1 /* 2 * 3 * Intel Management Engine Interface (Intel MEI) Linux driver 4 * Copyright (c) 2003-2012, Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 */ 16 17 #include <linux/pci.h> 18 19 #include <linux/kthread.h> 20 #include <linux/interrupt.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/sizes.h> 23 24 #include "mei_dev.h" 25 #include "hbm.h" 26 27 #include "hw-me.h" 28 #include "hw-me-regs.h" 29 30 #include "mei-trace.h" 31 32 /** 33 * mei_me_reg_read - Reads 32bit data from the mei device 34 * 35 * @hw: the me hardware structure 36 * @offset: offset from which to read the data 37 * 38 * Return: register value (u32) 39 */ 40 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw, 41 unsigned long offset) 42 { 43 return ioread32(hw->mem_addr + offset); 44 } 45 46 47 /** 48 * mei_me_reg_write - Writes 32bit data to the mei device 49 * 50 * @hw: the me hardware structure 51 * @offset: offset from which to write the data 52 * @value: register value to write (u32) 53 */ 54 static inline void mei_me_reg_write(const struct mei_me_hw *hw, 55 unsigned long offset, u32 value) 56 { 57 iowrite32(value, hw->mem_addr + offset); 58 } 59 60 /** 61 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer 62 * read window register 63 * 64 * @dev: the device structure 65 * 66 * Return: ME_CB_RW register value (u32) 67 */ 68 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev) 69 { 70 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW); 71 } 72 73 /** 74 * mei_me_hcbww_write - write 32bit data to the host circular buffer 75 * 76 * @dev: the device structure 77 * @data: 32bit data to be written to the host circular buffer 78 */ 79 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data) 80 { 81 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data); 82 } 83 84 /** 85 * mei_me_mecsr_read - Reads 32bit data from the ME CSR 86 * 87 * @dev: the device structure 88 * 89 * Return: ME_CSR_HA register value (u32) 90 */ 91 static inline u32 mei_me_mecsr_read(const struct mei_device *dev) 92 { 93 u32 reg; 94 95 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA); 96 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg); 97 98 return reg; 99 } 100 101 /** 102 * mei_hcsr_read - Reads 32bit data from the host CSR 103 * 104 * @dev: the device structure 105 * 106 * Return: H_CSR register value (u32) 107 */ 108 static inline u32 mei_hcsr_read(const struct mei_device *dev) 109 { 110 u32 reg; 111 112 reg = mei_me_reg_read(to_me_hw(dev), H_CSR); 113 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg); 114 115 return reg; 116 } 117 118 /** 119 * mei_hcsr_write - writes H_CSR register to the mei device 120 * 121 * @dev: the device structure 122 * @reg: new register value 123 */ 124 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg) 125 { 126 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg); 127 mei_me_reg_write(to_me_hw(dev), H_CSR, reg); 128 } 129 130 /** 131 * mei_hcsr_set - writes H_CSR register to the mei device, 132 * and ignores the H_IS bit for it is write-one-to-zero. 133 * 134 * @dev: the device structure 135 * @reg: new register value 136 */ 137 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg) 138 { 139 reg &= ~H_CSR_IS_MASK; 140 mei_hcsr_write(dev, reg); 141 } 142 143 /** 144 * mei_hcsr_set_hig - set host interrupt (set H_IG) 145 * 146 * @dev: the device structure 147 */ 148 static inline void mei_hcsr_set_hig(struct mei_device *dev) 149 { 150 u32 hcsr; 151 152 hcsr = mei_hcsr_read(dev) | H_IG; 153 mei_hcsr_set(dev, hcsr); 154 } 155 156 /** 157 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register 158 * 159 * @dev: the device structure 160 * 161 * Return: H_D0I3C register value (u32) 162 */ 163 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev) 164 { 165 u32 reg; 166 167 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C); 168 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg); 169 170 return reg; 171 } 172 173 /** 174 * mei_me_d0i3c_write - writes H_D0I3C register to device 175 * 176 * @dev: the device structure 177 * @reg: new register value 178 */ 179 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg) 180 { 181 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg); 182 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg); 183 } 184 185 /** 186 * mei_me_fw_status - read fw status register from pci config space 187 * 188 * @dev: mei device 189 * @fw_status: fw status register values 190 * 191 * Return: 0 on success, error otherwise 192 */ 193 static int mei_me_fw_status(struct mei_device *dev, 194 struct mei_fw_status *fw_status) 195 { 196 struct pci_dev *pdev = to_pci_dev(dev->dev); 197 struct mei_me_hw *hw = to_me_hw(dev); 198 const struct mei_fw_status *fw_src = &hw->cfg->fw_status; 199 int ret; 200 int i; 201 202 if (!fw_status) 203 return -EINVAL; 204 205 fw_status->count = fw_src->count; 206 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) { 207 ret = pci_read_config_dword(pdev, fw_src->status[i], 208 &fw_status->status[i]); 209 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X", 210 fw_src->status[i], 211 fw_status->status[i]); 212 if (ret) 213 return ret; 214 } 215 216 return 0; 217 } 218 219 /** 220 * mei_me_hw_config - configure hw dependent settings 221 * 222 * @dev: mei device 223 */ 224 static void mei_me_hw_config(struct mei_device *dev) 225 { 226 struct pci_dev *pdev = to_pci_dev(dev->dev); 227 struct mei_me_hw *hw = to_me_hw(dev); 228 u32 hcsr, reg; 229 230 /* Doesn't change in runtime */ 231 hcsr = mei_hcsr_read(dev); 232 hw->hbuf_depth = (hcsr & H_CBD) >> 24; 233 234 reg = 0; 235 pci_read_config_dword(pdev, PCI_CFG_HFS_1, ®); 236 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg); 237 hw->d0i3_supported = 238 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK); 239 240 hw->pg_state = MEI_PG_OFF; 241 if (hw->d0i3_supported) { 242 reg = mei_me_d0i3c_read(dev); 243 if (reg & H_D0I3C_I3) 244 hw->pg_state = MEI_PG_ON; 245 } 246 } 247 248 /** 249 * mei_me_pg_state - translate internal pg state 250 * to the mei power gating state 251 * 252 * @dev: mei device 253 * 254 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise 255 */ 256 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev) 257 { 258 struct mei_me_hw *hw = to_me_hw(dev); 259 260 return hw->pg_state; 261 } 262 263 static inline u32 me_intr_src(u32 hcsr) 264 { 265 return hcsr & H_CSR_IS_MASK; 266 } 267 268 /** 269 * me_intr_disable - disables mei device interrupts 270 * using supplied hcsr register value. 271 * 272 * @dev: the device structure 273 * @hcsr: supplied hcsr register value 274 */ 275 static inline void me_intr_disable(struct mei_device *dev, u32 hcsr) 276 { 277 hcsr &= ~H_CSR_IE_MASK; 278 mei_hcsr_set(dev, hcsr); 279 } 280 281 /** 282 * mei_me_intr_clear - clear and stop interrupts 283 * 284 * @dev: the device structure 285 * @hcsr: supplied hcsr register value 286 */ 287 static inline void me_intr_clear(struct mei_device *dev, u32 hcsr) 288 { 289 if (me_intr_src(hcsr)) 290 mei_hcsr_write(dev, hcsr); 291 } 292 293 /** 294 * mei_me_intr_clear - clear and stop interrupts 295 * 296 * @dev: the device structure 297 */ 298 static void mei_me_intr_clear(struct mei_device *dev) 299 { 300 u32 hcsr = mei_hcsr_read(dev); 301 302 me_intr_clear(dev, hcsr); 303 } 304 /** 305 * mei_me_intr_enable - enables mei device interrupts 306 * 307 * @dev: the device structure 308 */ 309 static void mei_me_intr_enable(struct mei_device *dev) 310 { 311 u32 hcsr = mei_hcsr_read(dev); 312 313 hcsr |= H_CSR_IE_MASK; 314 mei_hcsr_set(dev, hcsr); 315 } 316 317 /** 318 * mei_me_intr_disable - disables mei device interrupts 319 * 320 * @dev: the device structure 321 */ 322 static void mei_me_intr_disable(struct mei_device *dev) 323 { 324 u32 hcsr = mei_hcsr_read(dev); 325 326 me_intr_disable(dev, hcsr); 327 } 328 329 /** 330 * mei_me_synchronize_irq - wait for pending IRQ handlers 331 * 332 * @dev: the device structure 333 */ 334 static void mei_me_synchronize_irq(struct mei_device *dev) 335 { 336 struct pci_dev *pdev = to_pci_dev(dev->dev); 337 338 synchronize_irq(pdev->irq); 339 } 340 341 /** 342 * mei_me_hw_reset_release - release device from the reset 343 * 344 * @dev: the device structure 345 */ 346 static void mei_me_hw_reset_release(struct mei_device *dev) 347 { 348 u32 hcsr = mei_hcsr_read(dev); 349 350 hcsr |= H_IG; 351 hcsr &= ~H_RST; 352 mei_hcsr_set(dev, hcsr); 353 354 /* complete this write before we set host ready on another CPU */ 355 mmiowb(); 356 } 357 358 /** 359 * mei_me_host_set_ready - enable device 360 * 361 * @dev: mei device 362 */ 363 static void mei_me_host_set_ready(struct mei_device *dev) 364 { 365 u32 hcsr = mei_hcsr_read(dev); 366 367 hcsr |= H_CSR_IE_MASK | H_IG | H_RDY; 368 mei_hcsr_set(dev, hcsr); 369 } 370 371 /** 372 * mei_me_host_is_ready - check whether the host has turned ready 373 * 374 * @dev: mei device 375 * Return: bool 376 */ 377 static bool mei_me_host_is_ready(struct mei_device *dev) 378 { 379 u32 hcsr = mei_hcsr_read(dev); 380 381 return (hcsr & H_RDY) == H_RDY; 382 } 383 384 /** 385 * mei_me_hw_is_ready - check whether the me(hw) has turned ready 386 * 387 * @dev: mei device 388 * Return: bool 389 */ 390 static bool mei_me_hw_is_ready(struct mei_device *dev) 391 { 392 u32 mecsr = mei_me_mecsr_read(dev); 393 394 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA; 395 } 396 397 /** 398 * mei_me_hw_is_resetting - check whether the me(hw) is in reset 399 * 400 * @dev: mei device 401 * Return: bool 402 */ 403 static bool mei_me_hw_is_resetting(struct mei_device *dev) 404 { 405 u32 mecsr = mei_me_mecsr_read(dev); 406 407 return (mecsr & ME_RST_HRA) == ME_RST_HRA; 408 } 409 410 /** 411 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready 412 * or timeout is reached 413 * 414 * @dev: mei device 415 * Return: 0 on success, error otherwise 416 */ 417 static int mei_me_hw_ready_wait(struct mei_device *dev) 418 { 419 mutex_unlock(&dev->device_lock); 420 wait_event_timeout(dev->wait_hw_ready, 421 dev->recvd_hw_ready, 422 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT)); 423 mutex_lock(&dev->device_lock); 424 if (!dev->recvd_hw_ready) { 425 dev_err(dev->dev, "wait hw ready failed\n"); 426 return -ETIME; 427 } 428 429 mei_me_hw_reset_release(dev); 430 dev->recvd_hw_ready = false; 431 return 0; 432 } 433 434 /** 435 * mei_me_hw_start - hw start routine 436 * 437 * @dev: mei device 438 * Return: 0 on success, error otherwise 439 */ 440 static int mei_me_hw_start(struct mei_device *dev) 441 { 442 int ret = mei_me_hw_ready_wait(dev); 443 444 if (ret) 445 return ret; 446 dev_dbg(dev->dev, "hw is ready\n"); 447 448 mei_me_host_set_ready(dev); 449 return ret; 450 } 451 452 453 /** 454 * mei_hbuf_filled_slots - gets number of device filled buffer slots 455 * 456 * @dev: the device structure 457 * 458 * Return: number of filled slots 459 */ 460 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev) 461 { 462 u32 hcsr; 463 char read_ptr, write_ptr; 464 465 hcsr = mei_hcsr_read(dev); 466 467 read_ptr = (char) ((hcsr & H_CBRP) >> 8); 468 write_ptr = (char) ((hcsr & H_CBWP) >> 16); 469 470 return (unsigned char) (write_ptr - read_ptr); 471 } 472 473 /** 474 * mei_me_hbuf_is_empty - checks if host buffer is empty. 475 * 476 * @dev: the device structure 477 * 478 * Return: true if empty, false - otherwise. 479 */ 480 static bool mei_me_hbuf_is_empty(struct mei_device *dev) 481 { 482 return mei_hbuf_filled_slots(dev) == 0; 483 } 484 485 /** 486 * mei_me_hbuf_empty_slots - counts write empty slots. 487 * 488 * @dev: the device structure 489 * 490 * Return: -EOVERFLOW if overflow, otherwise empty slots count 491 */ 492 static int mei_me_hbuf_empty_slots(struct mei_device *dev) 493 { 494 struct mei_me_hw *hw = to_me_hw(dev); 495 unsigned char filled_slots, empty_slots; 496 497 filled_slots = mei_hbuf_filled_slots(dev); 498 empty_slots = hw->hbuf_depth - filled_slots; 499 500 /* check for overflow */ 501 if (filled_slots > hw->hbuf_depth) 502 return -EOVERFLOW; 503 504 return empty_slots; 505 } 506 507 /** 508 * mei_me_hbuf_depth - returns depth of the hw buffer. 509 * 510 * @dev: the device structure 511 * 512 * Return: size of hw buffer in slots 513 */ 514 static u32 mei_me_hbuf_depth(const struct mei_device *dev) 515 { 516 struct mei_me_hw *hw = to_me_hw(dev); 517 518 return hw->hbuf_depth; 519 } 520 521 /** 522 * mei_me_hbuf_write - writes a message to host hw buffer. 523 * 524 * @dev: the device structure 525 * @hdr: header of message 526 * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes) 527 * @data: payload 528 * @data_len: payload length in bytes 529 * 530 * Return: 0 if success, < 0 - otherwise. 531 */ 532 static int mei_me_hbuf_write(struct mei_device *dev, 533 const void *hdr, size_t hdr_len, 534 const void *data, size_t data_len) 535 { 536 unsigned long rem; 537 unsigned long i; 538 const u32 *reg_buf; 539 u32 dw_cnt; 540 int empty_slots; 541 542 if (WARN_ON(!hdr || !data || hdr_len & 0x3)) 543 return -EINVAL; 544 545 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr)); 546 547 empty_slots = mei_hbuf_empty_slots(dev); 548 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots); 549 550 if (empty_slots < 0) 551 return -EOVERFLOW; 552 553 dw_cnt = mei_data2slots(hdr_len + data_len); 554 if (dw_cnt > (u32)empty_slots) 555 return -EMSGSIZE; 556 557 reg_buf = hdr; 558 for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++) 559 mei_me_hcbww_write(dev, reg_buf[i]); 560 561 reg_buf = data; 562 for (i = 0; i < data_len / MEI_SLOT_SIZE; i++) 563 mei_me_hcbww_write(dev, reg_buf[i]); 564 565 rem = data_len & 0x3; 566 if (rem > 0) { 567 u32 reg = 0; 568 569 memcpy(®, (const u8 *)data + data_len - rem, rem); 570 mei_me_hcbww_write(dev, reg); 571 } 572 573 mei_hcsr_set_hig(dev); 574 if (!mei_me_hw_is_ready(dev)) 575 return -EIO; 576 577 return 0; 578 } 579 580 /** 581 * mei_me_count_full_read_slots - counts read full slots. 582 * 583 * @dev: the device structure 584 * 585 * Return: -EOVERFLOW if overflow, otherwise filled slots count 586 */ 587 static int mei_me_count_full_read_slots(struct mei_device *dev) 588 { 589 u32 me_csr; 590 char read_ptr, write_ptr; 591 unsigned char buffer_depth, filled_slots; 592 593 me_csr = mei_me_mecsr_read(dev); 594 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24); 595 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8); 596 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16); 597 filled_slots = (unsigned char) (write_ptr - read_ptr); 598 599 /* check for overflow */ 600 if (filled_slots > buffer_depth) 601 return -EOVERFLOW; 602 603 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots); 604 return (int)filled_slots; 605 } 606 607 /** 608 * mei_me_read_slots - reads a message from mei device. 609 * 610 * @dev: the device structure 611 * @buffer: message buffer will be written 612 * @buffer_length: message size will be read 613 * 614 * Return: always 0 615 */ 616 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer, 617 unsigned long buffer_length) 618 { 619 u32 *reg_buf = (u32 *)buffer; 620 621 for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE) 622 *reg_buf++ = mei_me_mecbrw_read(dev); 623 624 if (buffer_length > 0) { 625 u32 reg = mei_me_mecbrw_read(dev); 626 627 memcpy(reg_buf, ®, buffer_length); 628 } 629 630 mei_hcsr_set_hig(dev); 631 return 0; 632 } 633 634 /** 635 * mei_me_pg_set - write pg enter register 636 * 637 * @dev: the device structure 638 */ 639 static void mei_me_pg_set(struct mei_device *dev) 640 { 641 struct mei_me_hw *hw = to_me_hw(dev); 642 u32 reg; 643 644 reg = mei_me_reg_read(hw, H_HPG_CSR); 645 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); 646 647 reg |= H_HPG_CSR_PGI; 648 649 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); 650 mei_me_reg_write(hw, H_HPG_CSR, reg); 651 } 652 653 /** 654 * mei_me_pg_unset - write pg exit register 655 * 656 * @dev: the device structure 657 */ 658 static void mei_me_pg_unset(struct mei_device *dev) 659 { 660 struct mei_me_hw *hw = to_me_hw(dev); 661 u32 reg; 662 663 reg = mei_me_reg_read(hw, H_HPG_CSR); 664 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); 665 666 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n"); 667 668 reg |= H_HPG_CSR_PGIHEXR; 669 670 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg); 671 mei_me_reg_write(hw, H_HPG_CSR, reg); 672 } 673 674 /** 675 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure 676 * 677 * @dev: the device structure 678 * 679 * Return: 0 on success an error code otherwise 680 */ 681 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev) 682 { 683 struct mei_me_hw *hw = to_me_hw(dev); 684 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT); 685 int ret; 686 687 dev->pg_event = MEI_PG_EVENT_WAIT; 688 689 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD); 690 if (ret) 691 return ret; 692 693 mutex_unlock(&dev->device_lock); 694 wait_event_timeout(dev->wait_pg, 695 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout); 696 mutex_lock(&dev->device_lock); 697 698 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) { 699 mei_me_pg_set(dev); 700 ret = 0; 701 } else { 702 ret = -ETIME; 703 } 704 705 dev->pg_event = MEI_PG_EVENT_IDLE; 706 hw->pg_state = MEI_PG_ON; 707 708 return ret; 709 } 710 711 /** 712 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure 713 * 714 * @dev: the device structure 715 * 716 * Return: 0 on success an error code otherwise 717 */ 718 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev) 719 { 720 struct mei_me_hw *hw = to_me_hw(dev); 721 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT); 722 int ret; 723 724 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) 725 goto reply; 726 727 dev->pg_event = MEI_PG_EVENT_WAIT; 728 729 mei_me_pg_unset(dev); 730 731 mutex_unlock(&dev->device_lock); 732 wait_event_timeout(dev->wait_pg, 733 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout); 734 mutex_lock(&dev->device_lock); 735 736 reply: 737 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) { 738 ret = -ETIME; 739 goto out; 740 } 741 742 dev->pg_event = MEI_PG_EVENT_INTR_WAIT; 743 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD); 744 if (ret) 745 return ret; 746 747 mutex_unlock(&dev->device_lock); 748 wait_event_timeout(dev->wait_pg, 749 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout); 750 mutex_lock(&dev->device_lock); 751 752 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED) 753 ret = 0; 754 else 755 ret = -ETIME; 756 757 out: 758 dev->pg_event = MEI_PG_EVENT_IDLE; 759 hw->pg_state = MEI_PG_OFF; 760 761 return ret; 762 } 763 764 /** 765 * mei_me_pg_in_transition - is device now in pg transition 766 * 767 * @dev: the device structure 768 * 769 * Return: true if in pg transition, false otherwise 770 */ 771 static bool mei_me_pg_in_transition(struct mei_device *dev) 772 { 773 return dev->pg_event >= MEI_PG_EVENT_WAIT && 774 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT; 775 } 776 777 /** 778 * mei_me_pg_is_enabled - detect if PG is supported by HW 779 * 780 * @dev: the device structure 781 * 782 * Return: true is pg supported, false otherwise 783 */ 784 static bool mei_me_pg_is_enabled(struct mei_device *dev) 785 { 786 struct mei_me_hw *hw = to_me_hw(dev); 787 u32 reg = mei_me_mecsr_read(dev); 788 789 if (hw->d0i3_supported) 790 return true; 791 792 if ((reg & ME_PGIC_HRA) == 0) 793 goto notsupported; 794 795 if (!dev->hbm_f_pg_supported) 796 goto notsupported; 797 798 return true; 799 800 notsupported: 801 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n", 802 hw->d0i3_supported, 803 !!(reg & ME_PGIC_HRA), 804 dev->version.major_version, 805 dev->version.minor_version, 806 HBM_MAJOR_VERSION_PGI, 807 HBM_MINOR_VERSION_PGI); 808 809 return false; 810 } 811 812 /** 813 * mei_me_d0i3_set - write d0i3 register bit on mei device. 814 * 815 * @dev: the device structure 816 * @intr: ask for interrupt 817 * 818 * Return: D0I3C register value 819 */ 820 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr) 821 { 822 u32 reg = mei_me_d0i3c_read(dev); 823 824 reg |= H_D0I3C_I3; 825 if (intr) 826 reg |= H_D0I3C_IR; 827 else 828 reg &= ~H_D0I3C_IR; 829 mei_me_d0i3c_write(dev, reg); 830 /* read it to ensure HW consistency */ 831 reg = mei_me_d0i3c_read(dev); 832 return reg; 833 } 834 835 /** 836 * mei_me_d0i3_unset - clean d0i3 register bit on mei device. 837 * 838 * @dev: the device structure 839 * 840 * Return: D0I3C register value 841 */ 842 static u32 mei_me_d0i3_unset(struct mei_device *dev) 843 { 844 u32 reg = mei_me_d0i3c_read(dev); 845 846 reg &= ~H_D0I3C_I3; 847 reg |= H_D0I3C_IR; 848 mei_me_d0i3c_write(dev, reg); 849 /* read it to ensure HW consistency */ 850 reg = mei_me_d0i3c_read(dev); 851 return reg; 852 } 853 854 /** 855 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure 856 * 857 * @dev: the device structure 858 * 859 * Return: 0 on success an error code otherwise 860 */ 861 static int mei_me_d0i3_enter_sync(struct mei_device *dev) 862 { 863 struct mei_me_hw *hw = to_me_hw(dev); 864 unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT); 865 unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT); 866 int ret; 867 u32 reg; 868 869 reg = mei_me_d0i3c_read(dev); 870 if (reg & H_D0I3C_I3) { 871 /* we are in d0i3, nothing to do */ 872 dev_dbg(dev->dev, "d0i3 set not needed\n"); 873 ret = 0; 874 goto on; 875 } 876 877 /* PGI entry procedure */ 878 dev->pg_event = MEI_PG_EVENT_WAIT; 879 880 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD); 881 if (ret) 882 /* FIXME: should we reset here? */ 883 goto out; 884 885 mutex_unlock(&dev->device_lock); 886 wait_event_timeout(dev->wait_pg, 887 dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout); 888 mutex_lock(&dev->device_lock); 889 890 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) { 891 ret = -ETIME; 892 goto out; 893 } 894 /* end PGI entry procedure */ 895 896 dev->pg_event = MEI_PG_EVENT_INTR_WAIT; 897 898 reg = mei_me_d0i3_set(dev, true); 899 if (!(reg & H_D0I3C_CIP)) { 900 dev_dbg(dev->dev, "d0i3 enter wait not needed\n"); 901 ret = 0; 902 goto on; 903 } 904 905 mutex_unlock(&dev->device_lock); 906 wait_event_timeout(dev->wait_pg, 907 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout); 908 mutex_lock(&dev->device_lock); 909 910 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) { 911 reg = mei_me_d0i3c_read(dev); 912 if (!(reg & H_D0I3C_I3)) { 913 ret = -ETIME; 914 goto out; 915 } 916 } 917 918 ret = 0; 919 on: 920 hw->pg_state = MEI_PG_ON; 921 out: 922 dev->pg_event = MEI_PG_EVENT_IDLE; 923 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret); 924 return ret; 925 } 926 927 /** 928 * mei_me_d0i3_enter - perform d0i3 entry procedure 929 * no hbm PG handshake 930 * no waiting for confirmation; runs with interrupts 931 * disabled 932 * 933 * @dev: the device structure 934 * 935 * Return: 0 on success an error code otherwise 936 */ 937 static int mei_me_d0i3_enter(struct mei_device *dev) 938 { 939 struct mei_me_hw *hw = to_me_hw(dev); 940 u32 reg; 941 942 reg = mei_me_d0i3c_read(dev); 943 if (reg & H_D0I3C_I3) { 944 /* we are in d0i3, nothing to do */ 945 dev_dbg(dev->dev, "already d0i3 : set not needed\n"); 946 goto on; 947 } 948 949 mei_me_d0i3_set(dev, false); 950 on: 951 hw->pg_state = MEI_PG_ON; 952 dev->pg_event = MEI_PG_EVENT_IDLE; 953 dev_dbg(dev->dev, "d0i3 enter\n"); 954 return 0; 955 } 956 957 /** 958 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure 959 * 960 * @dev: the device structure 961 * 962 * Return: 0 on success an error code otherwise 963 */ 964 static int mei_me_d0i3_exit_sync(struct mei_device *dev) 965 { 966 struct mei_me_hw *hw = to_me_hw(dev); 967 unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT); 968 int ret; 969 u32 reg; 970 971 dev->pg_event = MEI_PG_EVENT_INTR_WAIT; 972 973 reg = mei_me_d0i3c_read(dev); 974 if (!(reg & H_D0I3C_I3)) { 975 /* we are not in d0i3, nothing to do */ 976 dev_dbg(dev->dev, "d0i3 exit not needed\n"); 977 ret = 0; 978 goto off; 979 } 980 981 reg = mei_me_d0i3_unset(dev); 982 if (!(reg & H_D0I3C_CIP)) { 983 dev_dbg(dev->dev, "d0i3 exit wait not needed\n"); 984 ret = 0; 985 goto off; 986 } 987 988 mutex_unlock(&dev->device_lock); 989 wait_event_timeout(dev->wait_pg, 990 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout); 991 mutex_lock(&dev->device_lock); 992 993 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) { 994 reg = mei_me_d0i3c_read(dev); 995 if (reg & H_D0I3C_I3) { 996 ret = -ETIME; 997 goto out; 998 } 999 } 1000 1001 ret = 0; 1002 off: 1003 hw->pg_state = MEI_PG_OFF; 1004 out: 1005 dev->pg_event = MEI_PG_EVENT_IDLE; 1006 1007 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret); 1008 return ret; 1009 } 1010 1011 /** 1012 * mei_me_pg_legacy_intr - perform legacy pg processing 1013 * in interrupt thread handler 1014 * 1015 * @dev: the device structure 1016 */ 1017 static void mei_me_pg_legacy_intr(struct mei_device *dev) 1018 { 1019 struct mei_me_hw *hw = to_me_hw(dev); 1020 1021 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT) 1022 return; 1023 1024 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED; 1025 hw->pg_state = MEI_PG_OFF; 1026 if (waitqueue_active(&dev->wait_pg)) 1027 wake_up(&dev->wait_pg); 1028 } 1029 1030 /** 1031 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler 1032 * 1033 * @dev: the device structure 1034 * @intr_source: interrupt source 1035 */ 1036 static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source) 1037 { 1038 struct mei_me_hw *hw = to_me_hw(dev); 1039 1040 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT && 1041 (intr_source & H_D0I3C_IS)) { 1042 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED; 1043 if (hw->pg_state == MEI_PG_ON) { 1044 hw->pg_state = MEI_PG_OFF; 1045 if (dev->hbm_state != MEI_HBM_IDLE) { 1046 /* 1047 * force H_RDY because it could be 1048 * wiped off during PG 1049 */ 1050 dev_dbg(dev->dev, "d0i3 set host ready\n"); 1051 mei_me_host_set_ready(dev); 1052 } 1053 } else { 1054 hw->pg_state = MEI_PG_ON; 1055 } 1056 1057 wake_up(&dev->wait_pg); 1058 } 1059 1060 if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) { 1061 /* 1062 * HW sent some data and we are in D0i3, so 1063 * we got here because of HW initiated exit from D0i3. 1064 * Start runtime pm resume sequence to exit low power state. 1065 */ 1066 dev_dbg(dev->dev, "d0i3 want resume\n"); 1067 mei_hbm_pg_resume(dev); 1068 } 1069 } 1070 1071 /** 1072 * mei_me_pg_intr - perform pg processing in interrupt thread handler 1073 * 1074 * @dev: the device structure 1075 * @intr_source: interrupt source 1076 */ 1077 static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source) 1078 { 1079 struct mei_me_hw *hw = to_me_hw(dev); 1080 1081 if (hw->d0i3_supported) 1082 mei_me_d0i3_intr(dev, intr_source); 1083 else 1084 mei_me_pg_legacy_intr(dev); 1085 } 1086 1087 /** 1088 * mei_me_pg_enter_sync - perform runtime pm entry procedure 1089 * 1090 * @dev: the device structure 1091 * 1092 * Return: 0 on success an error code otherwise 1093 */ 1094 int mei_me_pg_enter_sync(struct mei_device *dev) 1095 { 1096 struct mei_me_hw *hw = to_me_hw(dev); 1097 1098 if (hw->d0i3_supported) 1099 return mei_me_d0i3_enter_sync(dev); 1100 else 1101 return mei_me_pg_legacy_enter_sync(dev); 1102 } 1103 1104 /** 1105 * mei_me_pg_exit_sync - perform runtime pm exit procedure 1106 * 1107 * @dev: the device structure 1108 * 1109 * Return: 0 on success an error code otherwise 1110 */ 1111 int mei_me_pg_exit_sync(struct mei_device *dev) 1112 { 1113 struct mei_me_hw *hw = to_me_hw(dev); 1114 1115 if (hw->d0i3_supported) 1116 return mei_me_d0i3_exit_sync(dev); 1117 else 1118 return mei_me_pg_legacy_exit_sync(dev); 1119 } 1120 1121 /** 1122 * mei_me_hw_reset - resets fw via mei csr register. 1123 * 1124 * @dev: the device structure 1125 * @intr_enable: if interrupt should be enabled after reset. 1126 * 1127 * Return: 0 on success an error code otherwise 1128 */ 1129 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable) 1130 { 1131 struct mei_me_hw *hw = to_me_hw(dev); 1132 int ret; 1133 u32 hcsr; 1134 1135 if (intr_enable) { 1136 mei_me_intr_enable(dev); 1137 if (hw->d0i3_supported) { 1138 ret = mei_me_d0i3_exit_sync(dev); 1139 if (ret) 1140 return ret; 1141 } 1142 } 1143 1144 pm_runtime_set_active(dev->dev); 1145 1146 hcsr = mei_hcsr_read(dev); 1147 /* H_RST may be found lit before reset is started, 1148 * for example if preceding reset flow hasn't completed. 1149 * In that case asserting H_RST will be ignored, therefore 1150 * we need to clean H_RST bit to start a successful reset sequence. 1151 */ 1152 if ((hcsr & H_RST) == H_RST) { 1153 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr); 1154 hcsr &= ~H_RST; 1155 mei_hcsr_set(dev, hcsr); 1156 hcsr = mei_hcsr_read(dev); 1157 } 1158 1159 hcsr |= H_RST | H_IG | H_CSR_IS_MASK; 1160 1161 if (!intr_enable) 1162 hcsr &= ~H_CSR_IE_MASK; 1163 1164 dev->recvd_hw_ready = false; 1165 mei_hcsr_write(dev, hcsr); 1166 1167 /* 1168 * Host reads the H_CSR once to ensure that the 1169 * posted write to H_CSR completes. 1170 */ 1171 hcsr = mei_hcsr_read(dev); 1172 1173 if ((hcsr & H_RST) == 0) 1174 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr); 1175 1176 if ((hcsr & H_RDY) == H_RDY) 1177 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr); 1178 1179 if (!intr_enable) { 1180 mei_me_hw_reset_release(dev); 1181 if (hw->d0i3_supported) { 1182 ret = mei_me_d0i3_enter(dev); 1183 if (ret) 1184 return ret; 1185 } 1186 } 1187 return 0; 1188 } 1189 1190 /** 1191 * mei_me_irq_quick_handler - The ISR of the MEI device 1192 * 1193 * @irq: The irq number 1194 * @dev_id: pointer to the device structure 1195 * 1196 * Return: irqreturn_t 1197 */ 1198 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id) 1199 { 1200 struct mei_device *dev = (struct mei_device *)dev_id; 1201 u32 hcsr; 1202 1203 hcsr = mei_hcsr_read(dev); 1204 if (!me_intr_src(hcsr)) 1205 return IRQ_NONE; 1206 1207 dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr)); 1208 1209 /* disable interrupts on device */ 1210 me_intr_disable(dev, hcsr); 1211 return IRQ_WAKE_THREAD; 1212 } 1213 1214 /** 1215 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt 1216 * processing. 1217 * 1218 * @irq: The irq number 1219 * @dev_id: pointer to the device structure 1220 * 1221 * Return: irqreturn_t 1222 * 1223 */ 1224 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id) 1225 { 1226 struct mei_device *dev = (struct mei_device *) dev_id; 1227 struct list_head cmpl_list; 1228 s32 slots; 1229 u32 hcsr; 1230 int rets = 0; 1231 1232 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n"); 1233 /* initialize our complete list */ 1234 mutex_lock(&dev->device_lock); 1235 1236 hcsr = mei_hcsr_read(dev); 1237 me_intr_clear(dev, hcsr); 1238 1239 INIT_LIST_HEAD(&cmpl_list); 1240 1241 /* check if ME wants a reset */ 1242 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) { 1243 dev_warn(dev->dev, "FW not ready: resetting.\n"); 1244 schedule_work(&dev->reset_work); 1245 goto end; 1246 } 1247 1248 if (mei_me_hw_is_resetting(dev)) 1249 mei_hcsr_set_hig(dev); 1250 1251 mei_me_pg_intr(dev, me_intr_src(hcsr)); 1252 1253 /* check if we need to start the dev */ 1254 if (!mei_host_is_ready(dev)) { 1255 if (mei_hw_is_ready(dev)) { 1256 dev_dbg(dev->dev, "we need to start the dev.\n"); 1257 dev->recvd_hw_ready = true; 1258 wake_up(&dev->wait_hw_ready); 1259 } else { 1260 dev_dbg(dev->dev, "Spurious Interrupt\n"); 1261 } 1262 goto end; 1263 } 1264 /* check slots available for reading */ 1265 slots = mei_count_full_read_slots(dev); 1266 while (slots > 0) { 1267 dev_dbg(dev->dev, "slots to read = %08x\n", slots); 1268 rets = mei_irq_read_handler(dev, &cmpl_list, &slots); 1269 /* There is a race between ME write and interrupt delivery: 1270 * Not all data is always available immediately after the 1271 * interrupt, so try to read again on the next interrupt. 1272 */ 1273 if (rets == -ENODATA) 1274 break; 1275 1276 if (rets && 1277 (dev->dev_state != MEI_DEV_RESETTING && 1278 dev->dev_state != MEI_DEV_POWER_DOWN)) { 1279 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n", 1280 rets); 1281 schedule_work(&dev->reset_work); 1282 goto end; 1283 } 1284 } 1285 1286 dev->hbuf_is_ready = mei_hbuf_is_ready(dev); 1287 1288 /* 1289 * During PG handshake only allowed write is the replay to the 1290 * PG exit message, so block calling write function 1291 * if the pg event is in PG handshake 1292 */ 1293 if (dev->pg_event != MEI_PG_EVENT_WAIT && 1294 dev->pg_event != MEI_PG_EVENT_RECEIVED) { 1295 rets = mei_irq_write_handler(dev, &cmpl_list); 1296 dev->hbuf_is_ready = mei_hbuf_is_ready(dev); 1297 } 1298 1299 mei_irq_compl_handler(dev, &cmpl_list); 1300 1301 end: 1302 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets); 1303 mei_me_intr_enable(dev); 1304 mutex_unlock(&dev->device_lock); 1305 return IRQ_HANDLED; 1306 } 1307 1308 static const struct mei_hw_ops mei_me_hw_ops = { 1309 1310 .fw_status = mei_me_fw_status, 1311 .pg_state = mei_me_pg_state, 1312 1313 .host_is_ready = mei_me_host_is_ready, 1314 1315 .hw_is_ready = mei_me_hw_is_ready, 1316 .hw_reset = mei_me_hw_reset, 1317 .hw_config = mei_me_hw_config, 1318 .hw_start = mei_me_hw_start, 1319 1320 .pg_in_transition = mei_me_pg_in_transition, 1321 .pg_is_enabled = mei_me_pg_is_enabled, 1322 1323 .intr_clear = mei_me_intr_clear, 1324 .intr_enable = mei_me_intr_enable, 1325 .intr_disable = mei_me_intr_disable, 1326 .synchronize_irq = mei_me_synchronize_irq, 1327 1328 .hbuf_free_slots = mei_me_hbuf_empty_slots, 1329 .hbuf_is_ready = mei_me_hbuf_is_empty, 1330 .hbuf_depth = mei_me_hbuf_depth, 1331 1332 .write = mei_me_hbuf_write, 1333 1334 .rdbuf_full_slots = mei_me_count_full_read_slots, 1335 .read_hdr = mei_me_mecbrw_read, 1336 .read = mei_me_read_slots 1337 }; 1338 1339 static bool mei_me_fw_type_nm(struct pci_dev *pdev) 1340 { 1341 u32 reg; 1342 1343 pci_read_config_dword(pdev, PCI_CFG_HFS_2, ®); 1344 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg); 1345 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */ 1346 return (reg & 0x600) == 0x200; 1347 } 1348 1349 #define MEI_CFG_FW_NM \ 1350 .quirk_probe = mei_me_fw_type_nm 1351 1352 static bool mei_me_fw_type_sps(struct pci_dev *pdev) 1353 { 1354 u32 reg; 1355 unsigned int devfn; 1356 1357 /* 1358 * Read ME FW Status register to check for SPS Firmware 1359 * The SPS FW is only signaled in pci function 0 1360 */ 1361 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0); 1362 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, ®); 1363 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg); 1364 /* if bits [19:16] = 15, running SPS Firmware */ 1365 return (reg & 0xf0000) == 0xf0000; 1366 } 1367 1368 #define MEI_CFG_FW_SPS \ 1369 .quirk_probe = mei_me_fw_type_sps 1370 1371 1372 #define MEI_CFG_ICH_HFS \ 1373 .fw_status.count = 0 1374 1375 #define MEI_CFG_ICH10_HFS \ 1376 .fw_status.count = 1, \ 1377 .fw_status.status[0] = PCI_CFG_HFS_1 1378 1379 #define MEI_CFG_PCH_HFS \ 1380 .fw_status.count = 2, \ 1381 .fw_status.status[0] = PCI_CFG_HFS_1, \ 1382 .fw_status.status[1] = PCI_CFG_HFS_2 1383 1384 #define MEI_CFG_PCH8_HFS \ 1385 .fw_status.count = 6, \ 1386 .fw_status.status[0] = PCI_CFG_HFS_1, \ 1387 .fw_status.status[1] = PCI_CFG_HFS_2, \ 1388 .fw_status.status[2] = PCI_CFG_HFS_3, \ 1389 .fw_status.status[3] = PCI_CFG_HFS_4, \ 1390 .fw_status.status[4] = PCI_CFG_HFS_5, \ 1391 .fw_status.status[5] = PCI_CFG_HFS_6 1392 1393 #define MEI_CFG_DMA_128 \ 1394 .dma_size[DMA_DSCR_HOST] = SZ_128K, \ 1395 .dma_size[DMA_DSCR_DEVICE] = SZ_128K, \ 1396 .dma_size[DMA_DSCR_CTRL] = PAGE_SIZE 1397 1398 /* ICH Legacy devices */ 1399 static const struct mei_cfg mei_me_ich_cfg = { 1400 MEI_CFG_ICH_HFS, 1401 }; 1402 1403 /* ICH devices */ 1404 static const struct mei_cfg mei_me_ich10_cfg = { 1405 MEI_CFG_ICH10_HFS, 1406 }; 1407 1408 /* PCH devices */ 1409 static const struct mei_cfg mei_me_pch_cfg = { 1410 MEI_CFG_PCH_HFS, 1411 }; 1412 1413 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */ 1414 static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = { 1415 MEI_CFG_PCH_HFS, 1416 MEI_CFG_FW_NM, 1417 }; 1418 1419 /* PCH8 Lynx Point and newer devices */ 1420 static const struct mei_cfg mei_me_pch8_cfg = { 1421 MEI_CFG_PCH8_HFS, 1422 }; 1423 1424 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */ 1425 static const struct mei_cfg mei_me_pch8_sps_cfg = { 1426 MEI_CFG_PCH8_HFS, 1427 MEI_CFG_FW_SPS, 1428 }; 1429 1430 /* Cannon Lake and newer devices */ 1431 static const struct mei_cfg mei_me_pch12_cfg = { 1432 MEI_CFG_PCH8_HFS, 1433 MEI_CFG_DMA_128, 1434 }; 1435 1436 /* 1437 * mei_cfg_list - A list of platform platform specific configurations. 1438 * Note: has to be synchronized with enum mei_cfg_idx. 1439 */ 1440 static const struct mei_cfg *const mei_cfg_list[] = { 1441 [MEI_ME_UNDEF_CFG] = NULL, 1442 [MEI_ME_ICH_CFG] = &mei_me_ich_cfg, 1443 [MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg, 1444 [MEI_ME_PCH_CFG] = &mei_me_pch_cfg, 1445 [MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg, 1446 [MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg, 1447 [MEI_ME_PCH8_SPS_CFG] = &mei_me_pch8_sps_cfg, 1448 [MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg, 1449 }; 1450 1451 const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx) 1452 { 1453 BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG); 1454 1455 if (idx >= MEI_ME_NUM_CFG) 1456 return NULL; 1457 1458 return mei_cfg_list[idx]; 1459 }; 1460 1461 /** 1462 * mei_me_dev_init - allocates and initializes the mei device structure 1463 * 1464 * @pdev: The pci device structure 1465 * @cfg: per device generation config 1466 * 1467 * Return: The mei_device pointer on success, NULL on failure. 1468 */ 1469 struct mei_device *mei_me_dev_init(struct pci_dev *pdev, 1470 const struct mei_cfg *cfg) 1471 { 1472 struct mei_device *dev; 1473 struct mei_me_hw *hw; 1474 int i; 1475 1476 dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) + 1477 sizeof(struct mei_me_hw), GFP_KERNEL); 1478 if (!dev) 1479 return NULL; 1480 1481 hw = to_me_hw(dev); 1482 1483 for (i = 0; i < DMA_DSCR_NUM; i++) 1484 dev->dr_dscr[i].size = cfg->dma_size[i]; 1485 1486 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops); 1487 hw->cfg = cfg; 1488 1489 return dev; 1490 } 1491 1492