xref: /openbmc/linux/drivers/misc/genwqe/card_utils.c (revision af958a38)
1 /**
2  * IBM Accelerator Family 'GenWQE'
3  *
4  * (C) Copyright IBM Corp. 2013
5  *
6  * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7  * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8  * Author: Michael Jung <mijung@de.ibm.com>
9  * Author: Michael Ruettger <michael@ibmra.de>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License (version 2 only)
13  * as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  */
20 
21 /*
22  * Miscelanous functionality used in the other GenWQE driver parts.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/sched.h>
28 #include <linux/vmalloc.h>
29 #include <linux/page-flags.h>
30 #include <linux/scatterlist.h>
31 #include <linux/hugetlb.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/ctype.h>
37 #include <linux/module.h>
38 #include <linux/platform_device.h>
39 #include <linux/delay.h>
40 #include <asm/pgtable.h>
41 
42 #include "genwqe_driver.h"
43 #include "card_base.h"
44 #include "card_ddcb.h"
45 
46 /**
47  * __genwqe_writeq() - Write 64-bit register
48  * @cd:	        genwqe device descriptor
49  * @byte_offs:  byte offset within BAR
50  * @val:        64-bit value
51  *
52  * Return: 0 if success; < 0 if error
53  */
54 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
55 {
56 	struct pci_dev *pci_dev = cd->pci_dev;
57 
58 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
59 		return -EIO;
60 
61 	if (cd->mmio == NULL)
62 		return -EIO;
63 
64 	if (pci_channel_offline(pci_dev))
65 		return -EIO;
66 
67 	__raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
68 	return 0;
69 }
70 
71 /**
72  * __genwqe_readq() - Read 64-bit register
73  * @cd:         genwqe device descriptor
74  * @byte_offs:  offset within BAR
75  *
76  * Return: value from register
77  */
78 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
79 {
80 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
81 		return 0xffffffffffffffffull;
82 
83 	if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
84 	    (byte_offs == IO_SLC_CFGREG_GFIR))
85 		return 0x000000000000ffffull;
86 
87 	if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
88 	    (byte_offs == IO_SLC_CFGREG_GFIR))
89 		return 0x00000000ffff0000ull;
90 
91 	if (cd->mmio == NULL)
92 		return 0xffffffffffffffffull;
93 
94 	return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
95 }
96 
97 /**
98  * __genwqe_writel() - Write 32-bit register
99  * @cd:	        genwqe device descriptor
100  * @byte_offs:  byte offset within BAR
101  * @val:        32-bit value
102  *
103  * Return: 0 if success; < 0 if error
104  */
105 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
106 {
107 	struct pci_dev *pci_dev = cd->pci_dev;
108 
109 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
110 		return -EIO;
111 
112 	if (cd->mmio == NULL)
113 		return -EIO;
114 
115 	if (pci_channel_offline(pci_dev))
116 		return -EIO;
117 
118 	__raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
119 	return 0;
120 }
121 
122 /**
123  * __genwqe_readl() - Read 32-bit register
124  * @cd:         genwqe device descriptor
125  * @byte_offs:  offset within BAR
126  *
127  * Return: Value from register
128  */
129 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
130 {
131 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
132 		return 0xffffffff;
133 
134 	if (cd->mmio == NULL)
135 		return 0xffffffff;
136 
137 	return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
138 }
139 
140 /**
141  * genwqe_read_app_id() - Extract app_id
142  *
143  * app_unitcfg need to be filled with valid data first
144  */
145 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
146 {
147 	int i, j;
148 	u32 app_id = (u32)cd->app_unitcfg;
149 
150 	memset(app_name, 0, len);
151 	for (i = 0, j = 0; j < min(len, 4); j++) {
152 		char ch = (char)((app_id >> (24 - j*8)) & 0xff);
153 		if (ch == ' ')
154 			continue;
155 		app_name[i++] = isprint(ch) ? ch : 'X';
156 	}
157 	return i;
158 }
159 
160 /**
161  * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
162  *
163  * Existing kernel functions seem to use a different polynom,
164  * therefore we could not use them here.
165  *
166  * Genwqe's Polynomial = 0x20044009
167  */
168 #define CRC32_POLYNOMIAL	0x20044009
169 static u32 crc32_tab[256];	/* crc32 lookup table */
170 
171 void genwqe_init_crc32(void)
172 {
173 	int i, j;
174 	u32 crc;
175 
176 	for (i = 0;  i < 256;  i++) {
177 		crc = i << 24;
178 		for (j = 0;  j < 8;  j++) {
179 			if (crc & 0x80000000)
180 				crc = (crc << 1) ^ CRC32_POLYNOMIAL;
181 			else
182 				crc = (crc << 1);
183 		}
184 		crc32_tab[i] = crc;
185 	}
186 }
187 
188 /**
189  * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
190  * @buff:       pointer to data buffer
191  * @len:        length of data for calculation
192  * @init:       initial crc (0xffffffff at start)
193  *
194  * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
195 
196  * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
197  * result in a crc32 of 0xf33cb7d3.
198  *
199  * The existing kernel crc functions did not cover this polynom yet.
200  *
201  * Return: crc32 checksum.
202  */
203 u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
204 {
205 	int i;
206 	u32 crc;
207 
208 	crc = init;
209 	while (len--) {
210 		i = ((crc >> 24) ^ *buff++) & 0xFF;
211 		crc = (crc << 8) ^ crc32_tab[i];
212 	}
213 	return crc;
214 }
215 
216 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
217 			       dma_addr_t *dma_handle)
218 {
219 	if (get_order(size) > MAX_ORDER)
220 		return NULL;
221 
222 	return pci_alloc_consistent(cd->pci_dev, size, dma_handle);
223 }
224 
225 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
226 			     void *vaddr, dma_addr_t dma_handle)
227 {
228 	if (vaddr == NULL)
229 		return;
230 
231 	pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle);
232 }
233 
234 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
235 			      int num_pages)
236 {
237 	int i;
238 	struct pci_dev *pci_dev = cd->pci_dev;
239 
240 	for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
241 		pci_unmap_page(pci_dev, dma_list[i],
242 			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
243 		dma_list[i] = 0x0;
244 	}
245 }
246 
247 static int genwqe_map_pages(struct genwqe_dev *cd,
248 			   struct page **page_list, int num_pages,
249 			   dma_addr_t *dma_list)
250 {
251 	int i;
252 	struct pci_dev *pci_dev = cd->pci_dev;
253 
254 	/* establish DMA mapping for requested pages */
255 	for (i = 0; i < num_pages; i++) {
256 		dma_addr_t daddr;
257 
258 		dma_list[i] = 0x0;
259 		daddr = pci_map_page(pci_dev, page_list[i],
260 				     0,	 /* map_offs */
261 				     PAGE_SIZE,
262 				     PCI_DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
263 
264 		if (pci_dma_mapping_error(pci_dev, daddr)) {
265 			dev_err(&pci_dev->dev,
266 				"[%s] err: no dma addr daddr=%016llx!\n",
267 				__func__, (long long)daddr);
268 			goto err;
269 		}
270 
271 		dma_list[i] = daddr;
272 	}
273 	return 0;
274 
275  err:
276 	genwqe_unmap_pages(cd, dma_list, num_pages);
277 	return -EIO;
278 }
279 
280 static int genwqe_sgl_size(int num_pages)
281 {
282 	int len, num_tlb = num_pages / 7;
283 
284 	len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
285 	return roundup(len, PAGE_SIZE);
286 }
287 
288 /**
289  * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
290  *
291  * Allocates memory for sgl and overlapping pages. Pages which might
292  * overlap other user-space memory blocks are being cached for DMAs,
293  * such that we do not run into syncronization issues. Data is copied
294  * from user-space into the cached pages.
295  */
296 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
297 			  void __user *user_addr, size_t user_size)
298 {
299 	int rc;
300 	struct pci_dev *pci_dev = cd->pci_dev;
301 
302 	sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
303 	sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
304 	sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
305 	sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
306 
307 	dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld "
308 		"fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
309 		__func__, user_addr, user_size, sgl->nr_pages,
310 		sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
311 
312 	sgl->user_addr = user_addr;
313 	sgl->user_size = user_size;
314 	sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
315 
316 	if (get_order(sgl->sgl_size) > MAX_ORDER) {
317 		dev_err(&pci_dev->dev,
318 			"[%s] err: too much memory requested!\n", __func__);
319 		return -ENOMEM;
320 	}
321 
322 	sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
323 					     &sgl->sgl_dma_addr);
324 	if (sgl->sgl == NULL) {
325 		dev_err(&pci_dev->dev,
326 			"[%s] err: no memory available!\n", __func__);
327 		return -ENOMEM;
328 	}
329 
330 	/* Only use buffering on incomplete pages */
331 	if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
332 		sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
333 						       &sgl->fpage_dma_addr);
334 		if (sgl->fpage == NULL)
335 			goto err_out;
336 
337 		/* Sync with user memory */
338 		if (copy_from_user(sgl->fpage + sgl->fpage_offs,
339 				   user_addr, sgl->fpage_size)) {
340 			rc = -EFAULT;
341 			goto err_out;
342 		}
343 	}
344 	if (sgl->lpage_size != 0) {
345 		sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
346 						       &sgl->lpage_dma_addr);
347 		if (sgl->lpage == NULL)
348 			goto err_out1;
349 
350 		/* Sync with user memory */
351 		if (copy_from_user(sgl->lpage, user_addr + user_size -
352 				   sgl->lpage_size, sgl->lpage_size)) {
353 			rc = -EFAULT;
354 			goto err_out1;
355 		}
356 	}
357 	return 0;
358 
359  err_out1:
360 	__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
361 				 sgl->fpage_dma_addr);
362  err_out:
363 	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
364 				 sgl->sgl_dma_addr);
365 	return -ENOMEM;
366 }
367 
368 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
369 		     dma_addr_t *dma_list)
370 {
371 	int i = 0, j = 0, p;
372 	unsigned long dma_offs, map_offs;
373 	dma_addr_t prev_daddr = 0;
374 	struct sg_entry *s, *last_s = NULL;
375 	size_t size = sgl->user_size;
376 
377 	dma_offs = 128;		/* next block if needed/dma_offset */
378 	map_offs = sgl->fpage_offs; /* offset in first page */
379 
380 	s = &sgl->sgl[0];	/* first set of 8 entries */
381 	p = 0;			/* page */
382 	while (p < sgl->nr_pages) {
383 		dma_addr_t daddr;
384 		unsigned int size_to_map;
385 
386 		/* always write the chaining entry, cleanup is done later */
387 		j = 0;
388 		s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
389 		s[j].len	 = cpu_to_be32(128);
390 		s[j].flags	 = cpu_to_be32(SG_CHAINED);
391 		j++;
392 
393 		while (j < 8) {
394 			/* DMA mapping for requested page, offs, size */
395 			size_to_map = min(size, PAGE_SIZE - map_offs);
396 
397 			if ((p == 0) && (sgl->fpage != NULL)) {
398 				daddr = sgl->fpage_dma_addr + map_offs;
399 
400 			} else if ((p == sgl->nr_pages - 1) &&
401 				   (sgl->lpage != NULL)) {
402 				daddr = sgl->lpage_dma_addr;
403 			} else {
404 				daddr = dma_list[p] + map_offs;
405 			}
406 
407 			size -= size_to_map;
408 			map_offs = 0;
409 
410 			if (prev_daddr == daddr) {
411 				u32 prev_len = be32_to_cpu(last_s->len);
412 
413 				/* pr_info("daddr combining: "
414 					"%016llx/%08x -> %016llx\n",
415 					prev_daddr, prev_len, daddr); */
416 
417 				last_s->len = cpu_to_be32(prev_len +
418 							  size_to_map);
419 
420 				p++; /* process next page */
421 				if (p == sgl->nr_pages)
422 					goto fixup;  /* nothing to do */
423 
424 				prev_daddr = daddr + size_to_map;
425 				continue;
426 			}
427 
428 			/* start new entry */
429 			s[j].target_addr = cpu_to_be64(daddr);
430 			s[j].len	 = cpu_to_be32(size_to_map);
431 			s[j].flags	 = cpu_to_be32(SG_DATA);
432 			prev_daddr = daddr + size_to_map;
433 			last_s = &s[j];
434 			j++;
435 
436 			p++;	/* process next page */
437 			if (p == sgl->nr_pages)
438 				goto fixup;  /* nothing to do */
439 		}
440 		dma_offs += 128;
441 		s += 8;		/* continue 8 elements further */
442 	}
443  fixup:
444 	if (j == 1) {		/* combining happend on last entry! */
445 		s -= 8;		/* full shift needed on previous sgl block */
446 		j =  7;		/* shift all elements */
447 	}
448 
449 	for (i = 0; i < j; i++)	/* move elements 1 up */
450 		s[i] = s[i + 1];
451 
452 	s[i].target_addr = cpu_to_be64(0);
453 	s[i].len	 = cpu_to_be32(0);
454 	s[i].flags	 = cpu_to_be32(SG_END_LIST);
455 	return 0;
456 }
457 
458 /**
459  * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
460  *
461  * After the DMA transfer has been completed we free the memory for
462  * the sgl and the cached pages. Data is being transfered from cached
463  * pages into user-space buffers.
464  */
465 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
466 {
467 	int rc = 0;
468 	struct pci_dev *pci_dev = cd->pci_dev;
469 
470 	if (sgl->fpage) {
471 		if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
472 				 sgl->fpage_size)) {
473 			dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
474 				__func__);
475 			rc = -EFAULT;
476 		}
477 		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
478 					 sgl->fpage_dma_addr);
479 		sgl->fpage = NULL;
480 		sgl->fpage_dma_addr = 0;
481 	}
482 	if (sgl->lpage) {
483 		if (copy_to_user(sgl->user_addr + sgl->user_size -
484 				 sgl->lpage_size, sgl->lpage,
485 				 sgl->lpage_size)) {
486 			dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
487 				__func__);
488 			rc = -EFAULT;
489 		}
490 		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
491 					 sgl->lpage_dma_addr);
492 		sgl->lpage = NULL;
493 		sgl->lpage_dma_addr = 0;
494 	}
495 	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
496 				 sgl->sgl_dma_addr);
497 
498 	sgl->sgl = NULL;
499 	sgl->sgl_dma_addr = 0x0;
500 	sgl->sgl_size = 0;
501 	return rc;
502 }
503 
504 /**
505  * free_user_pages() - Give pinned pages back
506  *
507  * Documentation of get_user_pages is in mm/memory.c:
508  *
509  * If the page is written to, set_page_dirty (or set_page_dirty_lock,
510  * as appropriate) must be called after the page is finished with, and
511  * before put_page is called.
512  *
513  * FIXME Could be of use to others and might belong in the generic
514  * code, if others agree. E.g.
515  *    ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
516  *    ceph_put_page_vector in net/ceph/pagevec.c
517  *    maybe more?
518  */
519 static int free_user_pages(struct page **page_list, unsigned int nr_pages,
520 			   int dirty)
521 {
522 	unsigned int i;
523 
524 	for (i = 0; i < nr_pages; i++) {
525 		if (page_list[i] != NULL) {
526 			if (dirty)
527 				set_page_dirty_lock(page_list[i]);
528 			put_page(page_list[i]);
529 		}
530 	}
531 	return 0;
532 }
533 
534 /**
535  * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
536  * @cd:         pointer to genwqe device
537  * @m:          mapping params
538  * @uaddr:      user virtual address
539  * @size:       size of memory to be mapped
540  *
541  * We need to think about how we could speed this up. Of course it is
542  * not a good idea to do this over and over again, like we are
543  * currently doing it. Nevertheless, I am curious where on the path
544  * the performance is spend. Most probably within the memory
545  * allocation functions, but maybe also in the DMA mapping code.
546  *
547  * Restrictions: The maximum size of the possible mapping currently depends
548  *               on the amount of memory we can get using kzalloc() for the
549  *               page_list and pci_alloc_consistent for the sg_list.
550  *               The sg_list is currently itself not scattered, which could
551  *               be fixed with some effort. The page_list must be split into
552  *               PAGE_SIZE chunks too. All that will make the complicated
553  *               code more complicated.
554  *
555  * Return: 0 if success
556  */
557 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
558 		     unsigned long size, struct ddcb_requ *req)
559 {
560 	int rc = -EINVAL;
561 	unsigned long data, offs;
562 	struct pci_dev *pci_dev = cd->pci_dev;
563 
564 	if ((uaddr == NULL) || (size == 0)) {
565 		m->size = 0;	/* mark unused and not added */
566 		return -EINVAL;
567 	}
568 	m->u_vaddr = uaddr;
569 	m->size    = size;
570 
571 	/* determine space needed for page_list. */
572 	data = (unsigned long)uaddr;
573 	offs = offset_in_page(data);
574 	m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
575 
576 	m->page_list = kcalloc(m->nr_pages,
577 			       sizeof(struct page *) + sizeof(dma_addr_t),
578 			       GFP_KERNEL);
579 	if (!m->page_list) {
580 		dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
581 		m->nr_pages = 0;
582 		m->u_vaddr = NULL;
583 		m->size = 0;	/* mark unused and not added */
584 		return -ENOMEM;
585 	}
586 	m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
587 
588 	/* pin user pages in memory */
589 	rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
590 				 m->nr_pages,
591 				 1,		/* write by caller */
592 				 m->page_list);	/* ptrs to pages */
593 
594 	/* assumption: get_user_pages can be killed by signals. */
595 	if (rc < m->nr_pages) {
596 		free_user_pages(m->page_list, rc, 0);
597 		rc = -EFAULT;
598 		goto fail_get_user_pages;
599 	}
600 
601 	rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
602 	if (rc != 0)
603 		goto fail_free_user_pages;
604 
605 	return 0;
606 
607  fail_free_user_pages:
608 	free_user_pages(m->page_list, m->nr_pages, 0);
609 
610  fail_get_user_pages:
611 	kfree(m->page_list);
612 	m->page_list = NULL;
613 	m->dma_list = NULL;
614 	m->nr_pages = 0;
615 	m->u_vaddr = NULL;
616 	m->size = 0;		/* mark unused and not added */
617 	return rc;
618 }
619 
620 /**
621  * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
622  *                        memory
623  * @cd:         pointer to genwqe device
624  * @m:          mapping params
625  */
626 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
627 		       struct ddcb_requ *req)
628 {
629 	struct pci_dev *pci_dev = cd->pci_dev;
630 
631 	if (!dma_mapping_used(m)) {
632 		dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
633 			__func__, m);
634 		return -EINVAL;
635 	}
636 
637 	if (m->dma_list)
638 		genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
639 
640 	if (m->page_list) {
641 		free_user_pages(m->page_list, m->nr_pages, 1);
642 
643 		kfree(m->page_list);
644 		m->page_list = NULL;
645 		m->dma_list = NULL;
646 		m->nr_pages = 0;
647 	}
648 
649 	m->u_vaddr = NULL;
650 	m->size = 0;		/* mark as unused and not added */
651 	return 0;
652 }
653 
654 /**
655  * genwqe_card_type() - Get chip type SLU Configuration Register
656  * @cd:         pointer to the genwqe device descriptor
657  * Return: 0: Altera Stratix-IV 230
658  *         1: Altera Stratix-IV 530
659  *         2: Altera Stratix-V A4
660  *         3: Altera Stratix-V A7
661  */
662 u8 genwqe_card_type(struct genwqe_dev *cd)
663 {
664 	u64 card_type = cd->slu_unitcfg;
665 	return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
666 }
667 
668 /**
669  * genwqe_card_reset() - Reset the card
670  * @cd:         pointer to the genwqe device descriptor
671  */
672 int genwqe_card_reset(struct genwqe_dev *cd)
673 {
674 	u64 softrst;
675 	struct pci_dev *pci_dev = cd->pci_dev;
676 
677 	if (!genwqe_is_privileged(cd))
678 		return -ENODEV;
679 
680 	/* new SL */
681 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
682 	msleep(1000);
683 	__genwqe_readq(cd, IO_HSU_FIR_CLR);
684 	__genwqe_readq(cd, IO_APP_FIR_CLR);
685 	__genwqe_readq(cd, IO_SLU_FIR_CLR);
686 
687 	/*
688 	 * Read-modify-write to preserve the stealth bits
689 	 *
690 	 * For SL >= 039, Stealth WE bit allows removing
691 	 * the read-modify-wrote.
692 	 * r-m-w may require a mask 0x3C to avoid hitting hard
693 	 * reset again for error reset (should be 0, chicken).
694 	 */
695 	softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
696 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
697 
698 	/* give ERRORRESET some time to finish */
699 	msleep(50);
700 
701 	if (genwqe_need_err_masking(cd)) {
702 		dev_info(&pci_dev->dev,
703 			 "[%s] masking errors for old bitstreams\n", __func__);
704 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
705 	}
706 	return 0;
707 }
708 
709 int genwqe_read_softreset(struct genwqe_dev *cd)
710 {
711 	u64 bitstream;
712 
713 	if (!genwqe_is_privileged(cd))
714 		return -ENODEV;
715 
716 	bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
717 	cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
718 	return 0;
719 }
720 
721 /**
722  * genwqe_set_interrupt_capability() - Configure MSI capability structure
723  * @cd:         pointer to the device
724  * Return: 0 if no error
725  */
726 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
727 {
728 	int rc;
729 	struct pci_dev *pci_dev = cd->pci_dev;
730 
731 	rc = pci_enable_msi_range(pci_dev, 1, count);
732 	if (rc < 0)
733 		return rc;
734 
735 	cd->flags |= GENWQE_FLAG_MSI_ENABLED;
736 	return 0;
737 }
738 
739 /**
740  * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
741  * @cd:         pointer to the device
742  */
743 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
744 {
745 	struct pci_dev *pci_dev = cd->pci_dev;
746 
747 	if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
748 		pci_disable_msi(pci_dev);
749 		cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
750 	}
751 }
752 
753 /**
754  * set_reg_idx() - Fill array with data. Ignore illegal offsets.
755  * @cd:         card device
756  * @r:          debug register array
757  * @i:          index to desired entry
758  * @m:          maximum possible entries
759  * @addr:       addr which is read
760  * @index:      index in debug array
761  * @val:        read value
762  */
763 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
764 		       unsigned int *i, unsigned int m, u32 addr, u32 idx,
765 		       u64 val)
766 {
767 	if (WARN_ON_ONCE(*i >= m))
768 		return -EFAULT;
769 
770 	r[*i].addr = addr;
771 	r[*i].idx = idx;
772 	r[*i].val = val;
773 	++*i;
774 	return 0;
775 }
776 
777 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
778 		   unsigned int *i, unsigned int m, u32 addr, u64 val)
779 {
780 	return set_reg_idx(cd, r, i, m, addr, 0, val);
781 }
782 
783 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
784 			 unsigned int max_regs, int all)
785 {
786 	unsigned int i, j, idx = 0;
787 	u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
788 	u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
789 
790 	/* Global FIR */
791 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
792 	set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
793 
794 	/* UnitCfg for SLU */
795 	sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
796 	set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
797 
798 	/* UnitCfg for APP */
799 	appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
800 	set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
801 
802 	/* Check all chip Units */
803 	for (i = 0; i < GENWQE_MAX_UNITS; i++) {
804 
805 		/* Unit FIR */
806 		ufir_addr = (i << 24) | 0x008;
807 		ufir = __genwqe_readq(cd, ufir_addr);
808 		set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
809 
810 		/* Unit FEC */
811 		ufec_addr = (i << 24) | 0x018;
812 		ufec = __genwqe_readq(cd, ufec_addr);
813 		set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
814 
815 		for (j = 0; j < 64; j++) {
816 			/* wherever there is a primary 1, read the 2ndary */
817 			if (!all && (!(ufir & (1ull << j))))
818 				continue;
819 
820 			sfir_addr = (i << 24) | (0x100 + 8 * j);
821 			sfir = __genwqe_readq(cd, sfir_addr);
822 			set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
823 
824 			sfec_addr = (i << 24) | (0x300 + 8 * j);
825 			sfec = __genwqe_readq(cd, sfec_addr);
826 			set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
827 		}
828 	}
829 
830 	/* fill with invalid data until end */
831 	for (i = idx; i < max_regs; i++) {
832 		regs[i].addr = 0xffffffff;
833 		regs[i].val = 0xffffffffffffffffull;
834 	}
835 	return idx;
836 }
837 
838 /**
839  * genwqe_ffdc_buff_size() - Calculates the number of dump registers
840  */
841 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
842 {
843 	int entries = 0, ring, traps, traces, trace_entries;
844 	u32 eevptr_addr, l_addr, d_len, d_type;
845 	u64 eevptr, val, addr;
846 
847 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
848 	eevptr = __genwqe_readq(cd, eevptr_addr);
849 
850 	if ((eevptr != 0x0) && (eevptr != -1ull)) {
851 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
852 
853 		while (1) {
854 			val = __genwqe_readq(cd, l_addr);
855 
856 			if ((val == 0x0) || (val == -1ull))
857 				break;
858 
859 			/* 38:24 */
860 			d_len  = (val & 0x0000007fff000000ull) >> 24;
861 
862 			/* 39 */
863 			d_type = (val & 0x0000008000000000ull) >> 36;
864 
865 			if (d_type) {	/* repeat */
866 				entries += d_len;
867 			} else {	/* size in bytes! */
868 				entries += d_len >> 3;
869 			}
870 
871 			l_addr += 8;
872 		}
873 	}
874 
875 	for (ring = 0; ring < 8; ring++) {
876 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
877 		val = __genwqe_readq(cd, addr);
878 
879 		if ((val == 0x0ull) || (val == -1ull))
880 			continue;
881 
882 		traps = (val >> 24) & 0xff;
883 		traces = (val >> 16) & 0xff;
884 		trace_entries = val & 0xffff;
885 
886 		entries += traps + (traces * trace_entries);
887 	}
888 	return entries;
889 }
890 
891 /**
892  * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
893  */
894 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
895 			  struct genwqe_reg *regs, unsigned int max_regs)
896 {
897 	int i, traps, traces, trace, trace_entries, trace_entry, ring;
898 	unsigned int idx = 0;
899 	u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
900 	u64 eevptr, e, val, addr;
901 
902 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
903 	eevptr = __genwqe_readq(cd, eevptr_addr);
904 
905 	if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
906 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
907 		while (1) {
908 			e = __genwqe_readq(cd, l_addr);
909 			if ((e == 0x0) || (e == 0xffffffffffffffffull))
910 				break;
911 
912 			d_addr = (e & 0x0000000000ffffffull);	    /* 23:0 */
913 			d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
914 			d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
915 			d_addr |= GENWQE_UID_OFFS(uid);
916 
917 			if (d_type) {
918 				for (i = 0; i < (int)d_len; i++) {
919 					val = __genwqe_readq(cd, d_addr);
920 					set_reg_idx(cd, regs, &idx, max_regs,
921 						    d_addr, i, val);
922 				}
923 			} else {
924 				d_len >>= 3; /* Size in bytes! */
925 				for (i = 0; i < (int)d_len; i++, d_addr += 8) {
926 					val = __genwqe_readq(cd, d_addr);
927 					set_reg_idx(cd, regs, &idx, max_regs,
928 						    d_addr, 0, val);
929 				}
930 			}
931 			l_addr += 8;
932 		}
933 	}
934 
935 	/*
936 	 * To save time, there are only 6 traces poplulated on Uid=2,
937 	 * Ring=1. each with iters=512.
938 	 */
939 	for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
940 					      2...7 are ASI rings */
941 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
942 		val = __genwqe_readq(cd, addr);
943 
944 		if ((val == 0x0ull) || (val == -1ull))
945 			continue;
946 
947 		traps = (val >> 24) & 0xff;	/* Number of Traps	*/
948 		traces = (val >> 16) & 0xff;	/* Number of Traces	*/
949 		trace_entries = val & 0xffff;	/* Entries per trace	*/
950 
951 		/* Note: This is a combined loop that dumps both the traps */
952 		/* (for the trace == 0 case) as well as the traces 1 to    */
953 		/* 'traces'.						   */
954 		for (trace = 0; trace <= traces; trace++) {
955 			u32 diag_sel =
956 				GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
957 
958 			addr = (GENWQE_UID_OFFS(uid) |
959 				IO_EXTENDED_DIAG_SELECTOR);
960 			__genwqe_writeq(cd, addr, diag_sel);
961 
962 			for (trace_entry = 0;
963 			     trace_entry < (trace ? trace_entries : traps);
964 			     trace_entry++) {
965 				addr = (GENWQE_UID_OFFS(uid) |
966 					IO_EXTENDED_DIAG_READ_MBX);
967 				val = __genwqe_readq(cd, addr);
968 				set_reg_idx(cd, regs, &idx, max_regs, addr,
969 					    (diag_sel<<16) | trace_entry, val);
970 			}
971 		}
972 	}
973 	return 0;
974 }
975 
976 /**
977  * genwqe_write_vreg() - Write register in virtual window
978  *
979  * Note, these registers are only accessible to the PF through the
980  * VF-window. It is not intended for the VF to access.
981  */
982 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
983 {
984 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
985 	__genwqe_writeq(cd, reg, val);
986 	return 0;
987 }
988 
989 /**
990  * genwqe_read_vreg() - Read register in virtual window
991  *
992  * Note, these registers are only accessible to the PF through the
993  * VF-window. It is not intended for the VF to access.
994  */
995 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
996 {
997 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
998 	return __genwqe_readq(cd, reg);
999 }
1000 
1001 /**
1002  * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1003  *
1004  * Note: From a design perspective it turned out to be a bad idea to
1005  * use codes here to specifiy the frequency/speed values. An old
1006  * driver cannot understand new codes and is therefore always a
1007  * problem. Better is to measure out the value or put the
1008  * speed/frequency directly into a register which is always a valid
1009  * value for old as well as for new software.
1010  *
1011  * Return: Card clock in MHz
1012  */
1013 int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1014 {
1015 	u16 speed;		/*         MHz  MHz  MHz  MHz */
1016 	static const int speed_grade[] = { 250, 200, 166, 175 };
1017 
1018 	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1019 	if (speed >= ARRAY_SIZE(speed_grade))
1020 		return 0;	/* illegal value */
1021 
1022 	return speed_grade[speed];
1023 }
1024 
1025 /**
1026  * genwqe_stop_traps() - Stop traps
1027  *
1028  * Before reading out the analysis data, we need to stop the traps.
1029  */
1030 void genwqe_stop_traps(struct genwqe_dev *cd)
1031 {
1032 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1033 }
1034 
1035 /**
1036  * genwqe_start_traps() - Start traps
1037  *
1038  * After having read the data, we can/must enable the traps again.
1039  */
1040 void genwqe_start_traps(struct genwqe_dev *cd)
1041 {
1042 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1043 
1044 	if (genwqe_need_err_masking(cd))
1045 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1046 }
1047