1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This is for all the tests related to logic bugs (e.g. bad dereferences, 4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and 5 * lockups) along with other things that don't fit well into existing LKDTM 6 * test source files. 7 */ 8 #include "lkdtm.h" 9 #include <linux/list.h> 10 #include <linux/sched.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/task_stack.h> 13 #include <linux/uaccess.h> 14 #include <linux/slab.h> 15 16 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML) 17 #include <asm/desc.h> 18 #endif 19 20 struct lkdtm_list { 21 struct list_head node; 22 }; 23 24 /* 25 * Make sure our attempts to over run the kernel stack doesn't trigger 26 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we 27 * recurse past the end of THREAD_SIZE by default. 28 */ 29 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0) 30 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2) 31 #else 32 #define REC_STACK_SIZE (THREAD_SIZE / 8) 33 #endif 34 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2) 35 36 static int recur_count = REC_NUM_DEFAULT; 37 38 static DEFINE_SPINLOCK(lock_me_up); 39 40 /* 41 * Make sure compiler does not optimize this function or stack frame away: 42 * - function marked noinline 43 * - stack variables are marked volatile 44 * - stack variables are written (memset()) and read (buf[..] passed as arg) 45 * - function may have external effects (memzero_explicit()) 46 * - no tail recursion possible 47 */ 48 static int noinline recursive_loop(int remaining) 49 { 50 volatile char buf[REC_STACK_SIZE]; 51 volatile int ret; 52 53 memset((void *)buf, remaining & 0xFF, sizeof(buf)); 54 if (!remaining) 55 ret = 0; 56 else 57 ret = recursive_loop((int)buf[remaining % sizeof(buf)] - 1); 58 memzero_explicit((void *)buf, sizeof(buf)); 59 return ret; 60 } 61 62 /* If the depth is negative, use the default, otherwise keep parameter. */ 63 void __init lkdtm_bugs_init(int *recur_param) 64 { 65 if (*recur_param < 0) 66 *recur_param = recur_count; 67 else 68 recur_count = *recur_param; 69 } 70 71 void lkdtm_PANIC(void) 72 { 73 panic("dumptest"); 74 } 75 76 void lkdtm_BUG(void) 77 { 78 BUG(); 79 } 80 81 static int warn_counter; 82 83 void lkdtm_WARNING(void) 84 { 85 WARN_ON(++warn_counter); 86 } 87 88 void lkdtm_WARNING_MESSAGE(void) 89 { 90 WARN(1, "Warning message trigger count: %d\n", ++warn_counter); 91 } 92 93 void lkdtm_EXCEPTION(void) 94 { 95 *((volatile int *) 0) = 0; 96 } 97 98 void lkdtm_LOOP(void) 99 { 100 for (;;) 101 ; 102 } 103 104 void lkdtm_EXHAUST_STACK(void) 105 { 106 pr_info("Calling function with %lu frame size to depth %d ...\n", 107 REC_STACK_SIZE, recur_count); 108 recursive_loop(recur_count); 109 pr_info("FAIL: survived without exhausting stack?!\n"); 110 } 111 112 static noinline void __lkdtm_CORRUPT_STACK(void *stack) 113 { 114 memset(stack, '\xff', 64); 115 } 116 117 /* This should trip the stack canary, not corrupt the return address. */ 118 noinline void lkdtm_CORRUPT_STACK(void) 119 { 120 /* Use default char array length that triggers stack protection. */ 121 char data[8] __aligned(sizeof(void *)); 122 123 pr_info("Corrupting stack containing char array ...\n"); 124 __lkdtm_CORRUPT_STACK((void *)&data); 125 } 126 127 /* Same as above but will only get a canary with -fstack-protector-strong */ 128 noinline void lkdtm_CORRUPT_STACK_STRONG(void) 129 { 130 union { 131 unsigned short shorts[4]; 132 unsigned long *ptr; 133 } data __aligned(sizeof(void *)); 134 135 pr_info("Corrupting stack containing union ...\n"); 136 __lkdtm_CORRUPT_STACK((void *)&data); 137 } 138 139 static pid_t stack_pid; 140 static unsigned long stack_addr; 141 142 void lkdtm_REPORT_STACK(void) 143 { 144 volatile uintptr_t magic; 145 pid_t pid = task_pid_nr(current); 146 147 if (pid != stack_pid) { 148 pr_info("Starting stack offset tracking for pid %d\n", pid); 149 stack_pid = pid; 150 stack_addr = (uintptr_t)&magic; 151 } 152 153 pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic)); 154 } 155 156 static pid_t stack_canary_pid; 157 static unsigned long stack_canary; 158 static unsigned long stack_canary_offset; 159 160 static noinline void __lkdtm_REPORT_STACK_CANARY(void *stack) 161 { 162 int i = 0; 163 pid_t pid = task_pid_nr(current); 164 unsigned long *canary = (unsigned long *)stack; 165 unsigned long current_offset = 0, init_offset = 0; 166 167 /* Do our best to find the canary in a 16 word window ... */ 168 for (i = 1; i < 16; i++) { 169 canary = (unsigned long *)stack + i; 170 #ifdef CONFIG_STACKPROTECTOR 171 if (*canary == current->stack_canary) 172 current_offset = i; 173 if (*canary == init_task.stack_canary) 174 init_offset = i; 175 #endif 176 } 177 178 if (current_offset == 0) { 179 /* 180 * If the canary doesn't match what's in the task_struct, 181 * we're either using a global canary or the stack frame 182 * layout changed. 183 */ 184 if (init_offset != 0) { 185 pr_err("FAIL: global stack canary found at offset %ld (canary for pid %d matches init_task's)!\n", 186 init_offset, pid); 187 } else { 188 pr_warn("FAIL: did not correctly locate stack canary :(\n"); 189 pr_expected_config(CONFIG_STACKPROTECTOR); 190 } 191 192 return; 193 } else if (init_offset != 0) { 194 pr_warn("WARNING: found both current and init_task canaries nearby?!\n"); 195 } 196 197 canary = (unsigned long *)stack + current_offset; 198 if (stack_canary_pid == 0) { 199 stack_canary = *canary; 200 stack_canary_pid = pid; 201 stack_canary_offset = current_offset; 202 pr_info("Recorded stack canary for pid %d at offset %ld\n", 203 stack_canary_pid, stack_canary_offset); 204 } else if (pid == stack_canary_pid) { 205 pr_warn("ERROR: saw pid %d again -- please use a new pid\n", pid); 206 } else { 207 if (current_offset != stack_canary_offset) { 208 pr_warn("ERROR: canary offset changed from %ld to %ld!?\n", 209 stack_canary_offset, current_offset); 210 return; 211 } 212 213 if (*canary == stack_canary) { 214 pr_warn("FAIL: canary identical for pid %d and pid %d at offset %ld!\n", 215 stack_canary_pid, pid, current_offset); 216 } else { 217 pr_info("ok: stack canaries differ between pid %d and pid %d at offset %ld.\n", 218 stack_canary_pid, pid, current_offset); 219 /* Reset the test. */ 220 stack_canary_pid = 0; 221 } 222 } 223 } 224 225 void lkdtm_REPORT_STACK_CANARY(void) 226 { 227 /* Use default char array length that triggers stack protection. */ 228 char data[8] __aligned(sizeof(void *)) = { }; 229 230 __lkdtm_REPORT_STACK_CANARY((void *)&data); 231 } 232 233 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void) 234 { 235 static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5}; 236 u32 *p; 237 u32 val = 0x12345678; 238 239 p = (u32 *)(data + 1); 240 if (*p == 0) 241 val = 0x87654321; 242 *p = val; 243 244 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 245 pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n"); 246 } 247 248 void lkdtm_SOFTLOCKUP(void) 249 { 250 preempt_disable(); 251 for (;;) 252 cpu_relax(); 253 } 254 255 void lkdtm_HARDLOCKUP(void) 256 { 257 local_irq_disable(); 258 for (;;) 259 cpu_relax(); 260 } 261 262 void lkdtm_SPINLOCKUP(void) 263 { 264 /* Must be called twice to trigger. */ 265 spin_lock(&lock_me_up); 266 /* Let sparse know we intended to exit holding the lock. */ 267 __release(&lock_me_up); 268 } 269 270 void lkdtm_HUNG_TASK(void) 271 { 272 set_current_state(TASK_UNINTERRUPTIBLE); 273 schedule(); 274 } 275 276 volatile unsigned int huge = INT_MAX - 2; 277 volatile unsigned int ignored; 278 279 void lkdtm_OVERFLOW_SIGNED(void) 280 { 281 int value; 282 283 value = huge; 284 pr_info("Normal signed addition ...\n"); 285 value += 1; 286 ignored = value; 287 288 pr_info("Overflowing signed addition ...\n"); 289 value += 4; 290 ignored = value; 291 } 292 293 294 void lkdtm_OVERFLOW_UNSIGNED(void) 295 { 296 unsigned int value; 297 298 value = huge; 299 pr_info("Normal unsigned addition ...\n"); 300 value += 1; 301 ignored = value; 302 303 pr_info("Overflowing unsigned addition ...\n"); 304 value += 4; 305 ignored = value; 306 } 307 308 /* Intentionally using old-style flex array definition of 1 byte. */ 309 struct array_bounds_flex_array { 310 int one; 311 int two; 312 char data[1]; 313 }; 314 315 struct array_bounds { 316 int one; 317 int two; 318 char data[8]; 319 int three; 320 }; 321 322 void lkdtm_ARRAY_BOUNDS(void) 323 { 324 struct array_bounds_flex_array *not_checked; 325 struct array_bounds *checked; 326 volatile int i; 327 328 not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL); 329 checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL); 330 331 pr_info("Array access within bounds ...\n"); 332 /* For both, touch all bytes in the actual member size. */ 333 for (i = 0; i < sizeof(checked->data); i++) 334 checked->data[i] = 'A'; 335 /* 336 * For the uninstrumented flex array member, also touch 1 byte 337 * beyond to verify it is correctly uninstrumented. 338 */ 339 for (i = 0; i < sizeof(not_checked->data) + 1; i++) 340 not_checked->data[i] = 'A'; 341 342 pr_info("Array access beyond bounds ...\n"); 343 for (i = 0; i < sizeof(checked->data) + 1; i++) 344 checked->data[i] = 'B'; 345 346 kfree(not_checked); 347 kfree(checked); 348 pr_err("FAIL: survived array bounds overflow!\n"); 349 pr_expected_config(CONFIG_UBSAN_BOUNDS); 350 } 351 352 void lkdtm_CORRUPT_LIST_ADD(void) 353 { 354 /* 355 * Initially, an empty list via LIST_HEAD: 356 * test_head.next = &test_head 357 * test_head.prev = &test_head 358 */ 359 LIST_HEAD(test_head); 360 struct lkdtm_list good, bad; 361 void *target[2] = { }; 362 void *redirection = ⌖ 363 364 pr_info("attempting good list addition\n"); 365 366 /* 367 * Adding to the list performs these actions: 368 * test_head.next->prev = &good.node 369 * good.node.next = test_head.next 370 * good.node.prev = test_head 371 * test_head.next = good.node 372 */ 373 list_add(&good.node, &test_head); 374 375 pr_info("attempting corrupted list addition\n"); 376 /* 377 * In simulating this "write what where" primitive, the "what" is 378 * the address of &bad.node, and the "where" is the address held 379 * by "redirection". 380 */ 381 test_head.next = redirection; 382 list_add(&bad.node, &test_head); 383 384 if (target[0] == NULL && target[1] == NULL) 385 pr_err("Overwrite did not happen, but no BUG?!\n"); 386 else { 387 pr_err("list_add() corruption not detected!\n"); 388 pr_expected_config(CONFIG_DEBUG_LIST); 389 } 390 } 391 392 void lkdtm_CORRUPT_LIST_DEL(void) 393 { 394 LIST_HEAD(test_head); 395 struct lkdtm_list item; 396 void *target[2] = { }; 397 void *redirection = ⌖ 398 399 list_add(&item.node, &test_head); 400 401 pr_info("attempting good list removal\n"); 402 list_del(&item.node); 403 404 pr_info("attempting corrupted list removal\n"); 405 list_add(&item.node, &test_head); 406 407 /* As with the list_add() test above, this corrupts "next". */ 408 item.node.next = redirection; 409 list_del(&item.node); 410 411 if (target[0] == NULL && target[1] == NULL) 412 pr_err("Overwrite did not happen, but no BUG?!\n"); 413 else { 414 pr_err("list_del() corruption not detected!\n"); 415 pr_expected_config(CONFIG_DEBUG_LIST); 416 } 417 } 418 419 /* Test that VMAP_STACK is actually allocating with a leading guard page */ 420 void lkdtm_STACK_GUARD_PAGE_LEADING(void) 421 { 422 const unsigned char *stack = task_stack_page(current); 423 const unsigned char *ptr = stack - 1; 424 volatile unsigned char byte; 425 426 pr_info("attempting bad read from page below current stack\n"); 427 428 byte = *ptr; 429 430 pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte); 431 } 432 433 /* Test that VMAP_STACK is actually allocating with a trailing guard page */ 434 void lkdtm_STACK_GUARD_PAGE_TRAILING(void) 435 { 436 const unsigned char *stack = task_stack_page(current); 437 const unsigned char *ptr = stack + THREAD_SIZE; 438 volatile unsigned char byte; 439 440 pr_info("attempting bad read from page above current stack\n"); 441 442 byte = *ptr; 443 444 pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte); 445 } 446 447 void lkdtm_UNSET_SMEP(void) 448 { 449 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML) 450 #define MOV_CR4_DEPTH 64 451 void (*direct_write_cr4)(unsigned long val); 452 unsigned char *insn; 453 unsigned long cr4; 454 int i; 455 456 cr4 = native_read_cr4(); 457 458 if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) { 459 pr_err("FAIL: SMEP not in use\n"); 460 return; 461 } 462 cr4 &= ~(X86_CR4_SMEP); 463 464 pr_info("trying to clear SMEP normally\n"); 465 native_write_cr4(cr4); 466 if (cr4 == native_read_cr4()) { 467 pr_err("FAIL: pinning SMEP failed!\n"); 468 cr4 |= X86_CR4_SMEP; 469 pr_info("restoring SMEP\n"); 470 native_write_cr4(cr4); 471 return; 472 } 473 pr_info("ok: SMEP did not get cleared\n"); 474 475 /* 476 * To test the post-write pinning verification we need to call 477 * directly into the middle of native_write_cr4() where the 478 * cr4 write happens, skipping any pinning. This searches for 479 * the cr4 writing instruction. 480 */ 481 insn = (unsigned char *)native_write_cr4; 482 for (i = 0; i < MOV_CR4_DEPTH; i++) { 483 /* mov %rdi, %cr4 */ 484 if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7) 485 break; 486 /* mov %rdi,%rax; mov %rax, %cr4 */ 487 if (insn[i] == 0x48 && insn[i+1] == 0x89 && 488 insn[i+2] == 0xf8 && insn[i+3] == 0x0f && 489 insn[i+4] == 0x22 && insn[i+5] == 0xe0) 490 break; 491 } 492 if (i >= MOV_CR4_DEPTH) { 493 pr_info("ok: cannot locate cr4 writing call gadget\n"); 494 return; 495 } 496 direct_write_cr4 = (void *)(insn + i); 497 498 pr_info("trying to clear SMEP with call gadget\n"); 499 direct_write_cr4(cr4); 500 if (native_read_cr4() & X86_CR4_SMEP) { 501 pr_info("ok: SMEP removal was reverted\n"); 502 } else { 503 pr_err("FAIL: cleared SMEP not detected!\n"); 504 cr4 |= X86_CR4_SMEP; 505 pr_info("restoring SMEP\n"); 506 native_write_cr4(cr4); 507 } 508 #else 509 pr_err("XFAIL: this test is x86_64-only\n"); 510 #endif 511 } 512 513 void lkdtm_DOUBLE_FAULT(void) 514 { 515 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML) 516 /* 517 * Trigger #DF by setting the stack limit to zero. This clobbers 518 * a GDT TLS slot, which is okay because the current task will die 519 * anyway due to the double fault. 520 */ 521 struct desc_struct d = { 522 .type = 3, /* expand-up, writable, accessed data */ 523 .p = 1, /* present */ 524 .d = 1, /* 32-bit */ 525 .g = 0, /* limit in bytes */ 526 .s = 1, /* not system */ 527 }; 528 529 local_irq_disable(); 530 write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()), 531 GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S); 532 533 /* 534 * Put our zero-limit segment in SS and then trigger a fault. The 535 * 4-byte access to (%esp) will fault with #SS, and the attempt to 536 * deliver the fault will recursively cause #SS and result in #DF. 537 * This whole process happens while NMIs and MCEs are blocked by the 538 * MOV SS window. This is nice because an NMI with an invalid SS 539 * would also double-fault, resulting in the NMI or MCE being lost. 540 */ 541 asm volatile ("movw %0, %%ss; addl $0, (%%esp)" :: 542 "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3))); 543 544 pr_err("FAIL: tried to double fault but didn't die\n"); 545 #else 546 pr_err("XFAIL: this test is ia32-only\n"); 547 #endif 548 } 549 550 #ifdef CONFIG_ARM64 551 static noinline void change_pac_parameters(void) 552 { 553 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) { 554 /* Reset the keys of current task */ 555 ptrauth_thread_init_kernel(current); 556 ptrauth_thread_switch_kernel(current); 557 } 558 } 559 #endif 560 561 noinline void lkdtm_CORRUPT_PAC(void) 562 { 563 #ifdef CONFIG_ARM64 564 #define CORRUPT_PAC_ITERATE 10 565 int i; 566 567 if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) 568 pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n"); 569 570 if (!system_supports_address_auth()) { 571 pr_err("FAIL: CPU lacks pointer authentication feature\n"); 572 return; 573 } 574 575 pr_info("changing PAC parameters to force function return failure...\n"); 576 /* 577 * PAC is a hash value computed from input keys, return address and 578 * stack pointer. As pac has fewer bits so there is a chance of 579 * collision, so iterate few times to reduce the collision probability. 580 */ 581 for (i = 0; i < CORRUPT_PAC_ITERATE; i++) 582 change_pac_parameters(); 583 584 pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n"); 585 #else 586 pr_err("XFAIL: this test is arm64-only\n"); 587 #endif 588 } 589