xref: /openbmc/linux/drivers/misc/genwqe/card_utils.c (revision 74ba9207e1adf1966c57450340534ae9742d00af)
1 /**
2  * IBM Accelerator Family 'GenWQE'
3  *
4  * (C) Copyright IBM Corp. 2013
5  *
6  * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7  * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8  * Author: Michael Jung <mijung@gmx.net>
9  * Author: Michael Ruettger <michael@ibmra.de>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License (version 2 only)
13  * as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  */
20 
21 /*
22  * Miscelanous functionality used in the other GenWQE driver parts.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/vmalloc.h>
28 #include <linux/page-flags.h>
29 #include <linux/scatterlist.h>
30 #include <linux/hugetlb.h>
31 #include <linux/iommu.h>
32 #include <linux/pci.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/ctype.h>
35 #include <linux/module.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <asm/pgtable.h>
39 
40 #include "genwqe_driver.h"
41 #include "card_base.h"
42 #include "card_ddcb.h"
43 
44 /**
45  * __genwqe_writeq() - Write 64-bit register
46  * @cd:	        genwqe device descriptor
47  * @byte_offs:  byte offset within BAR
48  * @val:        64-bit value
49  *
50  * Return: 0 if success; < 0 if error
51  */
52 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
53 {
54 	struct pci_dev *pci_dev = cd->pci_dev;
55 
56 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
57 		return -EIO;
58 
59 	if (cd->mmio == NULL)
60 		return -EIO;
61 
62 	if (pci_channel_offline(pci_dev))
63 		return -EIO;
64 
65 	__raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
66 	return 0;
67 }
68 
69 /**
70  * __genwqe_readq() - Read 64-bit register
71  * @cd:         genwqe device descriptor
72  * @byte_offs:  offset within BAR
73  *
74  * Return: value from register
75  */
76 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
77 {
78 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
79 		return 0xffffffffffffffffull;
80 
81 	if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
82 	    (byte_offs == IO_SLC_CFGREG_GFIR))
83 		return 0x000000000000ffffull;
84 
85 	if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
86 	    (byte_offs == IO_SLC_CFGREG_GFIR))
87 		return 0x00000000ffff0000ull;
88 
89 	if (cd->mmio == NULL)
90 		return 0xffffffffffffffffull;
91 
92 	return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
93 }
94 
95 /**
96  * __genwqe_writel() - Write 32-bit register
97  * @cd:	        genwqe device descriptor
98  * @byte_offs:  byte offset within BAR
99  * @val:        32-bit value
100  *
101  * Return: 0 if success; < 0 if error
102  */
103 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
104 {
105 	struct pci_dev *pci_dev = cd->pci_dev;
106 
107 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
108 		return -EIO;
109 
110 	if (cd->mmio == NULL)
111 		return -EIO;
112 
113 	if (pci_channel_offline(pci_dev))
114 		return -EIO;
115 
116 	__raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
117 	return 0;
118 }
119 
120 /**
121  * __genwqe_readl() - Read 32-bit register
122  * @cd:         genwqe device descriptor
123  * @byte_offs:  offset within BAR
124  *
125  * Return: Value from register
126  */
127 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
128 {
129 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
130 		return 0xffffffff;
131 
132 	if (cd->mmio == NULL)
133 		return 0xffffffff;
134 
135 	return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
136 }
137 
138 /**
139  * genwqe_read_app_id() - Extract app_id
140  *
141  * app_unitcfg need to be filled with valid data first
142  */
143 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
144 {
145 	int i, j;
146 	u32 app_id = (u32)cd->app_unitcfg;
147 
148 	memset(app_name, 0, len);
149 	for (i = 0, j = 0; j < min(len, 4); j++) {
150 		char ch = (char)((app_id >> (24 - j*8)) & 0xff);
151 
152 		if (ch == ' ')
153 			continue;
154 		app_name[i++] = isprint(ch) ? ch : 'X';
155 	}
156 	return i;
157 }
158 
159 /**
160  * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
161  *
162  * Existing kernel functions seem to use a different polynom,
163  * therefore we could not use them here.
164  *
165  * Genwqe's Polynomial = 0x20044009
166  */
167 #define CRC32_POLYNOMIAL	0x20044009
168 static u32 crc32_tab[256];	/* crc32 lookup table */
169 
170 void genwqe_init_crc32(void)
171 {
172 	int i, j;
173 	u32 crc;
174 
175 	for (i = 0;  i < 256;  i++) {
176 		crc = i << 24;
177 		for (j = 0;  j < 8;  j++) {
178 			if (crc & 0x80000000)
179 				crc = (crc << 1) ^ CRC32_POLYNOMIAL;
180 			else
181 				crc = (crc << 1);
182 		}
183 		crc32_tab[i] = crc;
184 	}
185 }
186 
187 /**
188  * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
189  * @buff:       pointer to data buffer
190  * @len:        length of data for calculation
191  * @init:       initial crc (0xffffffff at start)
192  *
193  * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
194 
195  * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
196  * result in a crc32 of 0xf33cb7d3.
197  *
198  * The existing kernel crc functions did not cover this polynom yet.
199  *
200  * Return: crc32 checksum.
201  */
202 u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
203 {
204 	int i;
205 	u32 crc;
206 
207 	crc = init;
208 	while (len--) {
209 		i = ((crc >> 24) ^ *buff++) & 0xFF;
210 		crc = (crc << 8) ^ crc32_tab[i];
211 	}
212 	return crc;
213 }
214 
215 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
216 			       dma_addr_t *dma_handle)
217 {
218 	if (get_order(size) >= MAX_ORDER)
219 		return NULL;
220 
221 	return dma_alloc_coherent(&cd->pci_dev->dev, size, dma_handle,
222 				  GFP_KERNEL);
223 }
224 
225 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
226 			     void *vaddr, dma_addr_t dma_handle)
227 {
228 	if (vaddr == NULL)
229 		return;
230 
231 	dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
232 }
233 
234 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
235 			      int num_pages)
236 {
237 	int i;
238 	struct pci_dev *pci_dev = cd->pci_dev;
239 
240 	for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
241 		pci_unmap_page(pci_dev, dma_list[i],
242 			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
243 		dma_list[i] = 0x0;
244 	}
245 }
246 
247 static int genwqe_map_pages(struct genwqe_dev *cd,
248 			   struct page **page_list, int num_pages,
249 			   dma_addr_t *dma_list)
250 {
251 	int i;
252 	struct pci_dev *pci_dev = cd->pci_dev;
253 
254 	/* establish DMA mapping for requested pages */
255 	for (i = 0; i < num_pages; i++) {
256 		dma_addr_t daddr;
257 
258 		dma_list[i] = 0x0;
259 		daddr = pci_map_page(pci_dev, page_list[i],
260 				     0,	 /* map_offs */
261 				     PAGE_SIZE,
262 				     PCI_DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
263 
264 		if (pci_dma_mapping_error(pci_dev, daddr)) {
265 			dev_err(&pci_dev->dev,
266 				"[%s] err: no dma addr daddr=%016llx!\n",
267 				__func__, (long long)daddr);
268 			goto err;
269 		}
270 
271 		dma_list[i] = daddr;
272 	}
273 	return 0;
274 
275  err:
276 	genwqe_unmap_pages(cd, dma_list, num_pages);
277 	return -EIO;
278 }
279 
280 static int genwqe_sgl_size(int num_pages)
281 {
282 	int len, num_tlb = num_pages / 7;
283 
284 	len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
285 	return roundup(len, PAGE_SIZE);
286 }
287 
288 /**
289  * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
290  *
291  * Allocates memory for sgl and overlapping pages. Pages which might
292  * overlap other user-space memory blocks are being cached for DMAs,
293  * such that we do not run into syncronization issues. Data is copied
294  * from user-space into the cached pages.
295  */
296 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
297 			  void __user *user_addr, size_t user_size, int write)
298 {
299 	int ret = -ENOMEM;
300 	struct pci_dev *pci_dev = cd->pci_dev;
301 
302 	sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
303 	sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
304 	sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
305 	sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
306 
307 	dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
308 		__func__, user_addr, user_size, sgl->nr_pages,
309 		sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
310 
311 	sgl->user_addr = user_addr;
312 	sgl->user_size = user_size;
313 	sgl->write = write;
314 	sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
315 
316 	if (get_order(sgl->sgl_size) > MAX_ORDER) {
317 		dev_err(&pci_dev->dev,
318 			"[%s] err: too much memory requested!\n", __func__);
319 		return ret;
320 	}
321 
322 	sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
323 					     &sgl->sgl_dma_addr);
324 	if (sgl->sgl == NULL) {
325 		dev_err(&pci_dev->dev,
326 			"[%s] err: no memory available!\n", __func__);
327 		return ret;
328 	}
329 
330 	/* Only use buffering on incomplete pages */
331 	if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
332 		sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
333 						       &sgl->fpage_dma_addr);
334 		if (sgl->fpage == NULL)
335 			goto err_out;
336 
337 		/* Sync with user memory */
338 		if (copy_from_user(sgl->fpage + sgl->fpage_offs,
339 				   user_addr, sgl->fpage_size)) {
340 			ret = -EFAULT;
341 			goto err_out;
342 		}
343 	}
344 	if (sgl->lpage_size != 0) {
345 		sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
346 						       &sgl->lpage_dma_addr);
347 		if (sgl->lpage == NULL)
348 			goto err_out1;
349 
350 		/* Sync with user memory */
351 		if (copy_from_user(sgl->lpage, user_addr + user_size -
352 				   sgl->lpage_size, sgl->lpage_size)) {
353 			ret = -EFAULT;
354 			goto err_out2;
355 		}
356 	}
357 	return 0;
358 
359  err_out2:
360 	__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
361 				 sgl->lpage_dma_addr);
362 	sgl->lpage = NULL;
363 	sgl->lpage_dma_addr = 0;
364  err_out1:
365 	__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
366 				 sgl->fpage_dma_addr);
367 	sgl->fpage = NULL;
368 	sgl->fpage_dma_addr = 0;
369  err_out:
370 	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
371 				 sgl->sgl_dma_addr);
372 	sgl->sgl = NULL;
373 	sgl->sgl_dma_addr = 0;
374 	sgl->sgl_size = 0;
375 
376 	return ret;
377 }
378 
379 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
380 		     dma_addr_t *dma_list)
381 {
382 	int i = 0, j = 0, p;
383 	unsigned long dma_offs, map_offs;
384 	dma_addr_t prev_daddr = 0;
385 	struct sg_entry *s, *last_s = NULL;
386 	size_t size = sgl->user_size;
387 
388 	dma_offs = 128;		/* next block if needed/dma_offset */
389 	map_offs = sgl->fpage_offs; /* offset in first page */
390 
391 	s = &sgl->sgl[0];	/* first set of 8 entries */
392 	p = 0;			/* page */
393 	while (p < sgl->nr_pages) {
394 		dma_addr_t daddr;
395 		unsigned int size_to_map;
396 
397 		/* always write the chaining entry, cleanup is done later */
398 		j = 0;
399 		s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
400 		s[j].len	 = cpu_to_be32(128);
401 		s[j].flags	 = cpu_to_be32(SG_CHAINED);
402 		j++;
403 
404 		while (j < 8) {
405 			/* DMA mapping for requested page, offs, size */
406 			size_to_map = min(size, PAGE_SIZE - map_offs);
407 
408 			if ((p == 0) && (sgl->fpage != NULL)) {
409 				daddr = sgl->fpage_dma_addr + map_offs;
410 
411 			} else if ((p == sgl->nr_pages - 1) &&
412 				   (sgl->lpage != NULL)) {
413 				daddr = sgl->lpage_dma_addr;
414 			} else {
415 				daddr = dma_list[p] + map_offs;
416 			}
417 
418 			size -= size_to_map;
419 			map_offs = 0;
420 
421 			if (prev_daddr == daddr) {
422 				u32 prev_len = be32_to_cpu(last_s->len);
423 
424 				/* pr_info("daddr combining: "
425 					"%016llx/%08x -> %016llx\n",
426 					prev_daddr, prev_len, daddr); */
427 
428 				last_s->len = cpu_to_be32(prev_len +
429 							  size_to_map);
430 
431 				p++; /* process next page */
432 				if (p == sgl->nr_pages)
433 					goto fixup;  /* nothing to do */
434 
435 				prev_daddr = daddr + size_to_map;
436 				continue;
437 			}
438 
439 			/* start new entry */
440 			s[j].target_addr = cpu_to_be64(daddr);
441 			s[j].len	 = cpu_to_be32(size_to_map);
442 			s[j].flags	 = cpu_to_be32(SG_DATA);
443 			prev_daddr = daddr + size_to_map;
444 			last_s = &s[j];
445 			j++;
446 
447 			p++;	/* process next page */
448 			if (p == sgl->nr_pages)
449 				goto fixup;  /* nothing to do */
450 		}
451 		dma_offs += 128;
452 		s += 8;		/* continue 8 elements further */
453 	}
454  fixup:
455 	if (j == 1) {		/* combining happened on last entry! */
456 		s -= 8;		/* full shift needed on previous sgl block */
457 		j =  7;		/* shift all elements */
458 	}
459 
460 	for (i = 0; i < j; i++)	/* move elements 1 up */
461 		s[i] = s[i + 1];
462 
463 	s[i].target_addr = cpu_to_be64(0);
464 	s[i].len	 = cpu_to_be32(0);
465 	s[i].flags	 = cpu_to_be32(SG_END_LIST);
466 	return 0;
467 }
468 
469 /**
470  * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
471  *
472  * After the DMA transfer has been completed we free the memory for
473  * the sgl and the cached pages. Data is being transferred from cached
474  * pages into user-space buffers.
475  */
476 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
477 {
478 	int rc = 0;
479 	size_t offset;
480 	unsigned long res;
481 	struct pci_dev *pci_dev = cd->pci_dev;
482 
483 	if (sgl->fpage) {
484 		if (sgl->write) {
485 			res = copy_to_user(sgl->user_addr,
486 				sgl->fpage + sgl->fpage_offs, sgl->fpage_size);
487 			if (res) {
488 				dev_err(&pci_dev->dev,
489 					"[%s] err: copying fpage! (res=%lu)\n",
490 					__func__, res);
491 				rc = -EFAULT;
492 			}
493 		}
494 		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
495 					 sgl->fpage_dma_addr);
496 		sgl->fpage = NULL;
497 		sgl->fpage_dma_addr = 0;
498 	}
499 	if (sgl->lpage) {
500 		if (sgl->write) {
501 			offset = sgl->user_size - sgl->lpage_size;
502 			res = copy_to_user(sgl->user_addr + offset, sgl->lpage,
503 					   sgl->lpage_size);
504 			if (res) {
505 				dev_err(&pci_dev->dev,
506 					"[%s] err: copying lpage! (res=%lu)\n",
507 					__func__, res);
508 				rc = -EFAULT;
509 			}
510 		}
511 		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
512 					 sgl->lpage_dma_addr);
513 		sgl->lpage = NULL;
514 		sgl->lpage_dma_addr = 0;
515 	}
516 	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
517 				 sgl->sgl_dma_addr);
518 
519 	sgl->sgl = NULL;
520 	sgl->sgl_dma_addr = 0x0;
521 	sgl->sgl_size = 0;
522 	return rc;
523 }
524 
525 /**
526  * genwqe_free_user_pages() - Give pinned pages back
527  *
528  * Documentation of get_user_pages is in mm/gup.c:
529  *
530  * If the page is written to, set_page_dirty (or set_page_dirty_lock,
531  * as appropriate) must be called after the page is finished with, and
532  * before put_page is called.
533  */
534 static int genwqe_free_user_pages(struct page **page_list,
535 			unsigned int nr_pages, int dirty)
536 {
537 	unsigned int i;
538 
539 	for (i = 0; i < nr_pages; i++) {
540 		if (page_list[i] != NULL) {
541 			if (dirty)
542 				set_page_dirty_lock(page_list[i]);
543 			put_page(page_list[i]);
544 		}
545 	}
546 	return 0;
547 }
548 
549 /**
550  * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
551  * @cd:         pointer to genwqe device
552  * @m:          mapping params
553  * @uaddr:      user virtual address
554  * @size:       size of memory to be mapped
555  *
556  * We need to think about how we could speed this up. Of course it is
557  * not a good idea to do this over and over again, like we are
558  * currently doing it. Nevertheless, I am curious where on the path
559  * the performance is spend. Most probably within the memory
560  * allocation functions, but maybe also in the DMA mapping code.
561  *
562  * Restrictions: The maximum size of the possible mapping currently depends
563  *               on the amount of memory we can get using kzalloc() for the
564  *               page_list and pci_alloc_consistent for the sg_list.
565  *               The sg_list is currently itself not scattered, which could
566  *               be fixed with some effort. The page_list must be split into
567  *               PAGE_SIZE chunks too. All that will make the complicated
568  *               code more complicated.
569  *
570  * Return: 0 if success
571  */
572 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
573 		     unsigned long size)
574 {
575 	int rc = -EINVAL;
576 	unsigned long data, offs;
577 	struct pci_dev *pci_dev = cd->pci_dev;
578 
579 	if ((uaddr == NULL) || (size == 0)) {
580 		m->size = 0;	/* mark unused and not added */
581 		return -EINVAL;
582 	}
583 	m->u_vaddr = uaddr;
584 	m->size    = size;
585 
586 	/* determine space needed for page_list. */
587 	data = (unsigned long)uaddr;
588 	offs = offset_in_page(data);
589 	m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
590 
591 	m->page_list = kcalloc(m->nr_pages,
592 			       sizeof(struct page *) + sizeof(dma_addr_t),
593 			       GFP_KERNEL);
594 	if (!m->page_list) {
595 		dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
596 		m->nr_pages = 0;
597 		m->u_vaddr = NULL;
598 		m->size = 0;	/* mark unused and not added */
599 		return -ENOMEM;
600 	}
601 	m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
602 
603 	/* pin user pages in memory */
604 	rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
605 				 m->nr_pages,
606 				 m->write ? FOLL_WRITE : 0,	/* readable/writable */
607 				 m->page_list);	/* ptrs to pages */
608 	if (rc < 0)
609 		goto fail_get_user_pages;
610 
611 	/* assumption: get_user_pages can be killed by signals. */
612 	if (rc < m->nr_pages) {
613 		genwqe_free_user_pages(m->page_list, rc, m->write);
614 		rc = -EFAULT;
615 		goto fail_get_user_pages;
616 	}
617 
618 	rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
619 	if (rc != 0)
620 		goto fail_free_user_pages;
621 
622 	return 0;
623 
624  fail_free_user_pages:
625 	genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
626 
627  fail_get_user_pages:
628 	kfree(m->page_list);
629 	m->page_list = NULL;
630 	m->dma_list = NULL;
631 	m->nr_pages = 0;
632 	m->u_vaddr = NULL;
633 	m->size = 0;		/* mark unused and not added */
634 	return rc;
635 }
636 
637 /**
638  * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
639  *                        memory
640  * @cd:         pointer to genwqe device
641  * @m:          mapping params
642  */
643 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m)
644 {
645 	struct pci_dev *pci_dev = cd->pci_dev;
646 
647 	if (!dma_mapping_used(m)) {
648 		dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
649 			__func__, m);
650 		return -EINVAL;
651 	}
652 
653 	if (m->dma_list)
654 		genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
655 
656 	if (m->page_list) {
657 		genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
658 
659 		kfree(m->page_list);
660 		m->page_list = NULL;
661 		m->dma_list = NULL;
662 		m->nr_pages = 0;
663 	}
664 
665 	m->u_vaddr = NULL;
666 	m->size = 0;		/* mark as unused and not added */
667 	return 0;
668 }
669 
670 /**
671  * genwqe_card_type() - Get chip type SLU Configuration Register
672  * @cd:         pointer to the genwqe device descriptor
673  * Return: 0: Altera Stratix-IV 230
674  *         1: Altera Stratix-IV 530
675  *         2: Altera Stratix-V A4
676  *         3: Altera Stratix-V A7
677  */
678 u8 genwqe_card_type(struct genwqe_dev *cd)
679 {
680 	u64 card_type = cd->slu_unitcfg;
681 
682 	return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
683 }
684 
685 /**
686  * genwqe_card_reset() - Reset the card
687  * @cd:         pointer to the genwqe device descriptor
688  */
689 int genwqe_card_reset(struct genwqe_dev *cd)
690 {
691 	u64 softrst;
692 	struct pci_dev *pci_dev = cd->pci_dev;
693 
694 	if (!genwqe_is_privileged(cd))
695 		return -ENODEV;
696 
697 	/* new SL */
698 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
699 	msleep(1000);
700 	__genwqe_readq(cd, IO_HSU_FIR_CLR);
701 	__genwqe_readq(cd, IO_APP_FIR_CLR);
702 	__genwqe_readq(cd, IO_SLU_FIR_CLR);
703 
704 	/*
705 	 * Read-modify-write to preserve the stealth bits
706 	 *
707 	 * For SL >= 039, Stealth WE bit allows removing
708 	 * the read-modify-wrote.
709 	 * r-m-w may require a mask 0x3C to avoid hitting hard
710 	 * reset again for error reset (should be 0, chicken).
711 	 */
712 	softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
713 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
714 
715 	/* give ERRORRESET some time to finish */
716 	msleep(50);
717 
718 	if (genwqe_need_err_masking(cd)) {
719 		dev_info(&pci_dev->dev,
720 			 "[%s] masking errors for old bitstreams\n", __func__);
721 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
722 	}
723 	return 0;
724 }
725 
726 int genwqe_read_softreset(struct genwqe_dev *cd)
727 {
728 	u64 bitstream;
729 
730 	if (!genwqe_is_privileged(cd))
731 		return -ENODEV;
732 
733 	bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
734 	cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
735 	return 0;
736 }
737 
738 /**
739  * genwqe_set_interrupt_capability() - Configure MSI capability structure
740  * @cd:         pointer to the device
741  * Return: 0 if no error
742  */
743 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
744 {
745 	int rc;
746 
747 	rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
748 	if (rc < 0)
749 		return rc;
750 	return 0;
751 }
752 
753 /**
754  * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
755  * @cd:         pointer to the device
756  */
757 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
758 {
759 	pci_free_irq_vectors(cd->pci_dev);
760 }
761 
762 /**
763  * set_reg_idx() - Fill array with data. Ignore illegal offsets.
764  * @cd:         card device
765  * @r:          debug register array
766  * @i:          index to desired entry
767  * @m:          maximum possible entries
768  * @addr:       addr which is read
769  * @index:      index in debug array
770  * @val:        read value
771  */
772 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
773 		       unsigned int *i, unsigned int m, u32 addr, u32 idx,
774 		       u64 val)
775 {
776 	if (WARN_ON_ONCE(*i >= m))
777 		return -EFAULT;
778 
779 	r[*i].addr = addr;
780 	r[*i].idx = idx;
781 	r[*i].val = val;
782 	++*i;
783 	return 0;
784 }
785 
786 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
787 		   unsigned int *i, unsigned int m, u32 addr, u64 val)
788 {
789 	return set_reg_idx(cd, r, i, m, addr, 0, val);
790 }
791 
792 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
793 			 unsigned int max_regs, int all)
794 {
795 	unsigned int i, j, idx = 0;
796 	u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
797 	u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
798 
799 	/* Global FIR */
800 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
801 	set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
802 
803 	/* UnitCfg for SLU */
804 	sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
805 	set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
806 
807 	/* UnitCfg for APP */
808 	appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
809 	set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
810 
811 	/* Check all chip Units */
812 	for (i = 0; i < GENWQE_MAX_UNITS; i++) {
813 
814 		/* Unit FIR */
815 		ufir_addr = (i << 24) | 0x008;
816 		ufir = __genwqe_readq(cd, ufir_addr);
817 		set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
818 
819 		/* Unit FEC */
820 		ufec_addr = (i << 24) | 0x018;
821 		ufec = __genwqe_readq(cd, ufec_addr);
822 		set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
823 
824 		for (j = 0; j < 64; j++) {
825 			/* wherever there is a primary 1, read the 2ndary */
826 			if (!all && (!(ufir & (1ull << j))))
827 				continue;
828 
829 			sfir_addr = (i << 24) | (0x100 + 8 * j);
830 			sfir = __genwqe_readq(cd, sfir_addr);
831 			set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
832 
833 			sfec_addr = (i << 24) | (0x300 + 8 * j);
834 			sfec = __genwqe_readq(cd, sfec_addr);
835 			set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
836 		}
837 	}
838 
839 	/* fill with invalid data until end */
840 	for (i = idx; i < max_regs; i++) {
841 		regs[i].addr = 0xffffffff;
842 		regs[i].val = 0xffffffffffffffffull;
843 	}
844 	return idx;
845 }
846 
847 /**
848  * genwqe_ffdc_buff_size() - Calculates the number of dump registers
849  */
850 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
851 {
852 	int entries = 0, ring, traps, traces, trace_entries;
853 	u32 eevptr_addr, l_addr, d_len, d_type;
854 	u64 eevptr, val, addr;
855 
856 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
857 	eevptr = __genwqe_readq(cd, eevptr_addr);
858 
859 	if ((eevptr != 0x0) && (eevptr != -1ull)) {
860 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
861 
862 		while (1) {
863 			val = __genwqe_readq(cd, l_addr);
864 
865 			if ((val == 0x0) || (val == -1ull))
866 				break;
867 
868 			/* 38:24 */
869 			d_len  = (val & 0x0000007fff000000ull) >> 24;
870 
871 			/* 39 */
872 			d_type = (val & 0x0000008000000000ull) >> 36;
873 
874 			if (d_type) {	/* repeat */
875 				entries += d_len;
876 			} else {	/* size in bytes! */
877 				entries += d_len >> 3;
878 			}
879 
880 			l_addr += 8;
881 		}
882 	}
883 
884 	for (ring = 0; ring < 8; ring++) {
885 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
886 		val = __genwqe_readq(cd, addr);
887 
888 		if ((val == 0x0ull) || (val == -1ull))
889 			continue;
890 
891 		traps = (val >> 24) & 0xff;
892 		traces = (val >> 16) & 0xff;
893 		trace_entries = val & 0xffff;
894 
895 		entries += traps + (traces * trace_entries);
896 	}
897 	return entries;
898 }
899 
900 /**
901  * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
902  */
903 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
904 			  struct genwqe_reg *regs, unsigned int max_regs)
905 {
906 	int i, traps, traces, trace, trace_entries, trace_entry, ring;
907 	unsigned int idx = 0;
908 	u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
909 	u64 eevptr, e, val, addr;
910 
911 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
912 	eevptr = __genwqe_readq(cd, eevptr_addr);
913 
914 	if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
915 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
916 		while (1) {
917 			e = __genwqe_readq(cd, l_addr);
918 			if ((e == 0x0) || (e == 0xffffffffffffffffull))
919 				break;
920 
921 			d_addr = (e & 0x0000000000ffffffull);	    /* 23:0 */
922 			d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
923 			d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
924 			d_addr |= GENWQE_UID_OFFS(uid);
925 
926 			if (d_type) {
927 				for (i = 0; i < (int)d_len; i++) {
928 					val = __genwqe_readq(cd, d_addr);
929 					set_reg_idx(cd, regs, &idx, max_regs,
930 						    d_addr, i, val);
931 				}
932 			} else {
933 				d_len >>= 3; /* Size in bytes! */
934 				for (i = 0; i < (int)d_len; i++, d_addr += 8) {
935 					val = __genwqe_readq(cd, d_addr);
936 					set_reg_idx(cd, regs, &idx, max_regs,
937 						    d_addr, 0, val);
938 				}
939 			}
940 			l_addr += 8;
941 		}
942 	}
943 
944 	/*
945 	 * To save time, there are only 6 traces poplulated on Uid=2,
946 	 * Ring=1. each with iters=512.
947 	 */
948 	for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
949 					      2...7 are ASI rings */
950 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
951 		val = __genwqe_readq(cd, addr);
952 
953 		if ((val == 0x0ull) || (val == -1ull))
954 			continue;
955 
956 		traps = (val >> 24) & 0xff;	/* Number of Traps	*/
957 		traces = (val >> 16) & 0xff;	/* Number of Traces	*/
958 		trace_entries = val & 0xffff;	/* Entries per trace	*/
959 
960 		/* Note: This is a combined loop that dumps both the traps */
961 		/* (for the trace == 0 case) as well as the traces 1 to    */
962 		/* 'traces'.						   */
963 		for (trace = 0; trace <= traces; trace++) {
964 			u32 diag_sel =
965 				GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
966 
967 			addr = (GENWQE_UID_OFFS(uid) |
968 				IO_EXTENDED_DIAG_SELECTOR);
969 			__genwqe_writeq(cd, addr, diag_sel);
970 
971 			for (trace_entry = 0;
972 			     trace_entry < (trace ? trace_entries : traps);
973 			     trace_entry++) {
974 				addr = (GENWQE_UID_OFFS(uid) |
975 					IO_EXTENDED_DIAG_READ_MBX);
976 				val = __genwqe_readq(cd, addr);
977 				set_reg_idx(cd, regs, &idx, max_regs, addr,
978 					    (diag_sel<<16) | trace_entry, val);
979 			}
980 		}
981 	}
982 	return 0;
983 }
984 
985 /**
986  * genwqe_write_vreg() - Write register in virtual window
987  *
988  * Note, these registers are only accessible to the PF through the
989  * VF-window. It is not intended for the VF to access.
990  */
991 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
992 {
993 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
994 	__genwqe_writeq(cd, reg, val);
995 	return 0;
996 }
997 
998 /**
999  * genwqe_read_vreg() - Read register in virtual window
1000  *
1001  * Note, these registers are only accessible to the PF through the
1002  * VF-window. It is not intended for the VF to access.
1003  */
1004 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
1005 {
1006 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
1007 	return __genwqe_readq(cd, reg);
1008 }
1009 
1010 /**
1011  * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1012  *
1013  * Note: From a design perspective it turned out to be a bad idea to
1014  * use codes here to specifiy the frequency/speed values. An old
1015  * driver cannot understand new codes and is therefore always a
1016  * problem. Better is to measure out the value or put the
1017  * speed/frequency directly into a register which is always a valid
1018  * value for old as well as for new software.
1019  *
1020  * Return: Card clock in MHz
1021  */
1022 int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1023 {
1024 	u16 speed;		/*         MHz  MHz  MHz  MHz */
1025 	static const int speed_grade[] = { 250, 200, 166, 175 };
1026 
1027 	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1028 	if (speed >= ARRAY_SIZE(speed_grade))
1029 		return 0;	/* illegal value */
1030 
1031 	return speed_grade[speed];
1032 }
1033 
1034 /**
1035  * genwqe_stop_traps() - Stop traps
1036  *
1037  * Before reading out the analysis data, we need to stop the traps.
1038  */
1039 void genwqe_stop_traps(struct genwqe_dev *cd)
1040 {
1041 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1042 }
1043 
1044 /**
1045  * genwqe_start_traps() - Start traps
1046  *
1047  * After having read the data, we can/must enable the traps again.
1048  */
1049 void genwqe_start_traps(struct genwqe_dev *cd)
1050 {
1051 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1052 
1053 	if (genwqe_need_err_masking(cd))
1054 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1055 }
1056