xref: /openbmc/linux/drivers/misc/lkdtm/heap.c (revision 5b777131)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests relating directly to heap memory, including
4  * page allocation and slab allocations.
5  */
6 #include "lkdtm.h"
7 #include <linux/slab.h>
8 #include <linux/vmalloc.h>
9 #include <linux/sched.h>
10 
11 static struct kmem_cache *double_free_cache;
12 static struct kmem_cache *a_cache;
13 static struct kmem_cache *b_cache;
14 
15 /*
16  * If there aren't guard pages, it's likely that a consecutive allocation will
17  * let us overflow into the second allocation without overwriting something real.
18  */
19 void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
20 {
21 	char *one, *two;
22 
23 	one = vzalloc(PAGE_SIZE);
24 	two = vzalloc(PAGE_SIZE);
25 
26 	pr_info("Attempting vmalloc linear overflow ...\n");
27 	memset(one, 0xAA, PAGE_SIZE + 1);
28 
29 	vfree(two);
30 	vfree(one);
31 }
32 
33 /*
34  * This tries to stay within the next largest power-of-2 kmalloc cache
35  * to avoid actually overwriting anything important if it's not detected
36  * correctly.
37  */
38 void lkdtm_SLAB_LINEAR_OVERFLOW(void)
39 {
40 	size_t len = 1020;
41 	u32 *data = kmalloc(len, GFP_KERNEL);
42 	if (!data)
43 		return;
44 
45 	pr_info("Attempting slab linear overflow ...\n");
46 	data[1024 / sizeof(u32)] = 0x12345678;
47 	kfree(data);
48 }
49 
50 void lkdtm_WRITE_AFTER_FREE(void)
51 {
52 	int *base, *again;
53 	size_t len = 1024;
54 	/*
55 	 * The slub allocator uses the first word to store the free
56 	 * pointer in some configurations. Use the middle of the
57 	 * allocation to avoid running into the freelist
58 	 */
59 	size_t offset = (len / sizeof(*base)) / 2;
60 
61 	base = kmalloc(len, GFP_KERNEL);
62 	if (!base)
63 		return;
64 	pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
65 	pr_info("Attempting bad write to freed memory at %p\n",
66 		&base[offset]);
67 	kfree(base);
68 	base[offset] = 0x0abcdef0;
69 	/* Attempt to notice the overwrite. */
70 	again = kmalloc(len, GFP_KERNEL);
71 	kfree(again);
72 	if (again != base)
73 		pr_info("Hmm, didn't get the same memory range.\n");
74 }
75 
76 void lkdtm_READ_AFTER_FREE(void)
77 {
78 	int *base, *val, saw;
79 	size_t len = 1024;
80 	/*
81 	 * The slub allocator will use the either the first word or
82 	 * the middle of the allocation to store the free pointer,
83 	 * depending on configurations. Store in the second word to
84 	 * avoid running into the freelist.
85 	 */
86 	size_t offset = sizeof(*base);
87 
88 	base = kmalloc(len, GFP_KERNEL);
89 	if (!base) {
90 		pr_info("Unable to allocate base memory.\n");
91 		return;
92 	}
93 
94 	val = kmalloc(len, GFP_KERNEL);
95 	if (!val) {
96 		pr_info("Unable to allocate val memory.\n");
97 		kfree(base);
98 		return;
99 	}
100 
101 	*val = 0x12345678;
102 	base[offset] = *val;
103 	pr_info("Value in memory before free: %x\n", base[offset]);
104 
105 	kfree(base);
106 
107 	pr_info("Attempting bad read from freed memory\n");
108 	saw = base[offset];
109 	if (saw != *val) {
110 		/* Good! Poisoning happened, so declare a win. */
111 		pr_info("Memory correctly poisoned (%x)\n", saw);
112 	} else {
113 		pr_err("FAIL: Memory was not poisoned!\n");
114 		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
115 	}
116 
117 	kfree(val);
118 }
119 
120 void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
121 {
122 	unsigned long p = __get_free_page(GFP_KERNEL);
123 	if (!p) {
124 		pr_info("Unable to allocate free page\n");
125 		return;
126 	}
127 
128 	pr_info("Writing to the buddy page before free\n");
129 	memset((void *)p, 0x3, PAGE_SIZE);
130 	free_page(p);
131 	schedule();
132 	pr_info("Attempting bad write to the buddy page after free\n");
133 	memset((void *)p, 0x78, PAGE_SIZE);
134 	/* Attempt to notice the overwrite. */
135 	p = __get_free_page(GFP_KERNEL);
136 	free_page(p);
137 	schedule();
138 }
139 
140 void lkdtm_READ_BUDDY_AFTER_FREE(void)
141 {
142 	unsigned long p = __get_free_page(GFP_KERNEL);
143 	int saw, *val;
144 	int *base;
145 
146 	if (!p) {
147 		pr_info("Unable to allocate free page\n");
148 		return;
149 	}
150 
151 	val = kmalloc(1024, GFP_KERNEL);
152 	if (!val) {
153 		pr_info("Unable to allocate val memory.\n");
154 		free_page(p);
155 		return;
156 	}
157 
158 	base = (int *)p;
159 
160 	*val = 0x12345678;
161 	base[0] = *val;
162 	pr_info("Value in memory before free: %x\n", base[0]);
163 	free_page(p);
164 	pr_info("Attempting to read from freed memory\n");
165 	saw = base[0];
166 	if (saw != *val) {
167 		/* Good! Poisoning happened, so declare a win. */
168 		pr_info("Memory correctly poisoned (%x)\n", saw);
169 	} else {
170 		pr_err("FAIL: Buddy page was not poisoned!\n");
171 		pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
172 	}
173 
174 	kfree(val);
175 }
176 
177 void lkdtm_SLAB_FREE_DOUBLE(void)
178 {
179 	int *val;
180 
181 	val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
182 	if (!val) {
183 		pr_info("Unable to allocate double_free_cache memory.\n");
184 		return;
185 	}
186 
187 	/* Just make sure we got real memory. */
188 	*val = 0x12345678;
189 	pr_info("Attempting double slab free ...\n");
190 	kmem_cache_free(double_free_cache, val);
191 	kmem_cache_free(double_free_cache, val);
192 }
193 
194 void lkdtm_SLAB_FREE_CROSS(void)
195 {
196 	int *val;
197 
198 	val = kmem_cache_alloc(a_cache, GFP_KERNEL);
199 	if (!val) {
200 		pr_info("Unable to allocate a_cache memory.\n");
201 		return;
202 	}
203 
204 	/* Just make sure we got real memory. */
205 	*val = 0x12345679;
206 	pr_info("Attempting cross-cache slab free ...\n");
207 	kmem_cache_free(b_cache, val);
208 }
209 
210 void lkdtm_SLAB_FREE_PAGE(void)
211 {
212 	unsigned long p = __get_free_page(GFP_KERNEL);
213 
214 	pr_info("Attempting non-Slab slab free ...\n");
215 	kmem_cache_free(NULL, (void *)p);
216 	free_page(p);
217 }
218 
219 /*
220  * We have constructors to keep the caches distinctly separated without
221  * needing to boot with "slab_nomerge".
222  */
223 static void ctor_double_free(void *region)
224 { }
225 static void ctor_a(void *region)
226 { }
227 static void ctor_b(void *region)
228 { }
229 
230 void __init lkdtm_heap_init(void)
231 {
232 	double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
233 					      64, 0, 0, ctor_double_free);
234 	a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
235 	b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
236 }
237 
238 void __exit lkdtm_heap_exit(void)
239 {
240 	kmem_cache_destroy(double_free_cache);
241 	kmem_cache_destroy(a_cache);
242 	kmem_cache_destroy(b_cache);
243 }
244