xref: /openbmc/linux/drivers/misc/lkdtm/heap.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests relating directly to heap memory, including
4  * page allocation and slab allocations.
5  */
6 #include "lkdtm.h"
7 #include <linux/slab.h>
8 #include <linux/vmalloc.h>
9 #include <linux/sched.h>
10 
11 static struct kmem_cache *double_free_cache;
12 static struct kmem_cache *a_cache;
13 static struct kmem_cache *b_cache;
14 
15 /*
16  * If there aren't guard pages, it's likely that a consecutive allocation will
17  * let us overflow into the second allocation without overwriting something real.
18  */
19 void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
20 {
21 	char *one, *two;
22 
23 	one = vzalloc(PAGE_SIZE);
24 	two = vzalloc(PAGE_SIZE);
25 
26 	pr_info("Attempting vmalloc linear overflow ...\n");
27 	memset(one, 0xAA, PAGE_SIZE + 1);
28 
29 	vfree(two);
30 	vfree(one);
31 }
32 
33 /*
34  * This tries to stay within the next largest power-of-2 kmalloc cache
35  * to avoid actually overwriting anything important if it's not detected
36  * correctly.
37  */
38 void lkdtm_SLAB_LINEAR_OVERFLOW(void)
39 {
40 	size_t len = 1020;
41 	u32 *data = kmalloc(len, GFP_KERNEL);
42 	if (!data)
43 		return;
44 
45 	pr_info("Attempting slab linear overflow ...\n");
46 	data[1024 / sizeof(u32)] = 0x12345678;
47 	kfree(data);
48 }
49 
50 void lkdtm_WRITE_AFTER_FREE(void)
51 {
52 	int *base, *again;
53 	size_t len = 1024;
54 	/*
55 	 * The slub allocator uses the first word to store the free
56 	 * pointer in some configurations. Use the middle of the
57 	 * allocation to avoid running into the freelist
58 	 */
59 	size_t offset = (len / sizeof(*base)) / 2;
60 
61 	base = kmalloc(len, GFP_KERNEL);
62 	if (!base)
63 		return;
64 	pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
65 	pr_info("Attempting bad write to freed memory at %p\n",
66 		&base[offset]);
67 	kfree(base);
68 	base[offset] = 0x0abcdef0;
69 	/* Attempt to notice the overwrite. */
70 	again = kmalloc(len, GFP_KERNEL);
71 	kfree(again);
72 	if (again != base)
73 		pr_info("Hmm, didn't get the same memory range.\n");
74 }
75 
76 void lkdtm_READ_AFTER_FREE(void)
77 {
78 	int *base, *val, saw;
79 	size_t len = 1024;
80 	/*
81 	 * The slub allocator will use the either the first word or
82 	 * the middle of the allocation to store the free pointer,
83 	 * depending on configurations. Store in the second word to
84 	 * avoid running into the freelist.
85 	 */
86 	size_t offset = sizeof(*base);
87 
88 	base = kmalloc(len, GFP_KERNEL);
89 	if (!base) {
90 		pr_info("Unable to allocate base memory.\n");
91 		return;
92 	}
93 
94 	val = kmalloc(len, GFP_KERNEL);
95 	if (!val) {
96 		pr_info("Unable to allocate val memory.\n");
97 		kfree(base);
98 		return;
99 	}
100 
101 	*val = 0x12345678;
102 	base[offset] = *val;
103 	pr_info("Value in memory before free: %x\n", base[offset]);
104 
105 	kfree(base);
106 
107 	pr_info("Attempting bad read from freed memory\n");
108 	saw = base[offset];
109 	if (saw != *val) {
110 		/* Good! Poisoning happened, so declare a win. */
111 		pr_info("Memory correctly poisoned (%x)\n", saw);
112 	} else {
113 		pr_err("FAIL: Memory was not poisoned!\n");
114 		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
115 	}
116 
117 	kfree(val);
118 }
119 
120 void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
121 {
122 	unsigned long p = __get_free_page(GFP_KERNEL);
123 	if (!p) {
124 		pr_info("Unable to allocate free page\n");
125 		return;
126 	}
127 
128 	pr_info("Writing to the buddy page before free\n");
129 	memset((void *)p, 0x3, PAGE_SIZE);
130 	free_page(p);
131 	schedule();
132 	pr_info("Attempting bad write to the buddy page after free\n");
133 	memset((void *)p, 0x78, PAGE_SIZE);
134 	/* Attempt to notice the overwrite. */
135 	p = __get_free_page(GFP_KERNEL);
136 	free_page(p);
137 	schedule();
138 }
139 
140 void lkdtm_READ_BUDDY_AFTER_FREE(void)
141 {
142 	unsigned long p = __get_free_page(GFP_KERNEL);
143 	int saw, *val;
144 	int *base;
145 
146 	if (!p) {
147 		pr_info("Unable to allocate free page\n");
148 		return;
149 	}
150 
151 	val = kmalloc(1024, GFP_KERNEL);
152 	if (!val) {
153 		pr_info("Unable to allocate val memory.\n");
154 		free_page(p);
155 		return;
156 	}
157 
158 	base = (int *)p;
159 
160 	*val = 0x12345678;
161 	base[0] = *val;
162 	pr_info("Value in memory before free: %x\n", base[0]);
163 	free_page(p);
164 	pr_info("Attempting to read from freed memory\n");
165 	saw = base[0];
166 	if (saw != *val) {
167 		/* Good! Poisoning happened, so declare a win. */
168 		pr_info("Memory correctly poisoned (%x)\n", saw);
169 	} else {
170 		pr_err("FAIL: Buddy page was not poisoned!\n");
171 		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
172 	}
173 
174 	kfree(val);
175 }
176 
177 void lkdtm_SLAB_INIT_ON_ALLOC(void)
178 {
179 	u8 *first;
180 	u8 *val;
181 
182 	first = kmalloc(512, GFP_KERNEL);
183 	if (!first) {
184 		pr_info("Unable to allocate 512 bytes the first time.\n");
185 		return;
186 	}
187 
188 	memset(first, 0xAB, 512);
189 	kfree(first);
190 
191 	val = kmalloc(512, GFP_KERNEL);
192 	if (!val) {
193 		pr_info("Unable to allocate 512 bytes the second time.\n");
194 		return;
195 	}
196 	if (val != first) {
197 		pr_warn("Reallocation missed clobbered memory.\n");
198 	}
199 
200 	if (memchr(val, 0xAB, 512) == NULL) {
201 		pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
202 	} else {
203 		pr_err("FAIL: Slab was not initialized\n");
204 		pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
205 	}
206 	kfree(val);
207 }
208 
209 void lkdtm_BUDDY_INIT_ON_ALLOC(void)
210 {
211 	u8 *first;
212 	u8 *val;
213 
214 	first = (u8 *)__get_free_page(GFP_KERNEL);
215 	if (!first) {
216 		pr_info("Unable to allocate first free page\n");
217 		return;
218 	}
219 
220 	memset(first, 0xAB, PAGE_SIZE);
221 	free_page((unsigned long)first);
222 
223 	val = (u8 *)__get_free_page(GFP_KERNEL);
224 	if (!val) {
225 		pr_info("Unable to allocate second free page\n");
226 		return;
227 	}
228 
229 	if (val != first) {
230 		pr_warn("Reallocation missed clobbered memory.\n");
231 	}
232 
233 	if (memchr(val, 0xAB, PAGE_SIZE) == NULL) {
234 		pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
235 	} else {
236 		pr_err("FAIL: Slab was not initialized\n");
237 		pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
238 	}
239 	free_page((unsigned long)val);
240 }
241 
242 void lkdtm_SLAB_FREE_DOUBLE(void)
243 {
244 	int *val;
245 
246 	val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
247 	if (!val) {
248 		pr_info("Unable to allocate double_free_cache memory.\n");
249 		return;
250 	}
251 
252 	/* Just make sure we got real memory. */
253 	*val = 0x12345678;
254 	pr_info("Attempting double slab free ...\n");
255 	kmem_cache_free(double_free_cache, val);
256 	kmem_cache_free(double_free_cache, val);
257 }
258 
259 void lkdtm_SLAB_FREE_CROSS(void)
260 {
261 	int *val;
262 
263 	val = kmem_cache_alloc(a_cache, GFP_KERNEL);
264 	if (!val) {
265 		pr_info("Unable to allocate a_cache memory.\n");
266 		return;
267 	}
268 
269 	/* Just make sure we got real memory. */
270 	*val = 0x12345679;
271 	pr_info("Attempting cross-cache slab free ...\n");
272 	kmem_cache_free(b_cache, val);
273 }
274 
275 void lkdtm_SLAB_FREE_PAGE(void)
276 {
277 	unsigned long p = __get_free_page(GFP_KERNEL);
278 
279 	pr_info("Attempting non-Slab slab free ...\n");
280 	kmem_cache_free(NULL, (void *)p);
281 	free_page(p);
282 }
283 
284 /*
285  * We have constructors to keep the caches distinctly separated without
286  * needing to boot with "slab_nomerge".
287  */
288 static void ctor_double_free(void *region)
289 { }
290 static void ctor_a(void *region)
291 { }
292 static void ctor_b(void *region)
293 { }
294 
295 void __init lkdtm_heap_init(void)
296 {
297 	double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
298 					      64, 0, 0, ctor_double_free);
299 	a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
300 	b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
301 }
302 
303 void __exit lkdtm_heap_exit(void)
304 {
305 	kmem_cache_destroy(double_free_cache);
306 	kmem_cache_destroy(a_cache);
307 	kmem_cache_destroy(b_cache);
308 }
309