1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This is for all the tests related to logic bugs (e.g. bad dereferences, 4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and 5 * lockups) along with other things that don't fit well into existing LKDTM 6 * test source files. 7 */ 8 #include "lkdtm.h" 9 #include <linux/list.h> 10 #include <linux/sched.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/task_stack.h> 13 #include <linux/uaccess.h> 14 #include <linux/slab.h> 15 16 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML) 17 #include <asm/desc.h> 18 #endif 19 20 struct lkdtm_list { 21 struct list_head node; 22 }; 23 24 /* 25 * Make sure our attempts to over run the kernel stack doesn't trigger 26 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we 27 * recurse past the end of THREAD_SIZE by default. 28 */ 29 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0) 30 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2) 31 #else 32 #define REC_STACK_SIZE (THREAD_SIZE / 8) 33 #endif 34 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2) 35 36 static int recur_count = REC_NUM_DEFAULT; 37 38 static DEFINE_SPINLOCK(lock_me_up); 39 40 /* 41 * Make sure compiler does not optimize this function or stack frame away: 42 * - function marked noinline 43 * - stack variables are marked volatile 44 * - stack variables are written (memset()) and read (pr_info()) 45 * - function has external effects (pr_info()) 46 * */ 47 static int noinline recursive_loop(int remaining) 48 { 49 volatile char buf[REC_STACK_SIZE]; 50 51 memset((void *)buf, remaining & 0xFF, sizeof(buf)); 52 pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)], 53 recur_count); 54 if (!remaining) 55 return 0; 56 else 57 return recursive_loop(remaining - 1); 58 } 59 60 /* If the depth is negative, use the default, otherwise keep parameter. */ 61 void __init lkdtm_bugs_init(int *recur_param) 62 { 63 if (*recur_param < 0) 64 *recur_param = recur_count; 65 else 66 recur_count = *recur_param; 67 } 68 69 void lkdtm_PANIC(void) 70 { 71 panic("dumptest"); 72 } 73 74 void lkdtm_BUG(void) 75 { 76 BUG(); 77 } 78 79 static int warn_counter; 80 81 void lkdtm_WARNING(void) 82 { 83 WARN_ON(++warn_counter); 84 } 85 86 void lkdtm_WARNING_MESSAGE(void) 87 { 88 WARN(1, "Warning message trigger count: %d\n", ++warn_counter); 89 } 90 91 void lkdtm_EXCEPTION(void) 92 { 93 *((volatile int *) 0) = 0; 94 } 95 96 void lkdtm_LOOP(void) 97 { 98 for (;;) 99 ; 100 } 101 102 void lkdtm_EXHAUST_STACK(void) 103 { 104 pr_info("Calling function with %lu frame size to depth %d ...\n", 105 REC_STACK_SIZE, recur_count); 106 recursive_loop(recur_count); 107 pr_info("FAIL: survived without exhausting stack?!\n"); 108 } 109 110 static noinline void __lkdtm_CORRUPT_STACK(void *stack) 111 { 112 memset(stack, '\xff', 64); 113 } 114 115 /* This should trip the stack canary, not corrupt the return address. */ 116 noinline void lkdtm_CORRUPT_STACK(void) 117 { 118 /* Use default char array length that triggers stack protection. */ 119 char data[8] __aligned(sizeof(void *)); 120 121 pr_info("Corrupting stack containing char array ...\n"); 122 __lkdtm_CORRUPT_STACK((void *)&data); 123 } 124 125 /* Same as above but will only get a canary with -fstack-protector-strong */ 126 noinline void lkdtm_CORRUPT_STACK_STRONG(void) 127 { 128 union { 129 unsigned short shorts[4]; 130 unsigned long *ptr; 131 } data __aligned(sizeof(void *)); 132 133 pr_info("Corrupting stack containing union ...\n"); 134 __lkdtm_CORRUPT_STACK((void *)&data); 135 } 136 137 static pid_t stack_pid; 138 static unsigned long stack_addr; 139 140 void lkdtm_REPORT_STACK(void) 141 { 142 volatile uintptr_t magic; 143 pid_t pid = task_pid_nr(current); 144 145 if (pid != stack_pid) { 146 pr_info("Starting stack offset tracking for pid %d\n", pid); 147 stack_pid = pid; 148 stack_addr = (uintptr_t)&magic; 149 } 150 151 pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic)); 152 } 153 154 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void) 155 { 156 static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5}; 157 u32 *p; 158 u32 val = 0x12345678; 159 160 p = (u32 *)(data + 1); 161 if (*p == 0) 162 val = 0x87654321; 163 *p = val; 164 165 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 166 pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n"); 167 } 168 169 void lkdtm_SOFTLOCKUP(void) 170 { 171 preempt_disable(); 172 for (;;) 173 cpu_relax(); 174 } 175 176 void lkdtm_HARDLOCKUP(void) 177 { 178 local_irq_disable(); 179 for (;;) 180 cpu_relax(); 181 } 182 183 void lkdtm_SPINLOCKUP(void) 184 { 185 /* Must be called twice to trigger. */ 186 spin_lock(&lock_me_up); 187 /* Let sparse know we intended to exit holding the lock. */ 188 __release(&lock_me_up); 189 } 190 191 void lkdtm_HUNG_TASK(void) 192 { 193 set_current_state(TASK_UNINTERRUPTIBLE); 194 schedule(); 195 } 196 197 volatile unsigned int huge = INT_MAX - 2; 198 volatile unsigned int ignored; 199 200 void lkdtm_OVERFLOW_SIGNED(void) 201 { 202 int value; 203 204 value = huge; 205 pr_info("Normal signed addition ...\n"); 206 value += 1; 207 ignored = value; 208 209 pr_info("Overflowing signed addition ...\n"); 210 value += 4; 211 ignored = value; 212 } 213 214 215 void lkdtm_OVERFLOW_UNSIGNED(void) 216 { 217 unsigned int value; 218 219 value = huge; 220 pr_info("Normal unsigned addition ...\n"); 221 value += 1; 222 ignored = value; 223 224 pr_info("Overflowing unsigned addition ...\n"); 225 value += 4; 226 ignored = value; 227 } 228 229 /* Intentionally using old-style flex array definition of 1 byte. */ 230 struct array_bounds_flex_array { 231 int one; 232 int two; 233 char data[1]; 234 }; 235 236 struct array_bounds { 237 int one; 238 int two; 239 char data[8]; 240 int three; 241 }; 242 243 void lkdtm_ARRAY_BOUNDS(void) 244 { 245 struct array_bounds_flex_array *not_checked; 246 struct array_bounds *checked; 247 volatile int i; 248 249 not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL); 250 checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL); 251 252 pr_info("Array access within bounds ...\n"); 253 /* For both, touch all bytes in the actual member size. */ 254 for (i = 0; i < sizeof(checked->data); i++) 255 checked->data[i] = 'A'; 256 /* 257 * For the uninstrumented flex array member, also touch 1 byte 258 * beyond to verify it is correctly uninstrumented. 259 */ 260 for (i = 0; i < sizeof(not_checked->data) + 1; i++) 261 not_checked->data[i] = 'A'; 262 263 pr_info("Array access beyond bounds ...\n"); 264 for (i = 0; i < sizeof(checked->data) + 1; i++) 265 checked->data[i] = 'B'; 266 267 kfree(not_checked); 268 kfree(checked); 269 pr_err("FAIL: survived array bounds overflow!\n"); 270 } 271 272 void lkdtm_CORRUPT_LIST_ADD(void) 273 { 274 /* 275 * Initially, an empty list via LIST_HEAD: 276 * test_head.next = &test_head 277 * test_head.prev = &test_head 278 */ 279 LIST_HEAD(test_head); 280 struct lkdtm_list good, bad; 281 void *target[2] = { }; 282 void *redirection = ⌖ 283 284 pr_info("attempting good list addition\n"); 285 286 /* 287 * Adding to the list performs these actions: 288 * test_head.next->prev = &good.node 289 * good.node.next = test_head.next 290 * good.node.prev = test_head 291 * test_head.next = good.node 292 */ 293 list_add(&good.node, &test_head); 294 295 pr_info("attempting corrupted list addition\n"); 296 /* 297 * In simulating this "write what where" primitive, the "what" is 298 * the address of &bad.node, and the "where" is the address held 299 * by "redirection". 300 */ 301 test_head.next = redirection; 302 list_add(&bad.node, &test_head); 303 304 if (target[0] == NULL && target[1] == NULL) 305 pr_err("Overwrite did not happen, but no BUG?!\n"); 306 else { 307 pr_err("list_add() corruption not detected!\n"); 308 pr_expected_config(CONFIG_DEBUG_LIST); 309 } 310 } 311 312 void lkdtm_CORRUPT_LIST_DEL(void) 313 { 314 LIST_HEAD(test_head); 315 struct lkdtm_list item; 316 void *target[2] = { }; 317 void *redirection = ⌖ 318 319 list_add(&item.node, &test_head); 320 321 pr_info("attempting good list removal\n"); 322 list_del(&item.node); 323 324 pr_info("attempting corrupted list removal\n"); 325 list_add(&item.node, &test_head); 326 327 /* As with the list_add() test above, this corrupts "next". */ 328 item.node.next = redirection; 329 list_del(&item.node); 330 331 if (target[0] == NULL && target[1] == NULL) 332 pr_err("Overwrite did not happen, but no BUG?!\n"); 333 else { 334 pr_err("list_del() corruption not detected!\n"); 335 pr_expected_config(CONFIG_DEBUG_LIST); 336 } 337 } 338 339 /* Test that VMAP_STACK is actually allocating with a leading guard page */ 340 void lkdtm_STACK_GUARD_PAGE_LEADING(void) 341 { 342 const unsigned char *stack = task_stack_page(current); 343 const unsigned char *ptr = stack - 1; 344 volatile unsigned char byte; 345 346 pr_info("attempting bad read from page below current stack\n"); 347 348 byte = *ptr; 349 350 pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte); 351 } 352 353 /* Test that VMAP_STACK is actually allocating with a trailing guard page */ 354 void lkdtm_STACK_GUARD_PAGE_TRAILING(void) 355 { 356 const unsigned char *stack = task_stack_page(current); 357 const unsigned char *ptr = stack + THREAD_SIZE; 358 volatile unsigned char byte; 359 360 pr_info("attempting bad read from page above current stack\n"); 361 362 byte = *ptr; 363 364 pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte); 365 } 366 367 void lkdtm_UNSET_SMEP(void) 368 { 369 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML) 370 #define MOV_CR4_DEPTH 64 371 void (*direct_write_cr4)(unsigned long val); 372 unsigned char *insn; 373 unsigned long cr4; 374 int i; 375 376 cr4 = native_read_cr4(); 377 378 if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) { 379 pr_err("FAIL: SMEP not in use\n"); 380 return; 381 } 382 cr4 &= ~(X86_CR4_SMEP); 383 384 pr_info("trying to clear SMEP normally\n"); 385 native_write_cr4(cr4); 386 if (cr4 == native_read_cr4()) { 387 pr_err("FAIL: pinning SMEP failed!\n"); 388 cr4 |= X86_CR4_SMEP; 389 pr_info("restoring SMEP\n"); 390 native_write_cr4(cr4); 391 return; 392 } 393 pr_info("ok: SMEP did not get cleared\n"); 394 395 /* 396 * To test the post-write pinning verification we need to call 397 * directly into the middle of native_write_cr4() where the 398 * cr4 write happens, skipping any pinning. This searches for 399 * the cr4 writing instruction. 400 */ 401 insn = (unsigned char *)native_write_cr4; 402 for (i = 0; i < MOV_CR4_DEPTH; i++) { 403 /* mov %rdi, %cr4 */ 404 if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7) 405 break; 406 /* mov %rdi,%rax; mov %rax, %cr4 */ 407 if (insn[i] == 0x48 && insn[i+1] == 0x89 && 408 insn[i+2] == 0xf8 && insn[i+3] == 0x0f && 409 insn[i+4] == 0x22 && insn[i+5] == 0xe0) 410 break; 411 } 412 if (i >= MOV_CR4_DEPTH) { 413 pr_info("ok: cannot locate cr4 writing call gadget\n"); 414 return; 415 } 416 direct_write_cr4 = (void *)(insn + i); 417 418 pr_info("trying to clear SMEP with call gadget\n"); 419 direct_write_cr4(cr4); 420 if (native_read_cr4() & X86_CR4_SMEP) { 421 pr_info("ok: SMEP removal was reverted\n"); 422 } else { 423 pr_err("FAIL: cleared SMEP not detected!\n"); 424 cr4 |= X86_CR4_SMEP; 425 pr_info("restoring SMEP\n"); 426 native_write_cr4(cr4); 427 } 428 #else 429 pr_err("XFAIL: this test is x86_64-only\n"); 430 #endif 431 } 432 433 void lkdtm_DOUBLE_FAULT(void) 434 { 435 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML) 436 /* 437 * Trigger #DF by setting the stack limit to zero. This clobbers 438 * a GDT TLS slot, which is okay because the current task will die 439 * anyway due to the double fault. 440 */ 441 struct desc_struct d = { 442 .type = 3, /* expand-up, writable, accessed data */ 443 .p = 1, /* present */ 444 .d = 1, /* 32-bit */ 445 .g = 0, /* limit in bytes */ 446 .s = 1, /* not system */ 447 }; 448 449 local_irq_disable(); 450 write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()), 451 GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S); 452 453 /* 454 * Put our zero-limit segment in SS and then trigger a fault. The 455 * 4-byte access to (%esp) will fault with #SS, and the attempt to 456 * deliver the fault will recursively cause #SS and result in #DF. 457 * This whole process happens while NMIs and MCEs are blocked by the 458 * MOV SS window. This is nice because an NMI with an invalid SS 459 * would also double-fault, resulting in the NMI or MCE being lost. 460 */ 461 asm volatile ("movw %0, %%ss; addl $0, (%%esp)" :: 462 "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3))); 463 464 pr_err("FAIL: tried to double fault but didn't die\n"); 465 #else 466 pr_err("XFAIL: this test is ia32-only\n"); 467 #endif 468 } 469 470 #ifdef CONFIG_ARM64 471 static noinline void change_pac_parameters(void) 472 { 473 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) { 474 /* Reset the keys of current task */ 475 ptrauth_thread_init_kernel(current); 476 ptrauth_thread_switch_kernel(current); 477 } 478 } 479 #endif 480 481 noinline void lkdtm_CORRUPT_PAC(void) 482 { 483 #ifdef CONFIG_ARM64 484 #define CORRUPT_PAC_ITERATE 10 485 int i; 486 487 if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) 488 pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n"); 489 490 if (!system_supports_address_auth()) { 491 pr_err("FAIL: CPU lacks pointer authentication feature\n"); 492 return; 493 } 494 495 pr_info("changing PAC parameters to force function return failure...\n"); 496 /* 497 * PAC is a hash value computed from input keys, return address and 498 * stack pointer. As pac has fewer bits so there is a chance of 499 * collision, so iterate few times to reduce the collision probability. 500 */ 501 for (i = 0; i < CORRUPT_PAC_ITERATE; i++) 502 change_pac_parameters(); 503 504 pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n"); 505 #else 506 pr_err("XFAIL: this test is arm64-only\n"); 507 #endif 508 } 509 510 void lkdtm_FORTIFY_OBJECT(void) 511 { 512 struct target { 513 char a[10]; 514 } target[2] = {}; 515 int result; 516 517 /* 518 * Using volatile prevents the compiler from determining the value of 519 * 'size' at compile time. Without that, we would get a compile error 520 * rather than a runtime error. 521 */ 522 volatile int size = 11; 523 524 pr_info("trying to read past the end of a struct\n"); 525 526 result = memcmp(&target[0], &target[1], size); 527 528 /* Print result to prevent the code from being eliminated */ 529 pr_err("FAIL: fortify did not catch an object overread!\n" 530 "\"%d\" was the memcmp result.\n", result); 531 } 532 533 void lkdtm_FORTIFY_SUBOBJECT(void) 534 { 535 struct target { 536 char a[10]; 537 char b[10]; 538 } target; 539 char *src; 540 541 src = kmalloc(20, GFP_KERNEL); 542 strscpy(src, "over ten bytes", 20); 543 544 pr_info("trying to strcpy past the end of a member of a struct\n"); 545 546 /* 547 * strncpy(target.a, src, 20); will hit a compile error because the 548 * compiler knows at build time that target.a < 20 bytes. Use strcpy() 549 * to force a runtime error. 550 */ 551 strcpy(target.a, src); 552 553 /* Use target.a to prevent the code from being eliminated */ 554 pr_err("FAIL: fortify did not catch an sub-object overrun!\n" 555 "\"%s\" was copied.\n", target.a); 556 557 kfree(src); 558 } 559