xref: /openbmc/linux/drivers/misc/lkdtm/bugs.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 #include <linux/slab.h>
15 
16 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
17 #include <asm/desc.h>
18 #endif
19 
20 struct lkdtm_list {
21 	struct list_head node;
22 };
23 
24 /*
25  * Make sure our attempts to over run the kernel stack doesn't trigger
26  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
27  * recurse past the end of THREAD_SIZE by default.
28  */
29 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
30 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
31 #else
32 #define REC_STACK_SIZE (THREAD_SIZE / 8)
33 #endif
34 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
35 
36 static int recur_count = REC_NUM_DEFAULT;
37 
38 static DEFINE_SPINLOCK(lock_me_up);
39 
40 /*
41  * Make sure compiler does not optimize this function or stack frame away:
42  * - function marked noinline
43  * - stack variables are marked volatile
44  * - stack variables are written (memset()) and read (pr_info())
45  * - function has external effects (pr_info())
46  * */
47 static int noinline recursive_loop(int remaining)
48 {
49 	volatile char buf[REC_STACK_SIZE];
50 
51 	memset((void *)buf, remaining & 0xFF, sizeof(buf));
52 	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
53 		recur_count);
54 	if (!remaining)
55 		return 0;
56 	else
57 		return recursive_loop(remaining - 1);
58 }
59 
60 /* If the depth is negative, use the default, otherwise keep parameter. */
61 void __init lkdtm_bugs_init(int *recur_param)
62 {
63 	if (*recur_param < 0)
64 		*recur_param = recur_count;
65 	else
66 		recur_count = *recur_param;
67 }
68 
69 void lkdtm_PANIC(void)
70 {
71 	panic("dumptest");
72 }
73 
74 void lkdtm_BUG(void)
75 {
76 	BUG();
77 }
78 
79 static int warn_counter;
80 
81 void lkdtm_WARNING(void)
82 {
83 	WARN_ON(++warn_counter);
84 }
85 
86 void lkdtm_WARNING_MESSAGE(void)
87 {
88 	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
89 }
90 
91 void lkdtm_EXCEPTION(void)
92 {
93 	*((volatile int *) 0) = 0;
94 }
95 
96 void lkdtm_LOOP(void)
97 {
98 	for (;;)
99 		;
100 }
101 
102 void lkdtm_EXHAUST_STACK(void)
103 {
104 	pr_info("Calling function with %lu frame size to depth %d ...\n",
105 		REC_STACK_SIZE, recur_count);
106 	recursive_loop(recur_count);
107 	pr_info("FAIL: survived without exhausting stack?!\n");
108 }
109 
110 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111 {
112 	memset(stack, '\xff', 64);
113 }
114 
115 /* This should trip the stack canary, not corrupt the return address. */
116 noinline void lkdtm_CORRUPT_STACK(void)
117 {
118 	/* Use default char array length that triggers stack protection. */
119 	char data[8] __aligned(sizeof(void *));
120 
121 	pr_info("Corrupting stack containing char array ...\n");
122 	__lkdtm_CORRUPT_STACK((void *)&data);
123 }
124 
125 /* Same as above but will only get a canary with -fstack-protector-strong */
126 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127 {
128 	union {
129 		unsigned short shorts[4];
130 		unsigned long *ptr;
131 	} data __aligned(sizeof(void *));
132 
133 	pr_info("Corrupting stack containing union ...\n");
134 	__lkdtm_CORRUPT_STACK((void *)&data);
135 }
136 
137 static pid_t stack_pid;
138 static unsigned long stack_addr;
139 
140 void lkdtm_REPORT_STACK(void)
141 {
142 	volatile uintptr_t magic;
143 	pid_t pid = task_pid_nr(current);
144 
145 	if (pid != stack_pid) {
146 		pr_info("Starting stack offset tracking for pid %d\n", pid);
147 		stack_pid = pid;
148 		stack_addr = (uintptr_t)&magic;
149 	}
150 
151 	pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
152 }
153 
154 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
155 {
156 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
157 	u32 *p;
158 	u32 val = 0x12345678;
159 
160 	p = (u32 *)(data + 1);
161 	if (*p == 0)
162 		val = 0x87654321;
163 	*p = val;
164 }
165 
166 void lkdtm_SOFTLOCKUP(void)
167 {
168 	preempt_disable();
169 	for (;;)
170 		cpu_relax();
171 }
172 
173 void lkdtm_HARDLOCKUP(void)
174 {
175 	local_irq_disable();
176 	for (;;)
177 		cpu_relax();
178 }
179 
180 void lkdtm_SPINLOCKUP(void)
181 {
182 	/* Must be called twice to trigger. */
183 	spin_lock(&lock_me_up);
184 	/* Let sparse know we intended to exit holding the lock. */
185 	__release(&lock_me_up);
186 }
187 
188 void lkdtm_HUNG_TASK(void)
189 {
190 	set_current_state(TASK_UNINTERRUPTIBLE);
191 	schedule();
192 }
193 
194 volatile unsigned int huge = INT_MAX - 2;
195 volatile unsigned int ignored;
196 
197 void lkdtm_OVERFLOW_SIGNED(void)
198 {
199 	int value;
200 
201 	value = huge;
202 	pr_info("Normal signed addition ...\n");
203 	value += 1;
204 	ignored = value;
205 
206 	pr_info("Overflowing signed addition ...\n");
207 	value += 4;
208 	ignored = value;
209 }
210 
211 
212 void lkdtm_OVERFLOW_UNSIGNED(void)
213 {
214 	unsigned int value;
215 
216 	value = huge;
217 	pr_info("Normal unsigned addition ...\n");
218 	value += 1;
219 	ignored = value;
220 
221 	pr_info("Overflowing unsigned addition ...\n");
222 	value += 4;
223 	ignored = value;
224 }
225 
226 /* Intentionally using old-style flex array definition of 1 byte. */
227 struct array_bounds_flex_array {
228 	int one;
229 	int two;
230 	char data[1];
231 };
232 
233 struct array_bounds {
234 	int one;
235 	int two;
236 	char data[8];
237 	int three;
238 };
239 
240 void lkdtm_ARRAY_BOUNDS(void)
241 {
242 	struct array_bounds_flex_array *not_checked;
243 	struct array_bounds *checked;
244 	volatile int i;
245 
246 	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
247 	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
248 
249 	pr_info("Array access within bounds ...\n");
250 	/* For both, touch all bytes in the actual member size. */
251 	for (i = 0; i < sizeof(checked->data); i++)
252 		checked->data[i] = 'A';
253 	/*
254 	 * For the uninstrumented flex array member, also touch 1 byte
255 	 * beyond to verify it is correctly uninstrumented.
256 	 */
257 	for (i = 0; i < sizeof(not_checked->data) + 1; i++)
258 		not_checked->data[i] = 'A';
259 
260 	pr_info("Array access beyond bounds ...\n");
261 	for (i = 0; i < sizeof(checked->data) + 1; i++)
262 		checked->data[i] = 'B';
263 
264 	kfree(not_checked);
265 	kfree(checked);
266 	pr_err("FAIL: survived array bounds overflow!\n");
267 }
268 
269 void lkdtm_CORRUPT_LIST_ADD(void)
270 {
271 	/*
272 	 * Initially, an empty list via LIST_HEAD:
273 	 *	test_head.next = &test_head
274 	 *	test_head.prev = &test_head
275 	 */
276 	LIST_HEAD(test_head);
277 	struct lkdtm_list good, bad;
278 	void *target[2] = { };
279 	void *redirection = &target;
280 
281 	pr_info("attempting good list addition\n");
282 
283 	/*
284 	 * Adding to the list performs these actions:
285 	 *	test_head.next->prev = &good.node
286 	 *	good.node.next = test_head.next
287 	 *	good.node.prev = test_head
288 	 *	test_head.next = good.node
289 	 */
290 	list_add(&good.node, &test_head);
291 
292 	pr_info("attempting corrupted list addition\n");
293 	/*
294 	 * In simulating this "write what where" primitive, the "what" is
295 	 * the address of &bad.node, and the "where" is the address held
296 	 * by "redirection".
297 	 */
298 	test_head.next = redirection;
299 	list_add(&bad.node, &test_head);
300 
301 	if (target[0] == NULL && target[1] == NULL)
302 		pr_err("Overwrite did not happen, but no BUG?!\n");
303 	else
304 		pr_err("list_add() corruption not detected!\n");
305 }
306 
307 void lkdtm_CORRUPT_LIST_DEL(void)
308 {
309 	LIST_HEAD(test_head);
310 	struct lkdtm_list item;
311 	void *target[2] = { };
312 	void *redirection = &target;
313 
314 	list_add(&item.node, &test_head);
315 
316 	pr_info("attempting good list removal\n");
317 	list_del(&item.node);
318 
319 	pr_info("attempting corrupted list removal\n");
320 	list_add(&item.node, &test_head);
321 
322 	/* As with the list_add() test above, this corrupts "next". */
323 	item.node.next = redirection;
324 	list_del(&item.node);
325 
326 	if (target[0] == NULL && target[1] == NULL)
327 		pr_err("Overwrite did not happen, but no BUG?!\n");
328 	else
329 		pr_err("list_del() corruption not detected!\n");
330 }
331 
332 /* Test that VMAP_STACK is actually allocating with a leading guard page */
333 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
334 {
335 	const unsigned char *stack = task_stack_page(current);
336 	const unsigned char *ptr = stack - 1;
337 	volatile unsigned char byte;
338 
339 	pr_info("attempting bad read from page below current stack\n");
340 
341 	byte = *ptr;
342 
343 	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
344 }
345 
346 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
347 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
348 {
349 	const unsigned char *stack = task_stack_page(current);
350 	const unsigned char *ptr = stack + THREAD_SIZE;
351 	volatile unsigned char byte;
352 
353 	pr_info("attempting bad read from page above current stack\n");
354 
355 	byte = *ptr;
356 
357 	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
358 }
359 
360 void lkdtm_UNSET_SMEP(void)
361 {
362 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
363 #define MOV_CR4_DEPTH	64
364 	void (*direct_write_cr4)(unsigned long val);
365 	unsigned char *insn;
366 	unsigned long cr4;
367 	int i;
368 
369 	cr4 = native_read_cr4();
370 
371 	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
372 		pr_err("FAIL: SMEP not in use\n");
373 		return;
374 	}
375 	cr4 &= ~(X86_CR4_SMEP);
376 
377 	pr_info("trying to clear SMEP normally\n");
378 	native_write_cr4(cr4);
379 	if (cr4 == native_read_cr4()) {
380 		pr_err("FAIL: pinning SMEP failed!\n");
381 		cr4 |= X86_CR4_SMEP;
382 		pr_info("restoring SMEP\n");
383 		native_write_cr4(cr4);
384 		return;
385 	}
386 	pr_info("ok: SMEP did not get cleared\n");
387 
388 	/*
389 	 * To test the post-write pinning verification we need to call
390 	 * directly into the middle of native_write_cr4() where the
391 	 * cr4 write happens, skipping any pinning. This searches for
392 	 * the cr4 writing instruction.
393 	 */
394 	insn = (unsigned char *)native_write_cr4;
395 	for (i = 0; i < MOV_CR4_DEPTH; i++) {
396 		/* mov %rdi, %cr4 */
397 		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
398 			break;
399 		/* mov %rdi,%rax; mov %rax, %cr4 */
400 		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
401 		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
402 		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
403 			break;
404 	}
405 	if (i >= MOV_CR4_DEPTH) {
406 		pr_info("ok: cannot locate cr4 writing call gadget\n");
407 		return;
408 	}
409 	direct_write_cr4 = (void *)(insn + i);
410 
411 	pr_info("trying to clear SMEP with call gadget\n");
412 	direct_write_cr4(cr4);
413 	if (native_read_cr4() & X86_CR4_SMEP) {
414 		pr_info("ok: SMEP removal was reverted\n");
415 	} else {
416 		pr_err("FAIL: cleared SMEP not detected!\n");
417 		cr4 |= X86_CR4_SMEP;
418 		pr_info("restoring SMEP\n");
419 		native_write_cr4(cr4);
420 	}
421 #else
422 	pr_err("XFAIL: this test is x86_64-only\n");
423 #endif
424 }
425 
426 void lkdtm_DOUBLE_FAULT(void)
427 {
428 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
429 	/*
430 	 * Trigger #DF by setting the stack limit to zero.  This clobbers
431 	 * a GDT TLS slot, which is okay because the current task will die
432 	 * anyway due to the double fault.
433 	 */
434 	struct desc_struct d = {
435 		.type = 3,	/* expand-up, writable, accessed data */
436 		.p = 1,		/* present */
437 		.d = 1,		/* 32-bit */
438 		.g = 0,		/* limit in bytes */
439 		.s = 1,		/* not system */
440 	};
441 
442 	local_irq_disable();
443 	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
444 			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
445 
446 	/*
447 	 * Put our zero-limit segment in SS and then trigger a fault.  The
448 	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
449 	 * deliver the fault will recursively cause #SS and result in #DF.
450 	 * This whole process happens while NMIs and MCEs are blocked by the
451 	 * MOV SS window.  This is nice because an NMI with an invalid SS
452 	 * would also double-fault, resulting in the NMI or MCE being lost.
453 	 */
454 	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
455 		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
456 
457 	pr_err("FAIL: tried to double fault but didn't die\n");
458 #else
459 	pr_err("XFAIL: this test is ia32-only\n");
460 #endif
461 }
462 
463 #ifdef CONFIG_ARM64
464 static noinline void change_pac_parameters(void)
465 {
466 	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH)) {
467 		/* Reset the keys of current task */
468 		ptrauth_thread_init_kernel(current);
469 		ptrauth_thread_switch_kernel(current);
470 	}
471 }
472 #endif
473 
474 noinline void lkdtm_CORRUPT_PAC(void)
475 {
476 #ifdef CONFIG_ARM64
477 #define CORRUPT_PAC_ITERATE	10
478 	int i;
479 
480 	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
481 		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH\n");
482 
483 	if (!system_supports_address_auth()) {
484 		pr_err("FAIL: CPU lacks pointer authentication feature\n");
485 		return;
486 	}
487 
488 	pr_info("changing PAC parameters to force function return failure...\n");
489 	/*
490 	 * PAC is a hash value computed from input keys, return address and
491 	 * stack pointer. As pac has fewer bits so there is a chance of
492 	 * collision, so iterate few times to reduce the collision probability.
493 	 */
494 	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
495 		change_pac_parameters();
496 
497 	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
498 #else
499 	pr_err("XFAIL: this test is arm64-only\n");
500 #endif
501 }
502 
503 void lkdtm_FORTIFY_OBJECT(void)
504 {
505 	struct target {
506 		char a[10];
507 	} target[2] = {};
508 	int result;
509 
510 	/*
511 	 * Using volatile prevents the compiler from determining the value of
512 	 * 'size' at compile time. Without that, we would get a compile error
513 	 * rather than a runtime error.
514 	 */
515 	volatile int size = 11;
516 
517 	pr_info("trying to read past the end of a struct\n");
518 
519 	result = memcmp(&target[0], &target[1], size);
520 
521 	/* Print result to prevent the code from being eliminated */
522 	pr_err("FAIL: fortify did not catch an object overread!\n"
523 	       "\"%d\" was the memcmp result.\n", result);
524 }
525 
526 void lkdtm_FORTIFY_SUBOBJECT(void)
527 {
528 	struct target {
529 		char a[10];
530 		char b[10];
531 	} target;
532 	char *src;
533 
534 	src = kmalloc(20, GFP_KERNEL);
535 	strscpy(src, "over ten bytes", 20);
536 
537 	pr_info("trying to strcpy past the end of a member of a struct\n");
538 
539 	/*
540 	 * strncpy(target.a, src, 20); will hit a compile error because the
541 	 * compiler knows at build time that target.a < 20 bytes. Use strcpy()
542 	 * to force a runtime error.
543 	 */
544 	strcpy(target.a, src);
545 
546 	/* Use target.a to prevent the code from being eliminated */
547 	pr_err("FAIL: fortify did not catch an sub-object overrun!\n"
548 	       "\"%s\" was copied.\n", target.a);
549 
550 	kfree(src);
551 }
552