xref: /openbmc/linux/drivers/misc/mei/hw-me.c (revision 3cf3cdea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2020, Intel Corporation. All rights reserved.
4  * Intel Management Engine Interface (Intel MEI) Linux driver
5  */
6 
7 #include <linux/pci.h>
8 
9 #include <linux/kthread.h>
10 #include <linux/interrupt.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/sizes.h>
13 
14 #include "mei_dev.h"
15 #include "hbm.h"
16 
17 #include "hw-me.h"
18 #include "hw-me-regs.h"
19 
20 #include "mei-trace.h"
21 
22 /**
23  * mei_me_reg_read - Reads 32bit data from the mei device
24  *
25  * @hw: the me hardware structure
26  * @offset: offset from which to read the data
27  *
28  * Return: register value (u32)
29  */
30 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
31 			       unsigned long offset)
32 {
33 	return ioread32(hw->mem_addr + offset);
34 }
35 
36 
37 /**
38  * mei_me_reg_write - Writes 32bit data to the mei device
39  *
40  * @hw: the me hardware structure
41  * @offset: offset from which to write the data
42  * @value: register value to write (u32)
43  */
44 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
45 				 unsigned long offset, u32 value)
46 {
47 	iowrite32(value, hw->mem_addr + offset);
48 }
49 
50 /**
51  * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
52  *  read window register
53  *
54  * @dev: the device structure
55  *
56  * Return: ME_CB_RW register value (u32)
57  */
58 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
59 {
60 	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
61 }
62 
63 /**
64  * mei_me_hcbww_write - write 32bit data to the host circular buffer
65  *
66  * @dev: the device structure
67  * @data: 32bit data to be written to the host circular buffer
68  */
69 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
70 {
71 	mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
72 }
73 
74 /**
75  * mei_me_mecsr_read - Reads 32bit data from the ME CSR
76  *
77  * @dev: the device structure
78  *
79  * Return: ME_CSR_HA register value (u32)
80  */
81 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
82 {
83 	u32 reg;
84 
85 	reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
86 	trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
87 
88 	return reg;
89 }
90 
91 /**
92  * mei_hcsr_read - Reads 32bit data from the host CSR
93  *
94  * @dev: the device structure
95  *
96  * Return: H_CSR register value (u32)
97  */
98 static inline u32 mei_hcsr_read(const struct mei_device *dev)
99 {
100 	u32 reg;
101 
102 	reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
103 	trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
104 
105 	return reg;
106 }
107 
108 /**
109  * mei_hcsr_write - writes H_CSR register to the mei device
110  *
111  * @dev: the device structure
112  * @reg: new register value
113  */
114 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
115 {
116 	trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
117 	mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
118 }
119 
120 /**
121  * mei_hcsr_set - writes H_CSR register to the mei device,
122  * and ignores the H_IS bit for it is write-one-to-zero.
123  *
124  * @dev: the device structure
125  * @reg: new register value
126  */
127 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
128 {
129 	reg &= ~H_CSR_IS_MASK;
130 	mei_hcsr_write(dev, reg);
131 }
132 
133 /**
134  * mei_hcsr_set_hig - set host interrupt (set H_IG)
135  *
136  * @dev: the device structure
137  */
138 static inline void mei_hcsr_set_hig(struct mei_device *dev)
139 {
140 	u32 hcsr;
141 
142 	hcsr = mei_hcsr_read(dev) | H_IG;
143 	mei_hcsr_set(dev, hcsr);
144 }
145 
146 /**
147  * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
148  *
149  * @dev: the device structure
150  *
151  * Return: H_D0I3C register value (u32)
152  */
153 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
154 {
155 	u32 reg;
156 
157 	reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
158 	trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
159 
160 	return reg;
161 }
162 
163 /**
164  * mei_me_d0i3c_write - writes H_D0I3C register to device
165  *
166  * @dev: the device structure
167  * @reg: new register value
168  */
169 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
170 {
171 	trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
172 	mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
173 }
174 
175 /**
176  * mei_me_trc_status - read trc status register
177  *
178  * @dev: mei device
179  * @trc: trc status register value
180  *
181  * Return: 0 on success, error otherwise
182  */
183 static int mei_me_trc_status(struct mei_device *dev, u32 *trc)
184 {
185 	struct mei_me_hw *hw = to_me_hw(dev);
186 
187 	if (!hw->cfg->hw_trc_supported)
188 		return -EOPNOTSUPP;
189 
190 	*trc = mei_me_reg_read(hw, ME_TRC);
191 	trace_mei_reg_read(dev->dev, "ME_TRC", ME_TRC, *trc);
192 
193 	return 0;
194 }
195 
196 /**
197  * mei_me_fw_status - read fw status register from pci config space
198  *
199  * @dev: mei device
200  * @fw_status: fw status register values
201  *
202  * Return: 0 on success, error otherwise
203  */
204 static int mei_me_fw_status(struct mei_device *dev,
205 			    struct mei_fw_status *fw_status)
206 {
207 	struct mei_me_hw *hw = to_me_hw(dev);
208 	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
209 	int ret;
210 	int i;
211 
212 	if (!fw_status || !hw->read_fws)
213 		return -EINVAL;
214 
215 	fw_status->count = fw_src->count;
216 	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
217 		ret = hw->read_fws(dev, fw_src->status[i],
218 				   &fw_status->status[i]);
219 		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_X",
220 				       fw_src->status[i],
221 				       fw_status->status[i]);
222 		if (ret)
223 			return ret;
224 	}
225 
226 	return 0;
227 }
228 
229 /**
230  * mei_me_hw_config - configure hw dependent settings
231  *
232  * @dev: mei device
233  *
234  * Return:
235  *  * -EINVAL when read_fws is not set
236  *  * 0 on success
237  *
238  */
239 static int mei_me_hw_config(struct mei_device *dev)
240 {
241 	struct mei_me_hw *hw = to_me_hw(dev);
242 	u32 hcsr, reg;
243 
244 	if (WARN_ON(!hw->read_fws))
245 		return -EINVAL;
246 
247 	/* Doesn't change in runtime */
248 	hcsr = mei_hcsr_read(dev);
249 	hw->hbuf_depth = (hcsr & H_CBD) >> 24;
250 
251 	reg = 0;
252 	hw->read_fws(dev, PCI_CFG_HFS_1, &reg);
253 	trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
254 	hw->d0i3_supported =
255 		((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
256 
257 	hw->pg_state = MEI_PG_OFF;
258 	if (hw->d0i3_supported) {
259 		reg = mei_me_d0i3c_read(dev);
260 		if (reg & H_D0I3C_I3)
261 			hw->pg_state = MEI_PG_ON;
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * mei_me_pg_state  - translate internal pg state
269  *   to the mei power gating state
270  *
271  * @dev:  mei device
272  *
273  * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
274  */
275 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
276 {
277 	struct mei_me_hw *hw = to_me_hw(dev);
278 
279 	return hw->pg_state;
280 }
281 
282 static inline u32 me_intr_src(u32 hcsr)
283 {
284 	return hcsr & H_CSR_IS_MASK;
285 }
286 
287 /**
288  * me_intr_disable - disables mei device interrupts
289  *      using supplied hcsr register value.
290  *
291  * @dev: the device structure
292  * @hcsr: supplied hcsr register value
293  */
294 static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
295 {
296 	hcsr &= ~H_CSR_IE_MASK;
297 	mei_hcsr_set(dev, hcsr);
298 }
299 
300 /**
301  * me_intr_clear - clear and stop interrupts
302  *
303  * @dev: the device structure
304  * @hcsr: supplied hcsr register value
305  */
306 static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
307 {
308 	if (me_intr_src(hcsr))
309 		mei_hcsr_write(dev, hcsr);
310 }
311 
312 /**
313  * mei_me_intr_clear - clear and stop interrupts
314  *
315  * @dev: the device structure
316  */
317 static void mei_me_intr_clear(struct mei_device *dev)
318 {
319 	u32 hcsr = mei_hcsr_read(dev);
320 
321 	me_intr_clear(dev, hcsr);
322 }
323 /**
324  * mei_me_intr_enable - enables mei device interrupts
325  *
326  * @dev: the device structure
327  */
328 static void mei_me_intr_enable(struct mei_device *dev)
329 {
330 	u32 hcsr = mei_hcsr_read(dev);
331 
332 	hcsr |= H_CSR_IE_MASK;
333 	mei_hcsr_set(dev, hcsr);
334 }
335 
336 /**
337  * mei_me_intr_disable - disables mei device interrupts
338  *
339  * @dev: the device structure
340  */
341 static void mei_me_intr_disable(struct mei_device *dev)
342 {
343 	u32 hcsr = mei_hcsr_read(dev);
344 
345 	me_intr_disable(dev, hcsr);
346 }
347 
348 /**
349  * mei_me_synchronize_irq - wait for pending IRQ handlers
350  *
351  * @dev: the device structure
352  */
353 static void mei_me_synchronize_irq(struct mei_device *dev)
354 {
355 	struct mei_me_hw *hw = to_me_hw(dev);
356 
357 	synchronize_irq(hw->irq);
358 }
359 
360 /**
361  * mei_me_hw_reset_release - release device from the reset
362  *
363  * @dev: the device structure
364  */
365 static void mei_me_hw_reset_release(struct mei_device *dev)
366 {
367 	u32 hcsr = mei_hcsr_read(dev);
368 
369 	hcsr |= H_IG;
370 	hcsr &= ~H_RST;
371 	mei_hcsr_set(dev, hcsr);
372 }
373 
374 /**
375  * mei_me_host_set_ready - enable device
376  *
377  * @dev: mei device
378  */
379 static void mei_me_host_set_ready(struct mei_device *dev)
380 {
381 	u32 hcsr = mei_hcsr_read(dev);
382 
383 	hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
384 	mei_hcsr_set(dev, hcsr);
385 }
386 
387 /**
388  * mei_me_host_is_ready - check whether the host has turned ready
389  *
390  * @dev: mei device
391  * Return: bool
392  */
393 static bool mei_me_host_is_ready(struct mei_device *dev)
394 {
395 	u32 hcsr = mei_hcsr_read(dev);
396 
397 	return (hcsr & H_RDY) == H_RDY;
398 }
399 
400 /**
401  * mei_me_hw_is_ready - check whether the me(hw) has turned ready
402  *
403  * @dev: mei device
404  * Return: bool
405  */
406 static bool mei_me_hw_is_ready(struct mei_device *dev)
407 {
408 	u32 mecsr = mei_me_mecsr_read(dev);
409 
410 	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
411 }
412 
413 /**
414  * mei_me_hw_is_resetting - check whether the me(hw) is in reset
415  *
416  * @dev: mei device
417  * Return: bool
418  */
419 static bool mei_me_hw_is_resetting(struct mei_device *dev)
420 {
421 	u32 mecsr = mei_me_mecsr_read(dev);
422 
423 	return (mecsr & ME_RST_HRA) == ME_RST_HRA;
424 }
425 
426 /**
427  * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
428  *  or timeout is reached
429  *
430  * @dev: mei device
431  * Return: 0 on success, error otherwise
432  */
433 static int mei_me_hw_ready_wait(struct mei_device *dev)
434 {
435 	mutex_unlock(&dev->device_lock);
436 	wait_event_timeout(dev->wait_hw_ready,
437 			dev->recvd_hw_ready,
438 			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
439 	mutex_lock(&dev->device_lock);
440 	if (!dev->recvd_hw_ready) {
441 		dev_err(dev->dev, "wait hw ready failed\n");
442 		return -ETIME;
443 	}
444 
445 	mei_me_hw_reset_release(dev);
446 	dev->recvd_hw_ready = false;
447 	return 0;
448 }
449 
450 /**
451  * mei_me_hw_start - hw start routine
452  *
453  * @dev: mei device
454  * Return: 0 on success, error otherwise
455  */
456 static int mei_me_hw_start(struct mei_device *dev)
457 {
458 	int ret = mei_me_hw_ready_wait(dev);
459 
460 	if (ret)
461 		return ret;
462 	dev_dbg(dev->dev, "hw is ready\n");
463 
464 	mei_me_host_set_ready(dev);
465 	return ret;
466 }
467 
468 
469 /**
470  * mei_hbuf_filled_slots - gets number of device filled buffer slots
471  *
472  * @dev: the device structure
473  *
474  * Return: number of filled slots
475  */
476 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
477 {
478 	u32 hcsr;
479 	char read_ptr, write_ptr;
480 
481 	hcsr = mei_hcsr_read(dev);
482 
483 	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
484 	write_ptr = (char) ((hcsr & H_CBWP) >> 16);
485 
486 	return (unsigned char) (write_ptr - read_ptr);
487 }
488 
489 /**
490  * mei_me_hbuf_is_empty - checks if host buffer is empty.
491  *
492  * @dev: the device structure
493  *
494  * Return: true if empty, false - otherwise.
495  */
496 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
497 {
498 	return mei_hbuf_filled_slots(dev) == 0;
499 }
500 
501 /**
502  * mei_me_hbuf_empty_slots - counts write empty slots.
503  *
504  * @dev: the device structure
505  *
506  * Return: -EOVERFLOW if overflow, otherwise empty slots count
507  */
508 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
509 {
510 	struct mei_me_hw *hw = to_me_hw(dev);
511 	unsigned char filled_slots, empty_slots;
512 
513 	filled_slots = mei_hbuf_filled_slots(dev);
514 	empty_slots = hw->hbuf_depth - filled_slots;
515 
516 	/* check for overflow */
517 	if (filled_slots > hw->hbuf_depth)
518 		return -EOVERFLOW;
519 
520 	return empty_slots;
521 }
522 
523 /**
524  * mei_me_hbuf_depth - returns depth of the hw buffer.
525  *
526  * @dev: the device structure
527  *
528  * Return: size of hw buffer in slots
529  */
530 static u32 mei_me_hbuf_depth(const struct mei_device *dev)
531 {
532 	struct mei_me_hw *hw = to_me_hw(dev);
533 
534 	return hw->hbuf_depth;
535 }
536 
537 /**
538  * mei_me_hbuf_write - writes a message to host hw buffer.
539  *
540  * @dev: the device structure
541  * @hdr: header of message
542  * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
543  * @data: payload
544  * @data_len: payload length in bytes
545  *
546  * Return: 0 if success, < 0 - otherwise.
547  */
548 static int mei_me_hbuf_write(struct mei_device *dev,
549 			     const void *hdr, size_t hdr_len,
550 			     const void *data, size_t data_len)
551 {
552 	unsigned long rem;
553 	unsigned long i;
554 	const u32 *reg_buf;
555 	u32 dw_cnt;
556 	int empty_slots;
557 
558 	if (WARN_ON(!hdr || !data || hdr_len & 0x3))
559 		return -EINVAL;
560 
561 	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
562 
563 	empty_slots = mei_hbuf_empty_slots(dev);
564 	dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
565 
566 	if (empty_slots < 0)
567 		return -EOVERFLOW;
568 
569 	dw_cnt = mei_data2slots(hdr_len + data_len);
570 	if (dw_cnt > (u32)empty_slots)
571 		return -EMSGSIZE;
572 
573 	reg_buf = hdr;
574 	for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
575 		mei_me_hcbww_write(dev, reg_buf[i]);
576 
577 	reg_buf = data;
578 	for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
579 		mei_me_hcbww_write(dev, reg_buf[i]);
580 
581 	rem = data_len & 0x3;
582 	if (rem > 0) {
583 		u32 reg = 0;
584 
585 		memcpy(&reg, (const u8 *)data + data_len - rem, rem);
586 		mei_me_hcbww_write(dev, reg);
587 	}
588 
589 	mei_hcsr_set_hig(dev);
590 	if (!mei_me_hw_is_ready(dev))
591 		return -EIO;
592 
593 	return 0;
594 }
595 
596 /**
597  * mei_me_count_full_read_slots - counts read full slots.
598  *
599  * @dev: the device structure
600  *
601  * Return: -EOVERFLOW if overflow, otherwise filled slots count
602  */
603 static int mei_me_count_full_read_slots(struct mei_device *dev)
604 {
605 	u32 me_csr;
606 	char read_ptr, write_ptr;
607 	unsigned char buffer_depth, filled_slots;
608 
609 	me_csr = mei_me_mecsr_read(dev);
610 	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
611 	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
612 	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
613 	filled_slots = (unsigned char) (write_ptr - read_ptr);
614 
615 	/* check for overflow */
616 	if (filled_slots > buffer_depth)
617 		return -EOVERFLOW;
618 
619 	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
620 	return (int)filled_slots;
621 }
622 
623 /**
624  * mei_me_read_slots - reads a message from mei device.
625  *
626  * @dev: the device structure
627  * @buffer: message buffer will be written
628  * @buffer_length: message size will be read
629  *
630  * Return: always 0
631  */
632 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
633 			     unsigned long buffer_length)
634 {
635 	u32 *reg_buf = (u32 *)buffer;
636 
637 	for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
638 		*reg_buf++ = mei_me_mecbrw_read(dev);
639 
640 	if (buffer_length > 0) {
641 		u32 reg = mei_me_mecbrw_read(dev);
642 
643 		memcpy(reg_buf, &reg, buffer_length);
644 	}
645 
646 	mei_hcsr_set_hig(dev);
647 	return 0;
648 }
649 
650 /**
651  * mei_me_pg_set - write pg enter register
652  *
653  * @dev: the device structure
654  */
655 static void mei_me_pg_set(struct mei_device *dev)
656 {
657 	struct mei_me_hw *hw = to_me_hw(dev);
658 	u32 reg;
659 
660 	reg = mei_me_reg_read(hw, H_HPG_CSR);
661 	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
662 
663 	reg |= H_HPG_CSR_PGI;
664 
665 	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
666 	mei_me_reg_write(hw, H_HPG_CSR, reg);
667 }
668 
669 /**
670  * mei_me_pg_unset - write pg exit register
671  *
672  * @dev: the device structure
673  */
674 static void mei_me_pg_unset(struct mei_device *dev)
675 {
676 	struct mei_me_hw *hw = to_me_hw(dev);
677 	u32 reg;
678 
679 	reg = mei_me_reg_read(hw, H_HPG_CSR);
680 	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
681 
682 	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
683 
684 	reg |= H_HPG_CSR_PGIHEXR;
685 
686 	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
687 	mei_me_reg_write(hw, H_HPG_CSR, reg);
688 }
689 
690 /**
691  * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
692  *
693  * @dev: the device structure
694  *
695  * Return: 0 on success an error code otherwise
696  */
697 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
698 {
699 	struct mei_me_hw *hw = to_me_hw(dev);
700 	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
701 	int ret;
702 
703 	dev->pg_event = MEI_PG_EVENT_WAIT;
704 
705 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
706 	if (ret)
707 		return ret;
708 
709 	mutex_unlock(&dev->device_lock);
710 	wait_event_timeout(dev->wait_pg,
711 		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
712 	mutex_lock(&dev->device_lock);
713 
714 	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
715 		mei_me_pg_set(dev);
716 		ret = 0;
717 	} else {
718 		ret = -ETIME;
719 	}
720 
721 	dev->pg_event = MEI_PG_EVENT_IDLE;
722 	hw->pg_state = MEI_PG_ON;
723 
724 	return ret;
725 }
726 
727 /**
728  * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
729  *
730  * @dev: the device structure
731  *
732  * Return: 0 on success an error code otherwise
733  */
734 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
735 {
736 	struct mei_me_hw *hw = to_me_hw(dev);
737 	unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
738 	int ret;
739 
740 	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
741 		goto reply;
742 
743 	dev->pg_event = MEI_PG_EVENT_WAIT;
744 
745 	mei_me_pg_unset(dev);
746 
747 	mutex_unlock(&dev->device_lock);
748 	wait_event_timeout(dev->wait_pg,
749 		dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
750 	mutex_lock(&dev->device_lock);
751 
752 reply:
753 	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
754 		ret = -ETIME;
755 		goto out;
756 	}
757 
758 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
759 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
760 	if (ret)
761 		return ret;
762 
763 	mutex_unlock(&dev->device_lock);
764 	wait_event_timeout(dev->wait_pg,
765 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
766 	mutex_lock(&dev->device_lock);
767 
768 	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
769 		ret = 0;
770 	else
771 		ret = -ETIME;
772 
773 out:
774 	dev->pg_event = MEI_PG_EVENT_IDLE;
775 	hw->pg_state = MEI_PG_OFF;
776 
777 	return ret;
778 }
779 
780 /**
781  * mei_me_pg_in_transition - is device now in pg transition
782  *
783  * @dev: the device structure
784  *
785  * Return: true if in pg transition, false otherwise
786  */
787 static bool mei_me_pg_in_transition(struct mei_device *dev)
788 {
789 	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
790 	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
791 }
792 
793 /**
794  * mei_me_pg_is_enabled - detect if PG is supported by HW
795  *
796  * @dev: the device structure
797  *
798  * Return: true is pg supported, false otherwise
799  */
800 static bool mei_me_pg_is_enabled(struct mei_device *dev)
801 {
802 	struct mei_me_hw *hw = to_me_hw(dev);
803 	u32 reg = mei_me_mecsr_read(dev);
804 
805 	if (hw->d0i3_supported)
806 		return true;
807 
808 	if ((reg & ME_PGIC_HRA) == 0)
809 		goto notsupported;
810 
811 	if (!dev->hbm_f_pg_supported)
812 		goto notsupported;
813 
814 	return true;
815 
816 notsupported:
817 	dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
818 		hw->d0i3_supported,
819 		!!(reg & ME_PGIC_HRA),
820 		dev->version.major_version,
821 		dev->version.minor_version,
822 		HBM_MAJOR_VERSION_PGI,
823 		HBM_MINOR_VERSION_PGI);
824 
825 	return false;
826 }
827 
828 /**
829  * mei_me_d0i3_set - write d0i3 register bit on mei device.
830  *
831  * @dev: the device structure
832  * @intr: ask for interrupt
833  *
834  * Return: D0I3C register value
835  */
836 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
837 {
838 	u32 reg = mei_me_d0i3c_read(dev);
839 
840 	reg |= H_D0I3C_I3;
841 	if (intr)
842 		reg |= H_D0I3C_IR;
843 	else
844 		reg &= ~H_D0I3C_IR;
845 	mei_me_d0i3c_write(dev, reg);
846 	/* read it to ensure HW consistency */
847 	reg = mei_me_d0i3c_read(dev);
848 	return reg;
849 }
850 
851 /**
852  * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
853  *
854  * @dev: the device structure
855  *
856  * Return: D0I3C register value
857  */
858 static u32 mei_me_d0i3_unset(struct mei_device *dev)
859 {
860 	u32 reg = mei_me_d0i3c_read(dev);
861 
862 	reg &= ~H_D0I3C_I3;
863 	reg |= H_D0I3C_IR;
864 	mei_me_d0i3c_write(dev, reg);
865 	/* read it to ensure HW consistency */
866 	reg = mei_me_d0i3c_read(dev);
867 	return reg;
868 }
869 
870 /**
871  * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
872  *
873  * @dev: the device structure
874  *
875  * Return: 0 on success an error code otherwise
876  */
877 static int mei_me_d0i3_enter_sync(struct mei_device *dev)
878 {
879 	struct mei_me_hw *hw = to_me_hw(dev);
880 	unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
881 	unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
882 	int ret;
883 	u32 reg;
884 
885 	reg = mei_me_d0i3c_read(dev);
886 	if (reg & H_D0I3C_I3) {
887 		/* we are in d0i3, nothing to do */
888 		dev_dbg(dev->dev, "d0i3 set not needed\n");
889 		ret = 0;
890 		goto on;
891 	}
892 
893 	/* PGI entry procedure */
894 	dev->pg_event = MEI_PG_EVENT_WAIT;
895 
896 	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
897 	if (ret)
898 		/* FIXME: should we reset here? */
899 		goto out;
900 
901 	mutex_unlock(&dev->device_lock);
902 	wait_event_timeout(dev->wait_pg,
903 		dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
904 	mutex_lock(&dev->device_lock);
905 
906 	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
907 		ret = -ETIME;
908 		goto out;
909 	}
910 	/* end PGI entry procedure */
911 
912 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
913 
914 	reg = mei_me_d0i3_set(dev, true);
915 	if (!(reg & H_D0I3C_CIP)) {
916 		dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
917 		ret = 0;
918 		goto on;
919 	}
920 
921 	mutex_unlock(&dev->device_lock);
922 	wait_event_timeout(dev->wait_pg,
923 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
924 	mutex_lock(&dev->device_lock);
925 
926 	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
927 		reg = mei_me_d0i3c_read(dev);
928 		if (!(reg & H_D0I3C_I3)) {
929 			ret = -ETIME;
930 			goto out;
931 		}
932 	}
933 
934 	ret = 0;
935 on:
936 	hw->pg_state = MEI_PG_ON;
937 out:
938 	dev->pg_event = MEI_PG_EVENT_IDLE;
939 	dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
940 	return ret;
941 }
942 
943 /**
944  * mei_me_d0i3_enter - perform d0i3 entry procedure
945  *   no hbm PG handshake
946  *   no waiting for confirmation; runs with interrupts
947  *   disabled
948  *
949  * @dev: the device structure
950  *
951  * Return: 0 on success an error code otherwise
952  */
953 static int mei_me_d0i3_enter(struct mei_device *dev)
954 {
955 	struct mei_me_hw *hw = to_me_hw(dev);
956 	u32 reg;
957 
958 	reg = mei_me_d0i3c_read(dev);
959 	if (reg & H_D0I3C_I3) {
960 		/* we are in d0i3, nothing to do */
961 		dev_dbg(dev->dev, "already d0i3 : set not needed\n");
962 		goto on;
963 	}
964 
965 	mei_me_d0i3_set(dev, false);
966 on:
967 	hw->pg_state = MEI_PG_ON;
968 	dev->pg_event = MEI_PG_EVENT_IDLE;
969 	dev_dbg(dev->dev, "d0i3 enter\n");
970 	return 0;
971 }
972 
973 /**
974  * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
975  *
976  * @dev: the device structure
977  *
978  * Return: 0 on success an error code otherwise
979  */
980 static int mei_me_d0i3_exit_sync(struct mei_device *dev)
981 {
982 	struct mei_me_hw *hw = to_me_hw(dev);
983 	unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
984 	int ret;
985 	u32 reg;
986 
987 	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
988 
989 	reg = mei_me_d0i3c_read(dev);
990 	if (!(reg & H_D0I3C_I3)) {
991 		/* we are not in d0i3, nothing to do */
992 		dev_dbg(dev->dev, "d0i3 exit not needed\n");
993 		ret = 0;
994 		goto off;
995 	}
996 
997 	reg = mei_me_d0i3_unset(dev);
998 	if (!(reg & H_D0I3C_CIP)) {
999 		dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
1000 		ret = 0;
1001 		goto off;
1002 	}
1003 
1004 	mutex_unlock(&dev->device_lock);
1005 	wait_event_timeout(dev->wait_pg,
1006 		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
1007 	mutex_lock(&dev->device_lock);
1008 
1009 	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
1010 		reg = mei_me_d0i3c_read(dev);
1011 		if (reg & H_D0I3C_I3) {
1012 			ret = -ETIME;
1013 			goto out;
1014 		}
1015 	}
1016 
1017 	ret = 0;
1018 off:
1019 	hw->pg_state = MEI_PG_OFF;
1020 out:
1021 	dev->pg_event = MEI_PG_EVENT_IDLE;
1022 
1023 	dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
1024 	return ret;
1025 }
1026 
1027 /**
1028  * mei_me_pg_legacy_intr - perform legacy pg processing
1029  *			   in interrupt thread handler
1030  *
1031  * @dev: the device structure
1032  */
1033 static void mei_me_pg_legacy_intr(struct mei_device *dev)
1034 {
1035 	struct mei_me_hw *hw = to_me_hw(dev);
1036 
1037 	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1038 		return;
1039 
1040 	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1041 	hw->pg_state = MEI_PG_OFF;
1042 	if (waitqueue_active(&dev->wait_pg))
1043 		wake_up(&dev->wait_pg);
1044 }
1045 
1046 /**
1047  * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1048  *
1049  * @dev: the device structure
1050  * @intr_source: interrupt source
1051  */
1052 static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1053 {
1054 	struct mei_me_hw *hw = to_me_hw(dev);
1055 
1056 	if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1057 	    (intr_source & H_D0I3C_IS)) {
1058 		dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1059 		if (hw->pg_state == MEI_PG_ON) {
1060 			hw->pg_state = MEI_PG_OFF;
1061 			if (dev->hbm_state != MEI_HBM_IDLE) {
1062 				/*
1063 				 * force H_RDY because it could be
1064 				 * wiped off during PG
1065 				 */
1066 				dev_dbg(dev->dev, "d0i3 set host ready\n");
1067 				mei_me_host_set_ready(dev);
1068 			}
1069 		} else {
1070 			hw->pg_state = MEI_PG_ON;
1071 		}
1072 
1073 		wake_up(&dev->wait_pg);
1074 	}
1075 
1076 	if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1077 		/*
1078 		 * HW sent some data and we are in D0i3, so
1079 		 * we got here because of HW initiated exit from D0i3.
1080 		 * Start runtime pm resume sequence to exit low power state.
1081 		 */
1082 		dev_dbg(dev->dev, "d0i3 want resume\n");
1083 		mei_hbm_pg_resume(dev);
1084 	}
1085 }
1086 
1087 /**
1088  * mei_me_pg_intr - perform pg processing in interrupt thread handler
1089  *
1090  * @dev: the device structure
1091  * @intr_source: interrupt source
1092  */
1093 static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1094 {
1095 	struct mei_me_hw *hw = to_me_hw(dev);
1096 
1097 	if (hw->d0i3_supported)
1098 		mei_me_d0i3_intr(dev, intr_source);
1099 	else
1100 		mei_me_pg_legacy_intr(dev);
1101 }
1102 
1103 /**
1104  * mei_me_pg_enter_sync - perform runtime pm entry procedure
1105  *
1106  * @dev: the device structure
1107  *
1108  * Return: 0 on success an error code otherwise
1109  */
1110 int mei_me_pg_enter_sync(struct mei_device *dev)
1111 {
1112 	struct mei_me_hw *hw = to_me_hw(dev);
1113 
1114 	if (hw->d0i3_supported)
1115 		return mei_me_d0i3_enter_sync(dev);
1116 	else
1117 		return mei_me_pg_legacy_enter_sync(dev);
1118 }
1119 
1120 /**
1121  * mei_me_pg_exit_sync - perform runtime pm exit procedure
1122  *
1123  * @dev: the device structure
1124  *
1125  * Return: 0 on success an error code otherwise
1126  */
1127 int mei_me_pg_exit_sync(struct mei_device *dev)
1128 {
1129 	struct mei_me_hw *hw = to_me_hw(dev);
1130 
1131 	if (hw->d0i3_supported)
1132 		return mei_me_d0i3_exit_sync(dev);
1133 	else
1134 		return mei_me_pg_legacy_exit_sync(dev);
1135 }
1136 
1137 /**
1138  * mei_me_hw_reset - resets fw via mei csr register.
1139  *
1140  * @dev: the device structure
1141  * @intr_enable: if interrupt should be enabled after reset.
1142  *
1143  * Return: 0 on success an error code otherwise
1144  */
1145 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1146 {
1147 	struct mei_me_hw *hw = to_me_hw(dev);
1148 	int ret;
1149 	u32 hcsr;
1150 
1151 	if (intr_enable) {
1152 		mei_me_intr_enable(dev);
1153 		if (hw->d0i3_supported) {
1154 			ret = mei_me_d0i3_exit_sync(dev);
1155 			if (ret)
1156 				return ret;
1157 		}
1158 	}
1159 
1160 	pm_runtime_set_active(dev->dev);
1161 
1162 	hcsr = mei_hcsr_read(dev);
1163 	/* H_RST may be found lit before reset is started,
1164 	 * for example if preceding reset flow hasn't completed.
1165 	 * In that case asserting H_RST will be ignored, therefore
1166 	 * we need to clean H_RST bit to start a successful reset sequence.
1167 	 */
1168 	if ((hcsr & H_RST) == H_RST) {
1169 		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1170 		hcsr &= ~H_RST;
1171 		mei_hcsr_set(dev, hcsr);
1172 		hcsr = mei_hcsr_read(dev);
1173 	}
1174 
1175 	hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1176 
1177 	if (!intr_enable)
1178 		hcsr &= ~H_CSR_IE_MASK;
1179 
1180 	dev->recvd_hw_ready = false;
1181 	mei_hcsr_write(dev, hcsr);
1182 
1183 	/*
1184 	 * Host reads the H_CSR once to ensure that the
1185 	 * posted write to H_CSR completes.
1186 	 */
1187 	hcsr = mei_hcsr_read(dev);
1188 
1189 	if ((hcsr & H_RST) == 0)
1190 		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1191 
1192 	if ((hcsr & H_RDY) == H_RDY)
1193 		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1194 
1195 	if (!intr_enable) {
1196 		mei_me_hw_reset_release(dev);
1197 		if (hw->d0i3_supported) {
1198 			ret = mei_me_d0i3_enter(dev);
1199 			if (ret)
1200 				return ret;
1201 		}
1202 	}
1203 	return 0;
1204 }
1205 
1206 /**
1207  * mei_me_irq_quick_handler - The ISR of the MEI device
1208  *
1209  * @irq: The irq number
1210  * @dev_id: pointer to the device structure
1211  *
1212  * Return: irqreturn_t
1213  */
1214 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1215 {
1216 	struct mei_device *dev = (struct mei_device *)dev_id;
1217 	u32 hcsr;
1218 
1219 	hcsr = mei_hcsr_read(dev);
1220 	if (!me_intr_src(hcsr))
1221 		return IRQ_NONE;
1222 
1223 	dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1224 
1225 	/* disable interrupts on device */
1226 	me_intr_disable(dev, hcsr);
1227 	return IRQ_WAKE_THREAD;
1228 }
1229 
1230 /**
1231  * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1232  * processing.
1233  *
1234  * @irq: The irq number
1235  * @dev_id: pointer to the device structure
1236  *
1237  * Return: irqreturn_t
1238  *
1239  */
1240 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1241 {
1242 	struct mei_device *dev = (struct mei_device *) dev_id;
1243 	struct list_head cmpl_list;
1244 	s32 slots;
1245 	u32 hcsr;
1246 	int rets = 0;
1247 
1248 	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1249 	/* initialize our complete list */
1250 	mutex_lock(&dev->device_lock);
1251 
1252 	hcsr = mei_hcsr_read(dev);
1253 	me_intr_clear(dev, hcsr);
1254 
1255 	INIT_LIST_HEAD(&cmpl_list);
1256 
1257 	/* check if ME wants a reset */
1258 	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1259 		dev_warn(dev->dev, "FW not ready: resetting.\n");
1260 		schedule_work(&dev->reset_work);
1261 		goto end;
1262 	}
1263 
1264 	if (mei_me_hw_is_resetting(dev))
1265 		mei_hcsr_set_hig(dev);
1266 
1267 	mei_me_pg_intr(dev, me_intr_src(hcsr));
1268 
1269 	/*  check if we need to start the dev */
1270 	if (!mei_host_is_ready(dev)) {
1271 		if (mei_hw_is_ready(dev)) {
1272 			dev_dbg(dev->dev, "we need to start the dev.\n");
1273 			dev->recvd_hw_ready = true;
1274 			wake_up(&dev->wait_hw_ready);
1275 		} else {
1276 			dev_dbg(dev->dev, "Spurious Interrupt\n");
1277 		}
1278 		goto end;
1279 	}
1280 	/* check slots available for reading */
1281 	slots = mei_count_full_read_slots(dev);
1282 	while (slots > 0) {
1283 		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1284 		rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1285 		/* There is a race between ME write and interrupt delivery:
1286 		 * Not all data is always available immediately after the
1287 		 * interrupt, so try to read again on the next interrupt.
1288 		 */
1289 		if (rets == -ENODATA)
1290 			break;
1291 
1292 		if (rets &&
1293 		    (dev->dev_state != MEI_DEV_RESETTING &&
1294 		     dev->dev_state != MEI_DEV_POWER_DOWN)) {
1295 			dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1296 						rets);
1297 			schedule_work(&dev->reset_work);
1298 			goto end;
1299 		}
1300 	}
1301 
1302 	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1303 
1304 	/*
1305 	 * During PG handshake only allowed write is the replay to the
1306 	 * PG exit message, so block calling write function
1307 	 * if the pg event is in PG handshake
1308 	 */
1309 	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1310 	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1311 		rets = mei_irq_write_handler(dev, &cmpl_list);
1312 		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1313 	}
1314 
1315 	mei_irq_compl_handler(dev, &cmpl_list);
1316 
1317 end:
1318 	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1319 	mei_me_intr_enable(dev);
1320 	mutex_unlock(&dev->device_lock);
1321 	return IRQ_HANDLED;
1322 }
1323 
1324 static const struct mei_hw_ops mei_me_hw_ops = {
1325 
1326 	.trc_status = mei_me_trc_status,
1327 	.fw_status = mei_me_fw_status,
1328 	.pg_state  = mei_me_pg_state,
1329 
1330 	.host_is_ready = mei_me_host_is_ready,
1331 
1332 	.hw_is_ready = mei_me_hw_is_ready,
1333 	.hw_reset = mei_me_hw_reset,
1334 	.hw_config = mei_me_hw_config,
1335 	.hw_start = mei_me_hw_start,
1336 
1337 	.pg_in_transition = mei_me_pg_in_transition,
1338 	.pg_is_enabled = mei_me_pg_is_enabled,
1339 
1340 	.intr_clear = mei_me_intr_clear,
1341 	.intr_enable = mei_me_intr_enable,
1342 	.intr_disable = mei_me_intr_disable,
1343 	.synchronize_irq = mei_me_synchronize_irq,
1344 
1345 	.hbuf_free_slots = mei_me_hbuf_empty_slots,
1346 	.hbuf_is_ready = mei_me_hbuf_is_empty,
1347 	.hbuf_depth = mei_me_hbuf_depth,
1348 
1349 	.write = mei_me_hbuf_write,
1350 
1351 	.rdbuf_full_slots = mei_me_count_full_read_slots,
1352 	.read_hdr = mei_me_mecbrw_read,
1353 	.read = mei_me_read_slots
1354 };
1355 
1356 /**
1357  * mei_me_fw_type_nm() - check for nm sku
1358  *
1359  * Read ME FW Status register to check for the Node Manager (NM) Firmware.
1360  * The NM FW is only signaled in PCI function 0.
1361  * __Note__: Deprecated by PCH8 and newer.
1362  *
1363  * @pdev: pci device
1364  *
1365  * Return: true in case of NM firmware
1366  */
1367 static bool mei_me_fw_type_nm(const struct pci_dev *pdev)
1368 {
1369 	u32 reg;
1370 	unsigned int devfn;
1371 
1372 	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1373 	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_2, &reg);
1374 	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1375 	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1376 	return (reg & 0x600) == 0x200;
1377 }
1378 
1379 #define MEI_CFG_FW_NM                           \
1380 	.quirk_probe = mei_me_fw_type_nm
1381 
1382 /**
1383  * mei_me_fw_type_sps_4() - check for sps 4.0 sku
1384  *
1385  * Read ME FW Status register to check for SPS Firmware.
1386  * The SPS FW is only signaled in the PCI function 0.
1387  * __Note__: Deprecated by SPS 5.0 and newer.
1388  *
1389  * @pdev: pci device
1390  *
1391  * Return: true in case of SPS firmware
1392  */
1393 static bool mei_me_fw_type_sps_4(const struct pci_dev *pdev)
1394 {
1395 	u32 reg;
1396 	unsigned int devfn;
1397 
1398 	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1399 	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1400 	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1401 	return (reg & PCI_CFG_HFS_1_OPMODE_MSK) == PCI_CFG_HFS_1_OPMODE_SPS;
1402 }
1403 
1404 #define MEI_CFG_FW_SPS_4                          \
1405 	.quirk_probe = mei_me_fw_type_sps_4
1406 
1407 /**
1408  * mei_me_fw_type_sps() - check for sps sku
1409  *
1410  * Read ME FW Status register to check for SPS Firmware.
1411  * The SPS FW is only signaled in pci function 0
1412  *
1413  * @pdev: pci device
1414  *
1415  * Return: true in case of SPS firmware
1416  */
1417 static bool mei_me_fw_type_sps(const struct pci_dev *pdev)
1418 {
1419 	u32 reg;
1420 	u32 fw_type;
1421 	unsigned int devfn;
1422 
1423 	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1424 	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_3, &reg);
1425 	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_3", PCI_CFG_HFS_3, reg);
1426 	fw_type = (reg & PCI_CFG_HFS_3_FW_SKU_MSK);
1427 
1428 	dev_dbg(&pdev->dev, "fw type is %d\n", fw_type);
1429 
1430 	return fw_type == PCI_CFG_HFS_3_FW_SKU_SPS;
1431 }
1432 
1433 #define MEI_CFG_KIND_ITOUCH                     \
1434 	.kind = "itouch"
1435 
1436 #define MEI_CFG_FW_SPS                          \
1437 	.quirk_probe = mei_me_fw_type_sps
1438 
1439 #define MEI_CFG_FW_VER_SUPP                     \
1440 	.fw_ver_supported = 1
1441 
1442 #define MEI_CFG_ICH_HFS                      \
1443 	.fw_status.count = 0
1444 
1445 #define MEI_CFG_ICH10_HFS                        \
1446 	.fw_status.count = 1,                   \
1447 	.fw_status.status[0] = PCI_CFG_HFS_1
1448 
1449 #define MEI_CFG_PCH_HFS                         \
1450 	.fw_status.count = 2,                   \
1451 	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1452 	.fw_status.status[1] = PCI_CFG_HFS_2
1453 
1454 #define MEI_CFG_PCH8_HFS                        \
1455 	.fw_status.count = 6,                   \
1456 	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1457 	.fw_status.status[1] = PCI_CFG_HFS_2,   \
1458 	.fw_status.status[2] = PCI_CFG_HFS_3,   \
1459 	.fw_status.status[3] = PCI_CFG_HFS_4,   \
1460 	.fw_status.status[4] = PCI_CFG_HFS_5,   \
1461 	.fw_status.status[5] = PCI_CFG_HFS_6
1462 
1463 #define MEI_CFG_DMA_128 \
1464 	.dma_size[DMA_DSCR_HOST] = SZ_128K, \
1465 	.dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1466 	.dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1467 
1468 #define MEI_CFG_TRC \
1469 	.hw_trc_supported = 1
1470 
1471 /* ICH Legacy devices */
1472 static const struct mei_cfg mei_me_ich_cfg = {
1473 	MEI_CFG_ICH_HFS,
1474 };
1475 
1476 /* ICH devices */
1477 static const struct mei_cfg mei_me_ich10_cfg = {
1478 	MEI_CFG_ICH10_HFS,
1479 };
1480 
1481 /* PCH6 devices */
1482 static const struct mei_cfg mei_me_pch6_cfg = {
1483 	MEI_CFG_PCH_HFS,
1484 };
1485 
1486 /* PCH7 devices */
1487 static const struct mei_cfg mei_me_pch7_cfg = {
1488 	MEI_CFG_PCH_HFS,
1489 	MEI_CFG_FW_VER_SUPP,
1490 };
1491 
1492 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1493 static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1494 	MEI_CFG_PCH_HFS,
1495 	MEI_CFG_FW_VER_SUPP,
1496 	MEI_CFG_FW_NM,
1497 };
1498 
1499 /* PCH8 Lynx Point and newer devices */
1500 static const struct mei_cfg mei_me_pch8_cfg = {
1501 	MEI_CFG_PCH8_HFS,
1502 	MEI_CFG_FW_VER_SUPP,
1503 };
1504 
1505 /* PCH8 Lynx Point and newer devices - iTouch */
1506 static const struct mei_cfg mei_me_pch8_itouch_cfg = {
1507 	MEI_CFG_KIND_ITOUCH,
1508 	MEI_CFG_PCH8_HFS,
1509 	MEI_CFG_FW_VER_SUPP,
1510 };
1511 
1512 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1513 static const struct mei_cfg mei_me_pch8_sps_4_cfg = {
1514 	MEI_CFG_PCH8_HFS,
1515 	MEI_CFG_FW_VER_SUPP,
1516 	MEI_CFG_FW_SPS_4,
1517 };
1518 
1519 /* LBG with quirk for SPS (4.0) Firmware exclusion */
1520 static const struct mei_cfg mei_me_pch12_sps_4_cfg = {
1521 	MEI_CFG_PCH8_HFS,
1522 	MEI_CFG_FW_VER_SUPP,
1523 	MEI_CFG_FW_SPS_4,
1524 };
1525 
1526 /* Cannon Lake and newer devices */
1527 static const struct mei_cfg mei_me_pch12_cfg = {
1528 	MEI_CFG_PCH8_HFS,
1529 	MEI_CFG_FW_VER_SUPP,
1530 	MEI_CFG_DMA_128,
1531 };
1532 
1533 /* Cannon Lake with quirk for SPS 5.0 and newer Firmware exclusion */
1534 static const struct mei_cfg mei_me_pch12_sps_cfg = {
1535 	MEI_CFG_PCH8_HFS,
1536 	MEI_CFG_FW_VER_SUPP,
1537 	MEI_CFG_DMA_128,
1538 	MEI_CFG_FW_SPS,
1539 };
1540 
1541 /* Cannon Lake itouch with quirk for SPS 5.0 and newer Firmware exclusion
1542  * w/o DMA support.
1543  */
1544 static const struct mei_cfg mei_me_pch12_itouch_sps_cfg = {
1545 	MEI_CFG_KIND_ITOUCH,
1546 	MEI_CFG_PCH8_HFS,
1547 	MEI_CFG_FW_VER_SUPP,
1548 	MEI_CFG_FW_SPS,
1549 };
1550 
1551 /* Tiger Lake and newer devices */
1552 static const struct mei_cfg mei_me_pch15_cfg = {
1553 	MEI_CFG_PCH8_HFS,
1554 	MEI_CFG_FW_VER_SUPP,
1555 	MEI_CFG_DMA_128,
1556 	MEI_CFG_TRC,
1557 };
1558 
1559 /* Tiger Lake with quirk for SPS 5.0 and newer Firmware exclusion */
1560 static const struct mei_cfg mei_me_pch15_sps_cfg = {
1561 	MEI_CFG_PCH8_HFS,
1562 	MEI_CFG_FW_VER_SUPP,
1563 	MEI_CFG_DMA_128,
1564 	MEI_CFG_TRC,
1565 	MEI_CFG_FW_SPS,
1566 };
1567 
1568 /*
1569  * mei_cfg_list - A list of platform platform specific configurations.
1570  * Note: has to be synchronized with  enum mei_cfg_idx.
1571  */
1572 static const struct mei_cfg *const mei_cfg_list[] = {
1573 	[MEI_ME_UNDEF_CFG] = NULL,
1574 	[MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1575 	[MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1576 	[MEI_ME_PCH6_CFG] = &mei_me_pch6_cfg,
1577 	[MEI_ME_PCH7_CFG] = &mei_me_pch7_cfg,
1578 	[MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1579 	[MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1580 	[MEI_ME_PCH8_ITOUCH_CFG] = &mei_me_pch8_itouch_cfg,
1581 	[MEI_ME_PCH8_SPS_4_CFG] = &mei_me_pch8_sps_4_cfg,
1582 	[MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
1583 	[MEI_ME_PCH12_SPS_4_CFG] = &mei_me_pch12_sps_4_cfg,
1584 	[MEI_ME_PCH12_SPS_CFG] = &mei_me_pch12_sps_cfg,
1585 	[MEI_ME_PCH12_SPS_ITOUCH_CFG] = &mei_me_pch12_itouch_sps_cfg,
1586 	[MEI_ME_PCH15_CFG] = &mei_me_pch15_cfg,
1587 	[MEI_ME_PCH15_SPS_CFG] = &mei_me_pch15_sps_cfg,
1588 };
1589 
1590 const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1591 {
1592 	BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1593 
1594 	if (idx >= MEI_ME_NUM_CFG)
1595 		return NULL;
1596 
1597 	return mei_cfg_list[idx];
1598 };
1599 
1600 /**
1601  * mei_me_dev_init - allocates and initializes the mei device structure
1602  *
1603  * @parent: device associated with physical device (pci/platform)
1604  * @cfg: per device generation config
1605  *
1606  * Return: The mei_device pointer on success, NULL on failure.
1607  */
1608 struct mei_device *mei_me_dev_init(struct device *parent,
1609 				   const struct mei_cfg *cfg)
1610 {
1611 	struct mei_device *dev;
1612 	struct mei_me_hw *hw;
1613 	int i;
1614 
1615 	dev = devm_kzalloc(parent, sizeof(*dev) + sizeof(*hw), GFP_KERNEL);
1616 	if (!dev)
1617 		return NULL;
1618 
1619 	hw = to_me_hw(dev);
1620 
1621 	for (i = 0; i < DMA_DSCR_NUM; i++)
1622 		dev->dr_dscr[i].size = cfg->dma_size[i];
1623 
1624 	mei_device_init(dev, parent, &mei_me_hw_ops);
1625 	hw->cfg = cfg;
1626 
1627 	dev->fw_f_fw_ver_supported = cfg->fw_ver_supported;
1628 
1629 	dev->kind = cfg->kind;
1630 
1631 	return dev;
1632 }
1633 
1634