1139 	if ((hcsr & H_RST) == H_RST) {
1140 		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1141 		hcsr &= ~H_RST;
1142 		mei_hcsr_set(dev, hcsr);
1143 		hcsr = mei_hcsr_read(dev);
1144 	}
1145 
1146 	hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1147 
1148 	if (!intr_enable)
1149 		hcsr &= ~H_CSR_IE_MASK;
1150 
1151 	dev->recvd_hw_ready = false;
1152 	mei_hcsr_write(dev, hcsr);
1153 
1154 	/*
1155 	 * Host reads the H_CSR once to ensure that the
1156 	 * posted write to H_CSR completes.
1157 	 */
1158 	hcsr = mei_hcsr_read(dev);
1159 
1160 	if ((hcsr & H_RST) == 0)
1161 		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1162 
1163 	if ((hcsr & H_RDY) == H_RDY)
1164 		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1165 
1166 	if (!intr_enable) {
1167 		mei_me_hw_reset_release(dev);
1168 		if (hw->d0i3_supported) {
1169 			ret = mei_me_d0i3_enter(dev);
1170 			if (ret)
1171 				return ret;
1172 		}
1173 	}
1174 	return 0;
1175 }
1176 
1177 /**
1178  * mei_me_irq_quick_handler - The ISR of the MEI device
1179  *
1180  * @irq: The irq number
1181  * @dev_id: pointer to the device structure
1182  *
1183  * Return: irqreturn_t
1184  */
1185 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1186 {
1187 	struct mei_device *dev = (struct mei_device *)dev_id;
1188 	u32 hcsr;
1189 
1190 	hcsr = mei_hcsr_read(dev);
1191 	if (!me_intr_src(hcsr))
1192 		return IRQ_NONE;
1193 
1194 	dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1195 
1196 	/* disable interrupts on device */
1197 	me_intr_disable(dev, hcsr);
1198 	return IRQ_WAKE_THREAD;
1199 }
1200 
1201 /**
1202  * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1203  * processing.
1204  *
1205  * @irq: The irq number
1206  * @dev_id: pointer to the device structure
1207  *
1208  * Return: irqreturn_t
1209  *
1210  */
1211 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1212 {
1213 	struct mei_device *dev = (struct mei_device *) dev_id;
1214 	struct list_head cmpl_list;
1215 	s32 slots;
1216 	u32 hcsr;
1217 	int rets = 0;
1218 
1219 	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1220 	/* initialize our complete list */
1221 	mutex_lock(&dev->device_lock);
1222 
1223 	hcsr = mei_hcsr_read(dev);
1224 	me_intr_clear(dev, hcsr);
1225 
1226 	INIT_LIST_HEAD(&cmpl_list);
1227 
1228 	/* check if ME wants a reset */
1229 	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1230 		dev_warn(dev->dev, "FW not ready: resetting.\n");
1231 		schedule_work(&dev->reset_work);
1232 		goto end;
1233 	}
1234 
1235 	if (mei_me_hw_is_resetting(dev))
1236 		mei_hcsr_set_hig(dev);
1237 
1238 	mei_me_pg_intr(dev, me_intr_src(hcsr));
1239 
1240 	/*  check if we need to start the dev */
1241 	if (!mei_host_is_ready(dev)) {
1242 		if (mei_hw_is_ready(dev)) {
1243 			dev_dbg(dev->dev, "we need to start the dev.\n");
1244 			dev->recvd_hw_ready = true;
1245 			wake_up(&dev->wait_hw_ready);
1246 		} else {
1247 			dev_dbg(dev->dev, "Spurious Interrupt\n");
1248 		}
1249 		goto end;
1250 	}
1251 	/* check slots available for reading */
1252 	slots = mei_count_full_read_slots(dev);
1253 	while (slots > 0) {
1254 		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1255 		rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1256 		/* There is a race between ME write and interrupt delivery:
1257 		 * Not all data is always available immediately after the
1258 		 * interrupt, so try to read again on the next interrupt.
1259 		 */
1260 		if (rets == -ENODATA)
1261 			break;
1262 
1263 		if (rets &&
1264 		    (dev->dev_state != MEI_DEV_RESETTING &&
1265 		     dev->dev_state != MEI_DEV_POWER_DOWN)) {
1266 			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1267 						rets);
1268 			schedule_work(&dev->reset_work);
1269 			goto end;
1270 		}
1271 	}
1272 
1273 	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1274 
1275 	/*
1276 	 * During PG handshake only allowed write is the replay to the
1277 	 * PG exit message, so block calling write function
1278 	 * if the pg event is in PG handshake
1279 	 */
1280 	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1281 	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1282 		rets = mei_irq_write_handler(dev, &cmpl_list);
1283 		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1284 	}
1285 
1286 	mei_irq_compl_handler(dev, &cmpl_list);
1287 
1288 end:
1289 	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1290 	mei_me_intr_enable(dev);
1291 	mutex_unlock(&dev->device_lock);
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 static const struct mei_hw_ops mei_me_hw_ops = {
1296 
1297 	.fw_status = mei_me_fw_status,
1298 	.pg_state  = mei_me_pg_state,
1299 
1300 	.host_is_ready = mei_me_host_is_ready,
1301 
1302 	.hw_is_ready = mei_me_hw_is_ready,
1303 	.hw_reset = mei_me_hw_reset,
1304 	.hw_config = mei_me_hw_config,
1305 	.hw_start = mei_me_hw_start,
1306 
1307 	.pg_in_transition = mei_me_pg_in_transition,
1308 	.pg_is_enabled = mei_me_pg_is_enabled,
1309 
1310 	.intr_clear = mei_me_intr_clear,
1311 	.intr_enable = mei_me_intr_enable,
1312 	.intr_disable = mei_me_intr_disable,
1313 	.synchronize_irq = mei_me_synchronize_irq,
1314 
1315 	.hbuf_free_slots = mei_me_hbuf_empty_slots,
1316 	.hbuf_is_ready = mei_me_hbuf_is_empty,
1317 	.hbuf_depth = mei_me_hbuf_depth,
1318 
1319 	.write = mei_me_hbuf_write,
1320 
1321 	.rdbuf_full_slots = mei_me_count_full_read_slots,
1322 	.read_hdr = mei_me_mecbrw_read,
1323 	.read = mei_me_read_slots
1324 };
1325 
1326 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1327 {
1328 	u32 reg;
1329 
1330 	pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1331 	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1332 	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1333 	return (reg & 0x600) == 0x200;
1334 }
1335 
1336 #define MEI_CFG_FW_NM                           \
1337 	.quirk_probe = mei_me_fw_type_nm
1338 
1339 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1340 {
1341 	u32 reg;
1342 	unsigned int devfn;
1343 
1344 	/*
1345 	 * Read ME FW Status register to check for SPS Firmware
1346 	 * The SPS FW is only signaled in pci function 0
1347 	 */
1348 	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1349 	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1350 	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1351 	/* if bits [19:16] = 15, running SPS Firmware */
1352 	return (reg & 0xf0000) == 0xf0000;
1353 }
1354 
1355 #define MEI_CFG_FW_SPS                           \
1356 	.quirk_probe = mei_me_fw_type_sps
1357 
1358 
1359 #define MEI_CFG_ICH_HFS                      \
1360 	.fw_status.count = 0
1361 
1362 #define MEI_CFG_ICH10_HFS                        \
1363 	.fw_status.count = 1,                   \
1364 	.fw_status.status[0] = PCI_CFG_HFS_1
1365 
1366 #define MEI_CFG_PCH_HFS                         \
1367 	.fw_status.count = 2,                   \
1368 	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1369 	.fw_status.status[1] = PCI_CFG_HFS_2
1370 
1371 #define MEI_CFG_PCH8_HFS                        \
1372 	.fw_status.count = 6,                   \
1373 	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1374 	.fw_status.status[1] = PCI_CFG_HFS_2,   \
1375 	.fw_status.status[2] = PCI_CFG_HFS_3,   \
1376 	.fw_status.status[3] = PCI_CFG_HFS_4,   \
1377 	.fw_status.status[4] = PCI_CFG_HFS_5,   \
1378 	.fw_status.status[5] = PCI_CFG_HFS_6
1379 
1380 #define MEI_CFG_DMA_128 \
1381 	.dma_size[DMA_DSCR_HOST] = SZ_128K, \
1382 	.dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1383 	.dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1384 
1385 /* ICH Legacy devices */
1386 static const struct mei_cfg mei_me_ich_cfg = {
1387 	MEI_CFG_ICH_HFS,
1388 };
1389 
1390 /* ICH devices */
1391 static const struct mei_cfg mei_me_ich10_cfg = {
1392 	MEI_CFG_ICH10_HFS,
1393 };
1394 
1395 /* PCH devices */
1396 static const struct mei_cfg mei_me_pch_cfg = {
1397 	MEI_CFG_PCH_HFS,
1398 };
1399 
1400 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1401 static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1402 	MEI_CFG_PCH_HFS,
1403 	MEI_CFG_FW_NM,
1404 };
1405 
1406 /* PCH8 Lynx Point and newer devices */
1407 static const struct mei_cfg mei_me_pch8_cfg = {
1408 	MEI_CFG_PCH8_HFS,
1409 };
1410 
1411 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1412 static const struct mei_cfg mei_me_pch8_sps_cfg = {
1413 	MEI_CFG_PCH8_HFS,
1414 	MEI_CFG_FW_SPS,
1415 };
1416 
1417 /* Cannon Lake and newer devices */
1418 static const struct mei_cfg mei_me_pch12_cfg = {
1419 	MEI_CFG_PCH8_HFS,
1420 	MEI_CFG_DMA_128,
1421 };
1422 
1423 /*
1424  * mei_cfg_list - A list of platform platform specific configurations.
1425  * Note: has to be synchronized with  enum mei_cfg_idx.
1426  */
1427 static const struct mei_cfg *const mei_cfg_list[] = {
1428 	[MEI_ME_UNDEF_CFG] = NULL,
1429 	[MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1430 	[MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1431 	[MEI_ME_PCH_CFG] = &mei_me_pch_cfg,
1432 	[MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1433 	[MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1434 	[MEI_ME_PCH8_SPS_CFG] = &mei_me_pch8_sps_cfg,
1435 	[MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
1436 };
1437 
1438 const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1439 {
1440 	BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1441 
1442 	if (idx >= MEI_ME_NUM_CFG)
1443 		return NULL;
1444 
1445 	return mei_cfg_list[idx];
1446 };
1447 
1448 /**
1449  * mei_me_dev_init - allocates and initializes the mei device structure
1450  *
1451  * @pdev: The pci device structure
1452  * @cfg: per device generation config
1453  *
1454  * Return: The mei_device pointer on success, NULL on failure.
1455  */
1456 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1457 				   const struct mei_cfg *cfg)
1458 {
1459 	struct mei_device *dev;
1460 	struct mei_me_hw *hw;
1461 	int i;
1462 
1463 	dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1464 			   sizeof(struct mei_me_hw), GFP_KERNEL);
1465 	if (!dev)
1466 		return NULL;
1467 
1468 	hw = to_me_hw(dev);
1469 
1470 	for (i = 0; i < DMA_DSCR_NUM; i++)
1471 		dev->dr_dscr[i].size = cfg->dma_size[i];
1472 
1473 	mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1474 	hw->cfg = cfg;
1475 
1476 	return dev;
1477 }
1478 
1479