xref: /openbmc/linux/drivers/misc/lkdtm/bugs.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 
15 struct lkdtm_list {
16 	struct list_head node;
17 };
18 
19 /*
20  * Make sure our attempts to over run the kernel stack doesn't trigger
21  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
22  * recurse past the end of THREAD_SIZE by default.
23  */
24 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
25 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
26 #else
27 #define REC_STACK_SIZE (THREAD_SIZE / 8)
28 #endif
29 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
30 
31 static int recur_count = REC_NUM_DEFAULT;
32 
33 static DEFINE_SPINLOCK(lock_me_up);
34 
35 /*
36  * Make sure compiler does not optimize this function or stack frame away:
37  * - function marked noinline
38  * - stack variables are marked volatile
39  * - stack variables are written (memset()) and read (pr_info())
40  * - function has external effects (pr_info())
41  * */
42 static int noinline recursive_loop(int remaining)
43 {
44 	volatile char buf[REC_STACK_SIZE];
45 
46 	memset((void *)buf, remaining & 0xFF, sizeof(buf));
47 	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
48 		recur_count);
49 	if (!remaining)
50 		return 0;
51 	else
52 		return recursive_loop(remaining - 1);
53 }
54 
55 /* If the depth is negative, use the default, otherwise keep parameter. */
56 void __init lkdtm_bugs_init(int *recur_param)
57 {
58 	if (*recur_param < 0)
59 		*recur_param = recur_count;
60 	else
61 		recur_count = *recur_param;
62 }
63 
64 void lkdtm_PANIC(void)
65 {
66 	panic("dumptest");
67 }
68 
69 void lkdtm_BUG(void)
70 {
71 	BUG();
72 }
73 
74 static int warn_counter;
75 
76 void lkdtm_WARNING(void)
77 {
78 	WARN_ON(++warn_counter);
79 }
80 
81 void lkdtm_WARNING_MESSAGE(void)
82 {
83 	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
84 }
85 
86 void lkdtm_EXCEPTION(void)
87 {
88 	*((volatile int *) 0) = 0;
89 }
90 
91 void lkdtm_LOOP(void)
92 {
93 	for (;;)
94 		;
95 }
96 
97 void lkdtm_EXHAUST_STACK(void)
98 {
99 	pr_info("Calling function with %lu frame size to depth %d ...\n",
100 		REC_STACK_SIZE, recur_count);
101 	recursive_loop(recur_count);
102 	pr_info("FAIL: survived without exhausting stack?!\n");
103 }
104 
105 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
106 {
107 	memset(stack, '\xff', 64);
108 }
109 
110 /* This should trip the stack canary, not corrupt the return address. */
111 noinline void lkdtm_CORRUPT_STACK(void)
112 {
113 	/* Use default char array length that triggers stack protection. */
114 	char data[8] __aligned(sizeof(void *));
115 
116 	__lkdtm_CORRUPT_STACK(&data);
117 
118 	pr_info("Corrupted stack containing char array ...\n");
119 }
120 
121 /* Same as above but will only get a canary with -fstack-protector-strong */
122 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
123 {
124 	union {
125 		unsigned short shorts[4];
126 		unsigned long *ptr;
127 	} data __aligned(sizeof(void *));
128 
129 	__lkdtm_CORRUPT_STACK(&data);
130 
131 	pr_info("Corrupted stack containing union ...\n");
132 }
133 
134 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
135 {
136 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
137 	u32 *p;
138 	u32 val = 0x12345678;
139 
140 	p = (u32 *)(data + 1);
141 	if (*p == 0)
142 		val = 0x87654321;
143 	*p = val;
144 }
145 
146 void lkdtm_SOFTLOCKUP(void)
147 {
148 	preempt_disable();
149 	for (;;)
150 		cpu_relax();
151 }
152 
153 void lkdtm_HARDLOCKUP(void)
154 {
155 	local_irq_disable();
156 	for (;;)
157 		cpu_relax();
158 }
159 
160 void lkdtm_SPINLOCKUP(void)
161 {
162 	/* Must be called twice to trigger. */
163 	spin_lock(&lock_me_up);
164 	/* Let sparse know we intended to exit holding the lock. */
165 	__release(&lock_me_up);
166 }
167 
168 void lkdtm_HUNG_TASK(void)
169 {
170 	set_current_state(TASK_UNINTERRUPTIBLE);
171 	schedule();
172 }
173 
174 void lkdtm_CORRUPT_LIST_ADD(void)
175 {
176 	/*
177 	 * Initially, an empty list via LIST_HEAD:
178 	 *	test_head.next = &test_head
179 	 *	test_head.prev = &test_head
180 	 */
181 	LIST_HEAD(test_head);
182 	struct lkdtm_list good, bad;
183 	void *target[2] = { };
184 	void *redirection = &target;
185 
186 	pr_info("attempting good list addition\n");
187 
188 	/*
189 	 * Adding to the list performs these actions:
190 	 *	test_head.next->prev = &good.node
191 	 *	good.node.next = test_head.next
192 	 *	good.node.prev = test_head
193 	 *	test_head.next = good.node
194 	 */
195 	list_add(&good.node, &test_head);
196 
197 	pr_info("attempting corrupted list addition\n");
198 	/*
199 	 * In simulating this "write what where" primitive, the "what" is
200 	 * the address of &bad.node, and the "where" is the address held
201 	 * by "redirection".
202 	 */
203 	test_head.next = redirection;
204 	list_add(&bad.node, &test_head);
205 
206 	if (target[0] == NULL && target[1] == NULL)
207 		pr_err("Overwrite did not happen, but no BUG?!\n");
208 	else
209 		pr_err("list_add() corruption not detected!\n");
210 }
211 
212 void lkdtm_CORRUPT_LIST_DEL(void)
213 {
214 	LIST_HEAD(test_head);
215 	struct lkdtm_list item;
216 	void *target[2] = { };
217 	void *redirection = &target;
218 
219 	list_add(&item.node, &test_head);
220 
221 	pr_info("attempting good list removal\n");
222 	list_del(&item.node);
223 
224 	pr_info("attempting corrupted list removal\n");
225 	list_add(&item.node, &test_head);
226 
227 	/* As with the list_add() test above, this corrupts "next". */
228 	item.node.next = redirection;
229 	list_del(&item.node);
230 
231 	if (target[0] == NULL && target[1] == NULL)
232 		pr_err("Overwrite did not happen, but no BUG?!\n");
233 	else
234 		pr_err("list_del() corruption not detected!\n");
235 }
236 
237 /* Test if unbalanced set_fs(KERNEL_DS)/set_fs(USER_DS) check exists. */
238 void lkdtm_CORRUPT_USER_DS(void)
239 {
240 	pr_info("setting bad task size limit\n");
241 	set_fs(KERNEL_DS);
242 
243 	/* Make sure we do not keep running with a KERNEL_DS! */
244 	force_sig(SIGKILL);
245 }
246 
247 /* Test that VMAP_STACK is actually allocating with a leading guard page */
248 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
249 {
250 	const unsigned char *stack = task_stack_page(current);
251 	const unsigned char *ptr = stack - 1;
252 	volatile unsigned char byte;
253 
254 	pr_info("attempting bad read from page below current stack\n");
255 
256 	byte = *ptr;
257 
258 	pr_err("FAIL: accessed page before stack!\n");
259 }
260 
261 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
262 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
263 {
264 	const unsigned char *stack = task_stack_page(current);
265 	const unsigned char *ptr = stack + THREAD_SIZE;
266 	volatile unsigned char byte;
267 
268 	pr_info("attempting bad read from page above current stack\n");
269 
270 	byte = *ptr;
271 
272 	pr_err("FAIL: accessed page after stack!\n");
273 }
274 
275 void lkdtm_UNSET_SMEP(void)
276 {
277 #ifdef CONFIG_X86_64
278 #define MOV_CR4_DEPTH	64
279 	void (*direct_write_cr4)(unsigned long val);
280 	unsigned char *insn;
281 	unsigned long cr4;
282 	int i;
283 
284 	cr4 = native_read_cr4();
285 
286 	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
287 		pr_err("FAIL: SMEP not in use\n");
288 		return;
289 	}
290 	cr4 &= ~(X86_CR4_SMEP);
291 
292 	pr_info("trying to clear SMEP normally\n");
293 	native_write_cr4(cr4);
294 	if (cr4 == native_read_cr4()) {
295 		pr_err("FAIL: pinning SMEP failed!\n");
296 		cr4 |= X86_CR4_SMEP;
297 		pr_info("restoring SMEP\n");
298 		native_write_cr4(cr4);
299 		return;
300 	}
301 	pr_info("ok: SMEP did not get cleared\n");
302 
303 	/*
304 	 * To test the post-write pinning verification we need to call
305 	 * directly into the middle of native_write_cr4() where the
306 	 * cr4 write happens, skipping any pinning. This searches for
307 	 * the cr4 writing instruction.
308 	 */
309 	insn = (unsigned char *)native_write_cr4;
310 	for (i = 0; i < MOV_CR4_DEPTH; i++) {
311 		/* mov %rdi, %cr4 */
312 		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
313 			break;
314 		/* mov %rdi,%rax; mov %rax, %cr4 */
315 		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
316 		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
317 		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
318 			break;
319 	}
320 	if (i >= MOV_CR4_DEPTH) {
321 		pr_info("ok: cannot locate cr4 writing call gadget\n");
322 		return;
323 	}
324 	direct_write_cr4 = (void *)(insn + i);
325 
326 	pr_info("trying to clear SMEP with call gadget\n");
327 	direct_write_cr4(cr4);
328 	if (native_read_cr4() & X86_CR4_SMEP) {
329 		pr_info("ok: SMEP removal was reverted\n");
330 	} else {
331 		pr_err("FAIL: cleared SMEP not detected!\n");
332 		cr4 |= X86_CR4_SMEP;
333 		pr_info("restoring SMEP\n");
334 		native_write_cr4(cr4);
335 	}
336 #else
337 	pr_err("FAIL: this test is x86_64-only\n");
338 #endif
339 }
340