xref: /openbmc/linux/drivers/misc/lkdtm/bugs.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 #include <linux/slab.h>
15 
16 #ifdef CONFIG_X86_32
17 #include <asm/desc.h>
18 #endif
19 
20 struct lkdtm_list {
21 	struct list_head node;
22 };
23 
24 /*
25  * Make sure our attempts to over run the kernel stack doesn't trigger
26  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
27  * recurse past the end of THREAD_SIZE by default.
28  */
29 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
30 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
31 #else
32 #define REC_STACK_SIZE (THREAD_SIZE / 8)
33 #endif
34 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
35 
36 static int recur_count = REC_NUM_DEFAULT;
37 
38 static DEFINE_SPINLOCK(lock_me_up);
39 
40 /*
41  * Make sure compiler does not optimize this function or stack frame away:
42  * - function marked noinline
43  * - stack variables are marked volatile
44  * - stack variables are written (memset()) and read (pr_info())
45  * - function has external effects (pr_info())
46  * */
47 static int noinline recursive_loop(int remaining)
48 {
49 	volatile char buf[REC_STACK_SIZE];
50 
51 	memset((void *)buf, remaining & 0xFF, sizeof(buf));
52 	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
53 		recur_count);
54 	if (!remaining)
55 		return 0;
56 	else
57 		return recursive_loop(remaining - 1);
58 }
59 
60 /* If the depth is negative, use the default, otherwise keep parameter. */
61 void __init lkdtm_bugs_init(int *recur_param)
62 {
63 	if (*recur_param < 0)
64 		*recur_param = recur_count;
65 	else
66 		recur_count = *recur_param;
67 }
68 
69 void lkdtm_PANIC(void)
70 {
71 	panic("dumptest");
72 }
73 
74 void lkdtm_BUG(void)
75 {
76 	BUG();
77 }
78 
79 static int warn_counter;
80 
81 void lkdtm_WARNING(void)
82 {
83 	WARN_ON(++warn_counter);
84 }
85 
86 void lkdtm_WARNING_MESSAGE(void)
87 {
88 	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
89 }
90 
91 void lkdtm_EXCEPTION(void)
92 {
93 	*((volatile int *) 0) = 0;
94 }
95 
96 void lkdtm_LOOP(void)
97 {
98 	for (;;)
99 		;
100 }
101 
102 void lkdtm_EXHAUST_STACK(void)
103 {
104 	pr_info("Calling function with %lu frame size to depth %d ...\n",
105 		REC_STACK_SIZE, recur_count);
106 	recursive_loop(recur_count);
107 	pr_info("FAIL: survived without exhausting stack?!\n");
108 }
109 
110 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111 {
112 	memset(stack, '\xff', 64);
113 }
114 
115 /* This should trip the stack canary, not corrupt the return address. */
116 noinline void lkdtm_CORRUPT_STACK(void)
117 {
118 	/* Use default char array length that triggers stack protection. */
119 	char data[8] __aligned(sizeof(void *));
120 
121 	__lkdtm_CORRUPT_STACK(&data);
122 
123 	pr_info("Corrupted stack containing char array ...\n");
124 }
125 
126 /* Same as above but will only get a canary with -fstack-protector-strong */
127 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
128 {
129 	union {
130 		unsigned short shorts[4];
131 		unsigned long *ptr;
132 	} data __aligned(sizeof(void *));
133 
134 	__lkdtm_CORRUPT_STACK(&data);
135 
136 	pr_info("Corrupted stack containing union ...\n");
137 }
138 
139 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
140 {
141 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
142 	u32 *p;
143 	u32 val = 0x12345678;
144 
145 	p = (u32 *)(data + 1);
146 	if (*p == 0)
147 		val = 0x87654321;
148 	*p = val;
149 }
150 
151 void lkdtm_SOFTLOCKUP(void)
152 {
153 	preempt_disable();
154 	for (;;)
155 		cpu_relax();
156 }
157 
158 void lkdtm_HARDLOCKUP(void)
159 {
160 	local_irq_disable();
161 	for (;;)
162 		cpu_relax();
163 }
164 
165 void lkdtm_SPINLOCKUP(void)
166 {
167 	/* Must be called twice to trigger. */
168 	spin_lock(&lock_me_up);
169 	/* Let sparse know we intended to exit holding the lock. */
170 	__release(&lock_me_up);
171 }
172 
173 void lkdtm_HUNG_TASK(void)
174 {
175 	set_current_state(TASK_UNINTERRUPTIBLE);
176 	schedule();
177 }
178 
179 volatile unsigned int huge = INT_MAX - 2;
180 volatile unsigned int ignored;
181 
182 void lkdtm_OVERFLOW_SIGNED(void)
183 {
184 	int value;
185 
186 	value = huge;
187 	pr_info("Normal signed addition ...\n");
188 	value += 1;
189 	ignored = value;
190 
191 	pr_info("Overflowing signed addition ...\n");
192 	value += 4;
193 	ignored = value;
194 }
195 
196 
197 void lkdtm_OVERFLOW_UNSIGNED(void)
198 {
199 	unsigned int value;
200 
201 	value = huge;
202 	pr_info("Normal unsigned addition ...\n");
203 	value += 1;
204 	ignored = value;
205 
206 	pr_info("Overflowing unsigned addition ...\n");
207 	value += 4;
208 	ignored = value;
209 }
210 
211 /* Intentially using old-style flex array definition of 1 byte. */
212 struct array_bounds_flex_array {
213 	int one;
214 	int two;
215 	char data[1];
216 };
217 
218 struct array_bounds {
219 	int one;
220 	int two;
221 	char data[8];
222 	int three;
223 };
224 
225 void lkdtm_ARRAY_BOUNDS(void)
226 {
227 	struct array_bounds_flex_array *not_checked;
228 	struct array_bounds *checked;
229 	volatile int i;
230 
231 	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
232 	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
233 
234 	pr_info("Array access within bounds ...\n");
235 	/* For both, touch all bytes in the actual member size. */
236 	for (i = 0; i < sizeof(checked->data); i++)
237 		checked->data[i] = 'A';
238 	/*
239 	 * For the uninstrumented flex array member, also touch 1 byte
240 	 * beyond to verify it is correctly uninstrumented.
241 	 */
242 	for (i = 0; i < sizeof(not_checked->data) + 1; i++)
243 		not_checked->data[i] = 'A';
244 
245 	pr_info("Array access beyond bounds ...\n");
246 	for (i = 0; i < sizeof(checked->data) + 1; i++)
247 		checked->data[i] = 'B';
248 
249 	kfree(not_checked);
250 	kfree(checked);
251 }
252 
253 void lkdtm_CORRUPT_LIST_ADD(void)
254 {
255 	/*
256 	 * Initially, an empty list via LIST_HEAD:
257 	 *	test_head.next = &test_head
258 	 *	test_head.prev = &test_head
259 	 */
260 	LIST_HEAD(test_head);
261 	struct lkdtm_list good, bad;
262 	void *target[2] = { };
263 	void *redirection = &target;
264 
265 	pr_info("attempting good list addition\n");
266 
267 	/*
268 	 * Adding to the list performs these actions:
269 	 *	test_head.next->prev = &good.node
270 	 *	good.node.next = test_head.next
271 	 *	good.node.prev = test_head
272 	 *	test_head.next = good.node
273 	 */
274 	list_add(&good.node, &test_head);
275 
276 	pr_info("attempting corrupted list addition\n");
277 	/*
278 	 * In simulating this "write what where" primitive, the "what" is
279 	 * the address of &bad.node, and the "where" is the address held
280 	 * by "redirection".
281 	 */
282 	test_head.next = redirection;
283 	list_add(&bad.node, &test_head);
284 
285 	if (target[0] == NULL && target[1] == NULL)
286 		pr_err("Overwrite did not happen, but no BUG?!\n");
287 	else
288 		pr_err("list_add() corruption not detected!\n");
289 }
290 
291 void lkdtm_CORRUPT_LIST_DEL(void)
292 {
293 	LIST_HEAD(test_head);
294 	struct lkdtm_list item;
295 	void *target[2] = { };
296 	void *redirection = &target;
297 
298 	list_add(&item.node, &test_head);
299 
300 	pr_info("attempting good list removal\n");
301 	list_del(&item.node);
302 
303 	pr_info("attempting corrupted list removal\n");
304 	list_add(&item.node, &test_head);
305 
306 	/* As with the list_add() test above, this corrupts "next". */
307 	item.node.next = redirection;
308 	list_del(&item.node);
309 
310 	if (target[0] == NULL && target[1] == NULL)
311 		pr_err("Overwrite did not happen, but no BUG?!\n");
312 	else
313 		pr_err("list_del() corruption not detected!\n");
314 }
315 
316 /* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */
317 void lkdtm_CORRUPT_USER_DS(void)
318 {
319 	pr_info("setting bad task size limit\n");
320 	set_fs(KERNEL_DS);
321 
322 	/* Make sure we do not keep running with a KERNEL_DS! */
323 	force_sig(SIGKILL);
324 }
325 
326 /* Test that VMAP_STACK is actually allocating with a leading guard page */
327 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
328 {
329 	const unsigned char *stack = task_stack_page(current);
330 	const unsigned char *ptr = stack - 1;
331 	volatile unsigned char byte;
332 
333 	pr_info("attempting bad read from page below current stack\n");
334 
335 	byte = *ptr;
336 
337 	pr_err("FAIL: accessed page before stack!\n");
338 }
339 
340 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
341 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
342 {
343 	const unsigned char *stack = task_stack_page(current);
344 	const unsigned char *ptr = stack + THREAD_SIZE;
345 	volatile unsigned char byte;
346 
347 	pr_info("attempting bad read from page above current stack\n");
348 
349 	byte = *ptr;
350 
351 	pr_err("FAIL: accessed page after stack!\n");
352 }
353 
354 void lkdtm_UNSET_SMEP(void)
355 {
356 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
357 #define MOV_CR4_DEPTH	64
358 	void (*direct_write_cr4)(unsigned long val);
359 	unsigned char *insn;
360 	unsigned long cr4;
361 	int i;
362 
363 	cr4 = native_read_cr4();
364 
365 	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
366 		pr_err("FAIL: SMEP not in use\n");
367 		return;
368 	}
369 	cr4 &= ~(X86_CR4_SMEP);
370 
371 	pr_info("trying to clear SMEP normally\n");
372 	native_write_cr4(cr4);
373 	if (cr4 == native_read_cr4()) {
374 		pr_err("FAIL: pinning SMEP failed!\n");
375 		cr4 |= X86_CR4_SMEP;
376 		pr_info("restoring SMEP\n");
377 		native_write_cr4(cr4);
378 		return;
379 	}
380 	pr_info("ok: SMEP did not get cleared\n");
381 
382 	/*
383 	 * To test the post-write pinning verification we need to call
384 	 * directly into the middle of native_write_cr4() where the
385 	 * cr4 write happens, skipping any pinning. This searches for
386 	 * the cr4 writing instruction.
387 	 */
388 	insn = (unsigned char *)native_write_cr4;
389 	for (i = 0; i < MOV_CR4_DEPTH; i++) {
390 		/* mov %rdi, %cr4 */
391 		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
392 			break;
393 		/* mov %rdi,%rax; mov %rax, %cr4 */
394 		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
395 		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
396 		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
397 			break;
398 	}
399 	if (i >= MOV_CR4_DEPTH) {
400 		pr_info("ok: cannot locate cr4 writing call gadget\n");
401 		return;
402 	}
403 	direct_write_cr4 = (void *)(insn + i);
404 
405 	pr_info("trying to clear SMEP with call gadget\n");
406 	direct_write_cr4(cr4);
407 	if (native_read_cr4() & X86_CR4_SMEP) {
408 		pr_info("ok: SMEP removal was reverted\n");
409 	} else {
410 		pr_err("FAIL: cleared SMEP not detected!\n");
411 		cr4 |= X86_CR4_SMEP;
412 		pr_info("restoring SMEP\n");
413 		native_write_cr4(cr4);
414 	}
415 #else
416 	pr_err("XFAIL: this test is x86_64-only\n");
417 #endif
418 }
419 
420 void lkdtm_DOUBLE_FAULT(void)
421 {
422 #ifdef CONFIG_X86_32
423 	/*
424 	 * Trigger #DF by setting the stack limit to zero.  This clobbers
425 	 * a GDT TLS slot, which is okay because the current task will die
426 	 * anyway due to the double fault.
427 	 */
428 	struct desc_struct d = {
429 		.type = 3,	/* expand-up, writable, accessed data */
430 		.p = 1,		/* present */
431 		.d = 1,		/* 32-bit */
432 		.g = 0,		/* limit in bytes */
433 		.s = 1,		/* not system */
434 	};
435 
436 	local_irq_disable();
437 	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
438 			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
439 
440 	/*
441 	 * Put our zero-limit segment in SS and then trigger a fault.  The
442 	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
443 	 * deliver the fault will recursively cause #SS and result in #DF.
444 	 * This whole process happens while NMIs and MCEs are blocked by the
445 	 * MOV SS window.  This is nice because an NMI with an invalid SS
446 	 * would also double-fault, resulting in the NMI or MCE being lost.
447 	 */
448 	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
449 		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
450 
451 	pr_err("FAIL: tried to double fault but didn't die\n");
452 #else
453 	pr_err("XFAIL: this test is ia32-only\n");
454 #endif
455 }
456 
457 #ifdef CONFIG_ARM64_PTR_AUTH
458 static noinline void change_pac_parameters(void)
459 {
460 	/* Reset the keys of current task */
461 	ptrauth_thread_init_kernel(current);
462 	ptrauth_thread_switch_kernel(current);
463 }
464 
465 #define CORRUPT_PAC_ITERATE	10
466 noinline void lkdtm_CORRUPT_PAC(void)
467 {
468 	int i;
469 
470 	if (!system_supports_address_auth()) {
471 		pr_err("FAIL: arm64 pointer authentication feature not present\n");
472 		return;
473 	}
474 
475 	pr_info("Change the PAC parameters to force function return failure\n");
476 	/*
477 	 * Pac is a hash value computed from input keys, return address and
478 	 * stack pointer. As pac has fewer bits so there is a chance of
479 	 * collision, so iterate few times to reduce the collision probability.
480 	 */
481 	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
482 		change_pac_parameters();
483 
484 	pr_err("FAIL: %s test failed. Kernel may be unstable from here\n", __func__);
485 }
486 #else /* !CONFIG_ARM64_PTR_AUTH */
487 noinline void lkdtm_CORRUPT_PAC(void)
488 {
489 	pr_err("FAIL: arm64 pointer authentication config disabled\n");
490 }
491 #endif
492