xref: /openbmc/linux/drivers/misc/mei/hw-me.c (revision 36bccb11)
1 /*
2  *
3  * Intel Management Engine Interface (Intel MEI) Linux driver
4  * Copyright (c) 2003-2012, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  */
16 
17 #include <linux/pci.h>
18 
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 
22 #include "mei_dev.h"
23 #include "hbm.h"
24 
25 #include "hw-me.h"
26 #include "hw-me-regs.h"
27 
28 /**
29  * mei_me_reg_read - Reads 32bit data from the mei device
30  *
31  * @dev: the device structure
32  * @offset: offset from which to read the data
33  *
34  * returns register value (u32)
35  */
36 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
37 			       unsigned long offset)
38 {
39 	return ioread32(hw->mem_addr + offset);
40 }
41 
42 
43 /**
44  * mei_me_reg_write - Writes 32bit data to the mei device
45  *
46  * @dev: the device structure
47  * @offset: offset from which to write the data
48  * @value: register value to write (u32)
49  */
50 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
51 				 unsigned long offset, u32 value)
52 {
53 	iowrite32(value, hw->mem_addr + offset);
54 }
55 
56 /**
57  * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
58  *  read window register
59  *
60  * @dev: the device structure
61  *
62  * returns ME_CB_RW register value (u32)
63  */
64 static u32 mei_me_mecbrw_read(const struct mei_device *dev)
65 {
66 	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
67 }
68 /**
69  * mei_me_mecsr_read - Reads 32bit data from the ME CSR
70  *
71  * @dev: the device structure
72  *
73  * returns ME_CSR_HA register value (u32)
74  */
75 static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
76 {
77 	return mei_me_reg_read(hw, ME_CSR_HA);
78 }
79 
80 /**
81  * mei_hcsr_read - Reads 32bit data from the host CSR
82  *
83  * @dev: the device structure
84  *
85  * returns H_CSR register value (u32)
86  */
87 static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
88 {
89 	return mei_me_reg_read(hw, H_CSR);
90 }
91 
92 /**
93  * mei_hcsr_set - writes H_CSR register to the mei device,
94  * and ignores the H_IS bit for it is write-one-to-zero.
95  *
96  * @dev: the device structure
97  */
98 static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
99 {
100 	hcsr &= ~H_IS;
101 	mei_me_reg_write(hw, H_CSR, hcsr);
102 }
103 
104 
105 /**
106  * mei_me_hw_config - configure hw dependent settings
107  *
108  * @dev: mei device
109  */
110 static void mei_me_hw_config(struct mei_device *dev)
111 {
112 	u32 hcsr = mei_hcsr_read(to_me_hw(dev));
113 	/* Doesn't change in runtime */
114 	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
115 }
116 /**
117  * mei_clear_interrupts - clear and stop interrupts
118  *
119  * @dev: the device structure
120  */
121 static void mei_me_intr_clear(struct mei_device *dev)
122 {
123 	struct mei_me_hw *hw = to_me_hw(dev);
124 	u32 hcsr = mei_hcsr_read(hw);
125 	if ((hcsr & H_IS) == H_IS)
126 		mei_me_reg_write(hw, H_CSR, hcsr);
127 }
128 /**
129  * mei_me_intr_enable - enables mei device interrupts
130  *
131  * @dev: the device structure
132  */
133 static void mei_me_intr_enable(struct mei_device *dev)
134 {
135 	struct mei_me_hw *hw = to_me_hw(dev);
136 	u32 hcsr = mei_hcsr_read(hw);
137 	hcsr |= H_IE;
138 	mei_hcsr_set(hw, hcsr);
139 }
140 
141 /**
142  * mei_disable_interrupts - disables mei device interrupts
143  *
144  * @dev: the device structure
145  */
146 static void mei_me_intr_disable(struct mei_device *dev)
147 {
148 	struct mei_me_hw *hw = to_me_hw(dev);
149 	u32 hcsr = mei_hcsr_read(hw);
150 	hcsr  &= ~H_IE;
151 	mei_hcsr_set(hw, hcsr);
152 }
153 
154 /**
155  * mei_me_hw_reset_release - release device from the reset
156  *
157  * @dev: the device structure
158  */
159 static void mei_me_hw_reset_release(struct mei_device *dev)
160 {
161 	struct mei_me_hw *hw = to_me_hw(dev);
162 	u32 hcsr = mei_hcsr_read(hw);
163 
164 	hcsr |= H_IG;
165 	hcsr &= ~H_RST;
166 	mei_hcsr_set(hw, hcsr);
167 }
168 /**
169  * mei_me_hw_reset - resets fw via mei csr register.
170  *
171  * @dev: the device structure
172  * @intr_enable: if interrupt should be enabled after reset.
173  */
174 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
175 {
176 	struct mei_me_hw *hw = to_me_hw(dev);
177 	u32 hcsr = mei_hcsr_read(hw);
178 
179 	hcsr |= H_RST | H_IG | H_IS;
180 
181 	if (intr_enable)
182 		hcsr |= H_IE;
183 	else
184 		hcsr &= ~H_IE;
185 
186 	mei_me_reg_write(hw, H_CSR, hcsr);
187 
188 	if (intr_enable == false)
189 		mei_me_hw_reset_release(dev);
190 
191 	return 0;
192 }
193 
194 /**
195  * mei_me_host_set_ready - enable device
196  *
197  * @dev - mei device
198  * returns bool
199  */
200 
201 static void mei_me_host_set_ready(struct mei_device *dev)
202 {
203 	struct mei_me_hw *hw = to_me_hw(dev);
204 	hw->host_hw_state |= H_IE | H_IG | H_RDY;
205 	mei_hcsr_set(hw, hw->host_hw_state);
206 }
207 /**
208  * mei_me_host_is_ready - check whether the host has turned ready
209  *
210  * @dev - mei device
211  * returns bool
212  */
213 static bool mei_me_host_is_ready(struct mei_device *dev)
214 {
215 	struct mei_me_hw *hw = to_me_hw(dev);
216 	hw->host_hw_state = mei_hcsr_read(hw);
217 	return (hw->host_hw_state & H_RDY) == H_RDY;
218 }
219 
220 /**
221  * mei_me_hw_is_ready - check whether the me(hw) has turned ready
222  *
223  * @dev - mei device
224  * returns bool
225  */
226 static bool mei_me_hw_is_ready(struct mei_device *dev)
227 {
228 	struct mei_me_hw *hw = to_me_hw(dev);
229 	hw->me_hw_state = mei_me_mecsr_read(hw);
230 	return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
231 }
232 
233 static int mei_me_hw_ready_wait(struct mei_device *dev)
234 {
235 	int err;
236 	if (mei_me_hw_is_ready(dev))
237 		return 0;
238 
239 	dev->recvd_hw_ready = false;
240 	mutex_unlock(&dev->device_lock);
241 	err = wait_event_interruptible_timeout(dev->wait_hw_ready,
242 			dev->recvd_hw_ready,
243 			mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
244 	mutex_lock(&dev->device_lock);
245 	if (!err && !dev->recvd_hw_ready) {
246 		if (!err)
247 			err = -ETIME;
248 		dev_err(&dev->pdev->dev,
249 			"wait hw ready failed. status = %d\n", err);
250 		return err;
251 	}
252 
253 	dev->recvd_hw_ready = false;
254 	return 0;
255 }
256 
257 static int mei_me_hw_start(struct mei_device *dev)
258 {
259 	int ret = mei_me_hw_ready_wait(dev);
260 	if (ret)
261 		return ret;
262 	dev_dbg(&dev->pdev->dev, "hw is ready\n");
263 
264 	mei_me_host_set_ready(dev);
265 	return ret;
266 }
267 
268 
269 /**
270  * mei_hbuf_filled_slots - gets number of device filled buffer slots
271  *
272  * @dev: the device structure
273  *
274  * returns number of filled slots
275  */
276 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
277 {
278 	struct mei_me_hw *hw = to_me_hw(dev);
279 	char read_ptr, write_ptr;
280 
281 	hw->host_hw_state = mei_hcsr_read(hw);
282 
283 	read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
284 	write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
285 
286 	return (unsigned char) (write_ptr - read_ptr);
287 }
288 
289 /**
290  * mei_me_hbuf_is_empty - checks if host buffer is empty.
291  *
292  * @dev: the device structure
293  *
294  * returns true if empty, false - otherwise.
295  */
296 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
297 {
298 	return mei_hbuf_filled_slots(dev) == 0;
299 }
300 
301 /**
302  * mei_me_hbuf_empty_slots - counts write empty slots.
303  *
304  * @dev: the device structure
305  *
306  * returns -EOVERFLOW if overflow, otherwise empty slots count
307  */
308 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
309 {
310 	unsigned char filled_slots, empty_slots;
311 
312 	filled_slots = mei_hbuf_filled_slots(dev);
313 	empty_slots = dev->hbuf_depth - filled_slots;
314 
315 	/* check for overflow */
316 	if (filled_slots > dev->hbuf_depth)
317 		return -EOVERFLOW;
318 
319 	return empty_slots;
320 }
321 
322 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
323 {
324 	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
325 }
326 
327 
328 /**
329  * mei_me_write_message - writes a message to mei device.
330  *
331  * @dev: the device structure
332  * @header: mei HECI header of message
333  * @buf: message payload will be written
334  *
335  * This function returns -EIO if write has failed
336  */
337 static int mei_me_write_message(struct mei_device *dev,
338 			struct mei_msg_hdr *header,
339 			unsigned char *buf)
340 {
341 	struct mei_me_hw *hw = to_me_hw(dev);
342 	unsigned long rem;
343 	unsigned long length = header->length;
344 	u32 *reg_buf = (u32 *)buf;
345 	u32 hcsr;
346 	u32 dw_cnt;
347 	int i;
348 	int empty_slots;
349 
350 	dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
351 
352 	empty_slots = mei_hbuf_empty_slots(dev);
353 	dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
354 
355 	dw_cnt = mei_data2slots(length);
356 	if (empty_slots < 0 || dw_cnt > empty_slots)
357 		return -EMSGSIZE;
358 
359 	mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
360 
361 	for (i = 0; i < length / 4; i++)
362 		mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
363 
364 	rem = length & 0x3;
365 	if (rem > 0) {
366 		u32 reg = 0;
367 		memcpy(&reg, &buf[length - rem], rem);
368 		mei_me_reg_write(hw, H_CB_WW, reg);
369 	}
370 
371 	hcsr = mei_hcsr_read(hw) | H_IG;
372 	mei_hcsr_set(hw, hcsr);
373 	if (!mei_me_hw_is_ready(dev))
374 		return -EIO;
375 
376 	return 0;
377 }
378 
379 /**
380  * mei_me_count_full_read_slots - counts read full slots.
381  *
382  * @dev: the device structure
383  *
384  * returns -EOVERFLOW if overflow, otherwise filled slots count
385  */
386 static int mei_me_count_full_read_slots(struct mei_device *dev)
387 {
388 	struct mei_me_hw *hw = to_me_hw(dev);
389 	char read_ptr, write_ptr;
390 	unsigned char buffer_depth, filled_slots;
391 
392 	hw->me_hw_state = mei_me_mecsr_read(hw);
393 	buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
394 	read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
395 	write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
396 	filled_slots = (unsigned char) (write_ptr - read_ptr);
397 
398 	/* check for overflow */
399 	if (filled_slots > buffer_depth)
400 		return -EOVERFLOW;
401 
402 	dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
403 	return (int)filled_slots;
404 }
405 
406 /**
407  * mei_me_read_slots - reads a message from mei device.
408  *
409  * @dev: the device structure
410  * @buffer: message buffer will be written
411  * @buffer_length: message size will be read
412  */
413 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
414 		    unsigned long buffer_length)
415 {
416 	struct mei_me_hw *hw = to_me_hw(dev);
417 	u32 *reg_buf = (u32 *)buffer;
418 	u32 hcsr;
419 
420 	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
421 		*reg_buf++ = mei_me_mecbrw_read(dev);
422 
423 	if (buffer_length > 0) {
424 		u32 reg = mei_me_mecbrw_read(dev);
425 		memcpy(reg_buf, &reg, buffer_length);
426 	}
427 
428 	hcsr = mei_hcsr_read(hw) | H_IG;
429 	mei_hcsr_set(hw, hcsr);
430 	return 0;
431 }
432 
433 /**
434  * mei_me_irq_quick_handler - The ISR of the MEI device
435  *
436  * @irq: The irq number
437  * @dev_id: pointer to the device structure
438  *
439  * returns irqreturn_t
440  */
441 
442 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
443 {
444 	struct mei_device *dev = (struct mei_device *) dev_id;
445 	struct mei_me_hw *hw = to_me_hw(dev);
446 	u32 csr_reg = mei_hcsr_read(hw);
447 
448 	if ((csr_reg & H_IS) != H_IS)
449 		return IRQ_NONE;
450 
451 	/* clear H_IS bit in H_CSR */
452 	mei_me_reg_write(hw, H_CSR, csr_reg);
453 
454 	return IRQ_WAKE_THREAD;
455 }
456 
457 /**
458  * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
459  * processing.
460  *
461  * @irq: The irq number
462  * @dev_id: pointer to the device structure
463  *
464  * returns irqreturn_t
465  *
466  */
467 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
468 {
469 	struct mei_device *dev = (struct mei_device *) dev_id;
470 	struct mei_cl_cb complete_list;
471 	s32 slots;
472 	int rets = 0;
473 
474 	dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
475 	/* initialize our complete list */
476 	mutex_lock(&dev->device_lock);
477 	mei_io_list_init(&complete_list);
478 
479 	/* Ack the interrupt here
480 	 * In case of MSI we don't go through the quick handler */
481 	if (pci_dev_msi_enabled(dev->pdev))
482 		mei_clear_interrupts(dev);
483 
484 	/* check if ME wants a reset */
485 	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
486 		dev_warn(&dev->pdev->dev, "FW not ready: resetting.\n");
487 		schedule_work(&dev->reset_work);
488 		goto end;
489 	}
490 
491 	/*  check if we need to start the dev */
492 	if (!mei_host_is_ready(dev)) {
493 		if (mei_hw_is_ready(dev)) {
494 			dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
495 
496 			dev->recvd_hw_ready = true;
497 			wake_up_interruptible(&dev->wait_hw_ready);
498 		} else {
499 
500 			dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
501 			mei_me_hw_reset_release(dev);
502 		}
503 		goto end;
504 	}
505 	/* check slots available for reading */
506 	slots = mei_count_full_read_slots(dev);
507 	while (slots > 0) {
508 		dev_dbg(&dev->pdev->dev, "slots to read = %08x\n", slots);
509 		rets = mei_irq_read_handler(dev, &complete_list, &slots);
510 		/* There is a race between ME write and interrupt delivery:
511 		 * Not all data is always available immediately after the
512 		 * interrupt, so try to read again on the next interrupt.
513 		 */
514 		if (rets == -ENODATA)
515 			break;
516 
517 		if (rets && dev->dev_state != MEI_DEV_RESETTING) {
518 			dev_err(&dev->pdev->dev, "mei_irq_read_handler ret = %d.\n",
519 						rets);
520 			schedule_work(&dev->reset_work);
521 			goto end;
522 		}
523 	}
524 
525 	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
526 
527 	rets = mei_irq_write_handler(dev, &complete_list);
528 
529 	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
530 
531 	mei_irq_compl_handler(dev, &complete_list);
532 
533 end:
534 	dev_dbg(&dev->pdev->dev, "interrupt thread end ret = %d\n", rets);
535 	mutex_unlock(&dev->device_lock);
536 	return IRQ_HANDLED;
537 }
538 static const struct mei_hw_ops mei_me_hw_ops = {
539 
540 	.host_is_ready = mei_me_host_is_ready,
541 
542 	.hw_is_ready = mei_me_hw_is_ready,
543 	.hw_reset = mei_me_hw_reset,
544 	.hw_config = mei_me_hw_config,
545 	.hw_start = mei_me_hw_start,
546 
547 	.intr_clear = mei_me_intr_clear,
548 	.intr_enable = mei_me_intr_enable,
549 	.intr_disable = mei_me_intr_disable,
550 
551 	.hbuf_free_slots = mei_me_hbuf_empty_slots,
552 	.hbuf_is_ready = mei_me_hbuf_is_empty,
553 	.hbuf_max_len = mei_me_hbuf_max_len,
554 
555 	.write = mei_me_write_message,
556 
557 	.rdbuf_full_slots = mei_me_count_full_read_slots,
558 	.read_hdr = mei_me_mecbrw_read,
559 	.read = mei_me_read_slots
560 };
561 
562 /**
563  * mei_me_dev_init - allocates and initializes the mei device structure
564  *
565  * @pdev: The pci device structure
566  *
567  * returns The mei_device_device pointer on success, NULL on failure.
568  */
569 struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
570 {
571 	struct mei_device *dev;
572 
573 	dev = kzalloc(sizeof(struct mei_device) +
574 			 sizeof(struct mei_me_hw), GFP_KERNEL);
575 	if (!dev)
576 		return NULL;
577 
578 	mei_device_init(dev);
579 
580 	dev->ops = &mei_me_hw_ops;
581 
582 	dev->pdev = pdev;
583 	return dev;
584 }
585 
586