xref: /openbmc/linux/drivers/misc/lkdtm/bugs.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 
15 struct lkdtm_list {
16 	struct list_head node;
17 };
18 
19 /*
20  * Make sure our attempts to over run the kernel stack doesn't trigger
21  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
22  * recurse past the end of THREAD_SIZE by default.
23  */
24 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
25 #define REC_STACK_SIZE (CONFIG_FRAME_WARN / 2)
26 #else
27 #define REC_STACK_SIZE (THREAD_SIZE / 8)
28 #endif
29 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
30 
31 static int recur_count = REC_NUM_DEFAULT;
32 
33 static DEFINE_SPINLOCK(lock_me_up);
34 
35 /*
36  * Make sure compiler does not optimize this function or stack frame away:
37  * - function marked noinline
38  * - stack variables are marked volatile
39  * - stack variables are written (memset()) and read (pr_info())
40  * - function has external effects (pr_info())
41  * */
42 static int noinline recursive_loop(int remaining)
43 {
44 	volatile char buf[REC_STACK_SIZE];
45 
46 	memset((void *)buf, remaining & 0xFF, sizeof(buf));
47 	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
48 		recur_count);
49 	if (!remaining)
50 		return 0;
51 	else
52 		return recursive_loop(remaining - 1);
53 }
54 
55 /* If the depth is negative, use the default, otherwise keep parameter. */
56 void __init lkdtm_bugs_init(int *recur_param)
57 {
58 	if (*recur_param < 0)
59 		*recur_param = recur_count;
60 	else
61 		recur_count = *recur_param;
62 }
63 
64 void lkdtm_PANIC(void)
65 {
66 	panic("dumptest");
67 }
68 
69 void lkdtm_BUG(void)
70 {
71 	BUG();
72 }
73 
74 static int warn_counter;
75 
76 void lkdtm_WARNING(void)
77 {
78 	WARN(1, "Warning message trigger count: %d\n", warn_counter++);
79 }
80 
81 void lkdtm_EXCEPTION(void)
82 {
83 	*((volatile int *) 0) = 0;
84 }
85 
86 void lkdtm_LOOP(void)
87 {
88 	for (;;)
89 		;
90 }
91 
92 void lkdtm_EXHAUST_STACK(void)
93 {
94 	pr_info("Calling function with %d frame size to depth %d ...\n",
95 		REC_STACK_SIZE, recur_count);
96 	recursive_loop(recur_count);
97 	pr_info("FAIL: survived without exhausting stack?!\n");
98 }
99 
100 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
101 {
102 	memset(stack, '\xff', 64);
103 }
104 
105 /* This should trip the stack canary, not corrupt the return address. */
106 noinline void lkdtm_CORRUPT_STACK(void)
107 {
108 	/* Use default char array length that triggers stack protection. */
109 	char data[8] __aligned(sizeof(void *));
110 
111 	__lkdtm_CORRUPT_STACK(&data);
112 
113 	pr_info("Corrupted stack containing char array ...\n");
114 }
115 
116 /* Same as above but will only get a canary with -fstack-protector-strong */
117 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
118 {
119 	union {
120 		unsigned short shorts[4];
121 		unsigned long *ptr;
122 	} data __aligned(sizeof(void *));
123 
124 	__lkdtm_CORRUPT_STACK(&data);
125 
126 	pr_info("Corrupted stack containing union ...\n");
127 }
128 
129 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
130 {
131 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
132 	u32 *p;
133 	u32 val = 0x12345678;
134 
135 	p = (u32 *)(data + 1);
136 	if (*p == 0)
137 		val = 0x87654321;
138 	*p = val;
139 }
140 
141 void lkdtm_SOFTLOCKUP(void)
142 {
143 	preempt_disable();
144 	for (;;)
145 		cpu_relax();
146 }
147 
148 void lkdtm_HARDLOCKUP(void)
149 {
150 	local_irq_disable();
151 	for (;;)
152 		cpu_relax();
153 }
154 
155 void lkdtm_SPINLOCKUP(void)
156 {
157 	/* Must be called twice to trigger. */
158 	spin_lock(&lock_me_up);
159 	/* Let sparse know we intended to exit holding the lock. */
160 	__release(&lock_me_up);
161 }
162 
163 void lkdtm_HUNG_TASK(void)
164 {
165 	set_current_state(TASK_UNINTERRUPTIBLE);
166 	schedule();
167 }
168 
169 void lkdtm_CORRUPT_LIST_ADD(void)
170 {
171 	/*
172 	 * Initially, an empty list via LIST_HEAD:
173 	 *	test_head.next = &test_head
174 	 *	test_head.prev = &test_head
175 	 */
176 	LIST_HEAD(test_head);
177 	struct lkdtm_list good, bad;
178 	void *target[2] = { };
179 	void *redirection = &target;
180 
181 	pr_info("attempting good list addition\n");
182 
183 	/*
184 	 * Adding to the list performs these actions:
185 	 *	test_head.next->prev = &good.node
186 	 *	good.node.next = test_head.next
187 	 *	good.node.prev = test_head
188 	 *	test_head.next = good.node
189 	 */
190 	list_add(&good.node, &test_head);
191 
192 	pr_info("attempting corrupted list addition\n");
193 	/*
194 	 * In simulating this "write what where" primitive, the "what" is
195 	 * the address of &bad.node, and the "where" is the address held
196 	 * by "redirection".
197 	 */
198 	test_head.next = redirection;
199 	list_add(&bad.node, &test_head);
200 
201 	if (target[0] == NULL && target[1] == NULL)
202 		pr_err("Overwrite did not happen, but no BUG?!\n");
203 	else
204 		pr_err("list_add() corruption not detected!\n");
205 }
206 
207 void lkdtm_CORRUPT_LIST_DEL(void)
208 {
209 	LIST_HEAD(test_head);
210 	struct lkdtm_list item;
211 	void *target[2] = { };
212 	void *redirection = &target;
213 
214 	list_add(&item.node, &test_head);
215 
216 	pr_info("attempting good list removal\n");
217 	list_del(&item.node);
218 
219 	pr_info("attempting corrupted list removal\n");
220 	list_add(&item.node, &test_head);
221 
222 	/* As with the list_add() test above, this corrupts "next". */
223 	item.node.next = redirection;
224 	list_del(&item.node);
225 
226 	if (target[0] == NULL && target[1] == NULL)
227 		pr_err("Overwrite did not happen, but no BUG?!\n");
228 	else
229 		pr_err("list_del() corruption not detected!\n");
230 }
231 
232 /* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */
233 void lkdtm_CORRUPT_USER_DS(void)
234 {
235 	pr_info("setting bad task size limit\n");
236 	set_fs(KERNEL_DS);
237 
238 	/* Make sure we do not keep running with a KERNEL_DS! */
239 	force_sig(SIGKILL);
240 }
241 
242 /* Test that VMAP_STACK is actually allocating with a leading guard page */
243 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
244 {
245 	const unsigned char *stack = task_stack_page(current);
246 	const unsigned char *ptr = stack - 1;
247 	volatile unsigned char byte;
248 
249 	pr_info("attempting bad read from page below current stack\n");
250 
251 	byte = *ptr;
252 
253 	pr_err("FAIL: accessed page before stack!\n");
254 }
255 
256 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
257 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
258 {
259 	const unsigned char *stack = task_stack_page(current);
260 	const unsigned char *ptr = stack + THREAD_SIZE;
261 	volatile unsigned char byte;
262 
263 	pr_info("attempting bad read from page above current stack\n");
264 
265 	byte = *ptr;
266 
267 	pr_err("FAIL: accessed page after stack!\n");
268 }
269 
270 void lkdtm_UNSET_SMEP(void)
271 {
272 #ifdef CONFIG_X86_64
273 #define MOV_CR4_DEPTH	64
274 	void (*direct_write_cr4)(unsigned long val);
275 	unsigned char *insn;
276 	unsigned long cr4;
277 	int i;
278 
279 	cr4 = native_read_cr4();
280 
281 	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
282 		pr_err("FAIL: SMEP not in use\n");
283 		return;
284 	}
285 	cr4 &= ~(X86_CR4_SMEP);
286 
287 	pr_info("trying to clear SMEP normally\n");
288 	native_write_cr4(cr4);
289 	if (cr4 == native_read_cr4()) {
290 		pr_err("FAIL: pinning SMEP failed!\n");
291 		cr4 |= X86_CR4_SMEP;
292 		pr_info("restoring SMEP\n");
293 		native_write_cr4(cr4);
294 		return;
295 	}
296 	pr_info("ok: SMEP did not get cleared\n");
297 
298 	/*
299 	 * To test the post-write pinning verification we need to call
300 	 * directly into the middle of native_write_cr4() where the
301 	 * cr4 write happens, skipping any pinning. This searches for
302 	 * the cr4 writing instruction.
303 	 */
304 	insn = (unsigned char *)native_write_cr4;
305 	for (i = 0; i < MOV_CR4_DEPTH; i++) {
306 		/* mov %rdi, %cr4 */
307 		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
308 			break;
309 		/* mov %rdi,%rax; mov %rax, %cr4 */
310 		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
311 		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
312 		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
313 			break;
314 	}
315 	if (i >= MOV_CR4_DEPTH) {
316 		pr_info("ok: cannot locate cr4 writing call gadget\n");
317 		return;
318 	}
319 	direct_write_cr4 = (void *)(insn + i);
320 
321 	pr_info("trying to clear SMEP with call gadget\n");
322 	direct_write_cr4(cr4);
323 	if (native_read_cr4() & X86_CR4_SMEP) {
324 		pr_info("ok: SMEP removal was reverted\n");
325 	} else {
326 		pr_err("FAIL: cleared SMEP not detected!\n");
327 		cr4 |= X86_CR4_SMEP;
328 		pr_info("restoring SMEP\n");
329 		native_write_cr4(cr4);
330 	}
331 #else
332 	pr_err("FAIL: this test is x86_64-only\n");
333 #endif
334 }
335