xref: /openbmc/linux/drivers/misc/lkdtm/heap.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests relating directly to heap memory, including
4  * page allocation and slab allocations.
5  */
6 #include "lkdtm.h"
7 #include <linux/slab.h>
8 #include <linux/vmalloc.h>
9 #include <linux/sched.h>
10 
11 static struct kmem_cache *double_free_cache;
12 static struct kmem_cache *a_cache;
13 static struct kmem_cache *b_cache;
14 
15 /*
16  * Using volatile here means the compiler cannot ever make assumptions
17  * about this value. This means compile-time length checks involving
18  * this variable cannot be performed; only run-time checks.
19  */
20 static volatile int __offset = 1;
21 
22 /*
23  * If there aren't guard pages, it's likely that a consecutive allocation will
24  * let us overflow into the second allocation without overwriting something real.
25  */
26 void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
27 {
28 	char *one, *two;
29 
30 	one = vzalloc(PAGE_SIZE);
31 	two = vzalloc(PAGE_SIZE);
32 
33 	pr_info("Attempting vmalloc linear overflow ...\n");
34 	memset(one, 0xAA, PAGE_SIZE + __offset);
35 
36 	vfree(two);
37 	vfree(one);
38 }
39 
40 /*
41  * This tries to stay within the next largest power-of-2 kmalloc cache
42  * to avoid actually overwriting anything important if it's not detected
43  * correctly.
44  */
45 void lkdtm_SLAB_LINEAR_OVERFLOW(void)
46 {
47 	size_t len = 1020;
48 	u32 *data = kmalloc(len, GFP_KERNEL);
49 	if (!data)
50 		return;
51 
52 	pr_info("Attempting slab linear overflow ...\n");
53 	data[1024 / sizeof(u32)] = 0x12345678;
54 	kfree(data);
55 }
56 
57 void lkdtm_WRITE_AFTER_FREE(void)
58 {
59 	int *base, *again;
60 	size_t len = 1024;
61 	/*
62 	 * The slub allocator uses the first word to store the free
63 	 * pointer in some configurations. Use the middle of the
64 	 * allocation to avoid running into the freelist
65 	 */
66 	size_t offset = (len / sizeof(*base)) / 2;
67 
68 	base = kmalloc(len, GFP_KERNEL);
69 	if (!base)
70 		return;
71 	pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
72 	pr_info("Attempting bad write to freed memory at %p\n",
73 		&base[offset]);
74 	kfree(base);
75 	base[offset] = 0x0abcdef0;
76 	/* Attempt to notice the overwrite. */
77 	again = kmalloc(len, GFP_KERNEL);
78 	kfree(again);
79 	if (again != base)
80 		pr_info("Hmm, didn't get the same memory range.\n");
81 }
82 
83 void lkdtm_READ_AFTER_FREE(void)
84 {
85 	int *base, *val, saw;
86 	size_t len = 1024;
87 	/*
88 	 * The slub allocator will use the either the first word or
89 	 * the middle of the allocation to store the free pointer,
90 	 * depending on configurations. Store in the second word to
91 	 * avoid running into the freelist.
92 	 */
93 	size_t offset = sizeof(*base);
94 
95 	base = kmalloc(len, GFP_KERNEL);
96 	if (!base) {
97 		pr_info("Unable to allocate base memory.\n");
98 		return;
99 	}
100 
101 	val = kmalloc(len, GFP_KERNEL);
102 	if (!val) {
103 		pr_info("Unable to allocate val memory.\n");
104 		kfree(base);
105 		return;
106 	}
107 
108 	*val = 0x12345678;
109 	base[offset] = *val;
110 	pr_info("Value in memory before free: %x\n", base[offset]);
111 
112 	kfree(base);
113 
114 	pr_info("Attempting bad read from freed memory\n");
115 	saw = base[offset];
116 	if (saw != *val) {
117 		/* Good! Poisoning happened, so declare a win. */
118 		pr_info("Memory correctly poisoned (%x)\n", saw);
119 	} else {
120 		pr_err("FAIL: Memory was not poisoned!\n");
121 		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
122 	}
123 
124 	kfree(val);
125 }
126 
127 void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
128 {
129 	unsigned long p = __get_free_page(GFP_KERNEL);
130 	if (!p) {
131 		pr_info("Unable to allocate free page\n");
132 		return;
133 	}
134 
135 	pr_info("Writing to the buddy page before free\n");
136 	memset((void *)p, 0x3, PAGE_SIZE);
137 	free_page(p);
138 	schedule();
139 	pr_info("Attempting bad write to the buddy page after free\n");
140 	memset((void *)p, 0x78, PAGE_SIZE);
141 	/* Attempt to notice the overwrite. */
142 	p = __get_free_page(GFP_KERNEL);
143 	free_page(p);
144 	schedule();
145 }
146 
147 void lkdtm_READ_BUDDY_AFTER_FREE(void)
148 {
149 	unsigned long p = __get_free_page(GFP_KERNEL);
150 	int saw, *val;
151 	int *base;
152 
153 	if (!p) {
154 		pr_info("Unable to allocate free page\n");
155 		return;
156 	}
157 
158 	val = kmalloc(1024, GFP_KERNEL);
159 	if (!val) {
160 		pr_info("Unable to allocate val memory.\n");
161 		free_page(p);
162 		return;
163 	}
164 
165 	base = (int *)p;
166 
167 	*val = 0x12345678;
168 	base[0] = *val;
169 	pr_info("Value in memory before free: %x\n", base[0]);
170 	free_page(p);
171 	pr_info("Attempting to read from freed memory\n");
172 	saw = base[0];
173 	if (saw != *val) {
174 		/* Good! Poisoning happened, so declare a win. */
175 		pr_info("Memory correctly poisoned (%x)\n", saw);
176 	} else {
177 		pr_err("FAIL: Buddy page was not poisoned!\n");
178 		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
179 	}
180 
181 	kfree(val);
182 }
183 
184 void lkdtm_SLAB_INIT_ON_ALLOC(void)
185 {
186 	u8 *first;
187 	u8 *val;
188 
189 	first = kmalloc(512, GFP_KERNEL);
190 	if (!first) {
191 		pr_info("Unable to allocate 512 bytes the first time.\n");
192 		return;
193 	}
194 
195 	memset(first, 0xAB, 512);
196 	kfree(first);
197 
198 	val = kmalloc(512, GFP_KERNEL);
199 	if (!val) {
200 		pr_info("Unable to allocate 512 bytes the second time.\n");
201 		return;
202 	}
203 	if (val != first) {
204 		pr_warn("Reallocation missed clobbered memory.\n");
205 	}
206 
207 	if (memchr(val, 0xAB, 512) == NULL) {
208 		pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
209 	} else {
210 		pr_err("FAIL: Slab was not initialized\n");
211 		pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
212 	}
213 	kfree(val);
214 }
215 
216 void lkdtm_BUDDY_INIT_ON_ALLOC(void)
217 {
218 	u8 *first;
219 	u8 *val;
220 
221 	first = (u8 *)__get_free_page(GFP_KERNEL);
222 	if (!first) {
223 		pr_info("Unable to allocate first free page\n");
224 		return;
225 	}
226 
227 	memset(first, 0xAB, PAGE_SIZE);
228 	free_page((unsigned long)first);
229 
230 	val = (u8 *)__get_free_page(GFP_KERNEL);
231 	if (!val) {
232 		pr_info("Unable to allocate second free page\n");
233 		return;
234 	}
235 
236 	if (val != first) {
237 		pr_warn("Reallocation missed clobbered memory.\n");
238 	}
239 
240 	if (memchr(val, 0xAB, PAGE_SIZE) == NULL) {
241 		pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
242 	} else {
243 		pr_err("FAIL: Slab was not initialized\n");
244 		pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
245 	}
246 	free_page((unsigned long)val);
247 }
248 
249 void lkdtm_SLAB_FREE_DOUBLE(void)
250 {
251 	int *val;
252 
253 	val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
254 	if (!val) {
255 		pr_info("Unable to allocate double_free_cache memory.\n");
256 		return;
257 	}
258 
259 	/* Just make sure we got real memory. */
260 	*val = 0x12345678;
261 	pr_info("Attempting double slab free ...\n");
262 	kmem_cache_free(double_free_cache, val);
263 	kmem_cache_free(double_free_cache, val);
264 }
265 
266 void lkdtm_SLAB_FREE_CROSS(void)
267 {
268 	int *val;
269 
270 	val = kmem_cache_alloc(a_cache, GFP_KERNEL);
271 	if (!val) {
272 		pr_info("Unable to allocate a_cache memory.\n");
273 		return;
274 	}
275 
276 	/* Just make sure we got real memory. */
277 	*val = 0x12345679;
278 	pr_info("Attempting cross-cache slab free ...\n");
279 	kmem_cache_free(b_cache, val);
280 }
281 
282 void lkdtm_SLAB_FREE_PAGE(void)
283 {
284 	unsigned long p = __get_free_page(GFP_KERNEL);
285 
286 	pr_info("Attempting non-Slab slab free ...\n");
287 	kmem_cache_free(NULL, (void *)p);
288 	free_page(p);
289 }
290 
291 /*
292  * We have constructors to keep the caches distinctly separated without
293  * needing to boot with "slab_nomerge".
294  */
295 static void ctor_double_free(void *region)
296 { }
297 static void ctor_a(void *region)
298 { }
299 static void ctor_b(void *region)
300 { }
301 
302 void __init lkdtm_heap_init(void)
303 {
304 	double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
305 					      64, 0, 0, ctor_double_free);
306 	a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
307 	b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
308 }
309 
310 void __exit lkdtm_heap_exit(void)
311 {
312 	kmem_cache_destroy(double_free_cache);
313 	kmem_cache_destroy(a_cache);
314 	kmem_cache_destroy(b_cache);
315 }
316