1 /** 2 * IBM Accelerator Family 'GenWQE' 3 * 4 * (C) Copyright IBM Corp. 2013 5 * 6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com> 7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com> 8 * Author: Michael Jung <mijung@gmx.net> 9 * Author: Michael Ruettger <michael@ibmra.de> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License (version 2 only) 13 * as published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 */ 20 21 /* 22 * Miscelanous functionality used in the other GenWQE driver parts. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/sched.h> 28 #include <linux/vmalloc.h> 29 #include <linux/page-flags.h> 30 #include <linux/scatterlist.h> 31 #include <linux/hugetlb.h> 32 #include <linux/iommu.h> 33 #include <linux/delay.h> 34 #include <linux/pci.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/ctype.h> 37 #include <linux/module.h> 38 #include <linux/platform_device.h> 39 #include <linux/delay.h> 40 #include <asm/pgtable.h> 41 42 #include "genwqe_driver.h" 43 #include "card_base.h" 44 #include "card_ddcb.h" 45 46 /** 47 * __genwqe_writeq() - Write 64-bit register 48 * @cd: genwqe device descriptor 49 * @byte_offs: byte offset within BAR 50 * @val: 64-bit value 51 * 52 * Return: 0 if success; < 0 if error 53 */ 54 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val) 55 { 56 struct pci_dev *pci_dev = cd->pci_dev; 57 58 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 59 return -EIO; 60 61 if (cd->mmio == NULL) 62 return -EIO; 63 64 if (pci_channel_offline(pci_dev)) 65 return -EIO; 66 67 __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs); 68 return 0; 69 } 70 71 /** 72 * __genwqe_readq() - Read 64-bit register 73 * @cd: genwqe device descriptor 74 * @byte_offs: offset within BAR 75 * 76 * Return: value from register 77 */ 78 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs) 79 { 80 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 81 return 0xffffffffffffffffull; 82 83 if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) && 84 (byte_offs == IO_SLC_CFGREG_GFIR)) 85 return 0x000000000000ffffull; 86 87 if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) && 88 (byte_offs == IO_SLC_CFGREG_GFIR)) 89 return 0x00000000ffff0000ull; 90 91 if (cd->mmio == NULL) 92 return 0xffffffffffffffffull; 93 94 return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs)); 95 } 96 97 /** 98 * __genwqe_writel() - Write 32-bit register 99 * @cd: genwqe device descriptor 100 * @byte_offs: byte offset within BAR 101 * @val: 32-bit value 102 * 103 * Return: 0 if success; < 0 if error 104 */ 105 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val) 106 { 107 struct pci_dev *pci_dev = cd->pci_dev; 108 109 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 110 return -EIO; 111 112 if (cd->mmio == NULL) 113 return -EIO; 114 115 if (pci_channel_offline(pci_dev)) 116 return -EIO; 117 118 __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs); 119 return 0; 120 } 121 122 /** 123 * __genwqe_readl() - Read 32-bit register 124 * @cd: genwqe device descriptor 125 * @byte_offs: offset within BAR 126 * 127 * Return: Value from register 128 */ 129 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs) 130 { 131 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 132 return 0xffffffff; 133 134 if (cd->mmio == NULL) 135 return 0xffffffff; 136 137 return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs)); 138 } 139 140 /** 141 * genwqe_read_app_id() - Extract app_id 142 * 143 * app_unitcfg need to be filled with valid data first 144 */ 145 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len) 146 { 147 int i, j; 148 u32 app_id = (u32)cd->app_unitcfg; 149 150 memset(app_name, 0, len); 151 for (i = 0, j = 0; j < min(len, 4); j++) { 152 char ch = (char)((app_id >> (24 - j*8)) & 0xff); 153 154 if (ch == ' ') 155 continue; 156 app_name[i++] = isprint(ch) ? ch : 'X'; 157 } 158 return i; 159 } 160 161 /** 162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations 163 * 164 * Existing kernel functions seem to use a different polynom, 165 * therefore we could not use them here. 166 * 167 * Genwqe's Polynomial = 0x20044009 168 */ 169 #define CRC32_POLYNOMIAL 0x20044009 170 static u32 crc32_tab[256]; /* crc32 lookup table */ 171 172 void genwqe_init_crc32(void) 173 { 174 int i, j; 175 u32 crc; 176 177 for (i = 0; i < 256; i++) { 178 crc = i << 24; 179 for (j = 0; j < 8; j++) { 180 if (crc & 0x80000000) 181 crc = (crc << 1) ^ CRC32_POLYNOMIAL; 182 else 183 crc = (crc << 1); 184 } 185 crc32_tab[i] = crc; 186 } 187 } 188 189 /** 190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs 191 * @buff: pointer to data buffer 192 * @len: length of data for calculation 193 * @init: initial crc (0xffffffff at start) 194 * 195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009) 196 197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should 198 * result in a crc32 of 0xf33cb7d3. 199 * 200 * The existing kernel crc functions did not cover this polynom yet. 201 * 202 * Return: crc32 checksum. 203 */ 204 u32 genwqe_crc32(u8 *buff, size_t len, u32 init) 205 { 206 int i; 207 u32 crc; 208 209 crc = init; 210 while (len--) { 211 i = ((crc >> 24) ^ *buff++) & 0xFF; 212 crc = (crc << 8) ^ crc32_tab[i]; 213 } 214 return crc; 215 } 216 217 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size, 218 dma_addr_t *dma_handle) 219 { 220 if (get_order(size) > MAX_ORDER) 221 return NULL; 222 223 return dma_zalloc_coherent(&cd->pci_dev->dev, size, dma_handle, 224 GFP_KERNEL); 225 } 226 227 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size, 228 void *vaddr, dma_addr_t dma_handle) 229 { 230 if (vaddr == NULL) 231 return; 232 233 dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle); 234 } 235 236 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list, 237 int num_pages) 238 { 239 int i; 240 struct pci_dev *pci_dev = cd->pci_dev; 241 242 for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) { 243 pci_unmap_page(pci_dev, dma_list[i], 244 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 245 dma_list[i] = 0x0; 246 } 247 } 248 249 static int genwqe_map_pages(struct genwqe_dev *cd, 250 struct page **page_list, int num_pages, 251 dma_addr_t *dma_list) 252 { 253 int i; 254 struct pci_dev *pci_dev = cd->pci_dev; 255 256 /* establish DMA mapping for requested pages */ 257 for (i = 0; i < num_pages; i++) { 258 dma_addr_t daddr; 259 260 dma_list[i] = 0x0; 261 daddr = pci_map_page(pci_dev, page_list[i], 262 0, /* map_offs */ 263 PAGE_SIZE, 264 PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */ 265 266 if (pci_dma_mapping_error(pci_dev, daddr)) { 267 dev_err(&pci_dev->dev, 268 "[%s] err: no dma addr daddr=%016llx!\n", 269 __func__, (long long)daddr); 270 goto err; 271 } 272 273 dma_list[i] = daddr; 274 } 275 return 0; 276 277 err: 278 genwqe_unmap_pages(cd, dma_list, num_pages); 279 return -EIO; 280 } 281 282 static int genwqe_sgl_size(int num_pages) 283 { 284 int len, num_tlb = num_pages / 7; 285 286 len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1); 287 return roundup(len, PAGE_SIZE); 288 } 289 290 /** 291 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages 292 * 293 * Allocates memory for sgl and overlapping pages. Pages which might 294 * overlap other user-space memory blocks are being cached for DMAs, 295 * such that we do not run into syncronization issues. Data is copied 296 * from user-space into the cached pages. 297 */ 298 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, 299 void __user *user_addr, size_t user_size, int write) 300 { 301 int rc; 302 struct pci_dev *pci_dev = cd->pci_dev; 303 304 sgl->fpage_offs = offset_in_page((unsigned long)user_addr); 305 sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size); 306 sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE); 307 sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE; 308 309 dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n", 310 __func__, user_addr, user_size, sgl->nr_pages, 311 sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size); 312 313 sgl->user_addr = user_addr; 314 sgl->user_size = user_size; 315 sgl->write = write; 316 sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages); 317 318 if (get_order(sgl->sgl_size) > MAX_ORDER) { 319 dev_err(&pci_dev->dev, 320 "[%s] err: too much memory requested!\n", __func__); 321 return -ENOMEM; 322 } 323 324 sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size, 325 &sgl->sgl_dma_addr); 326 if (sgl->sgl == NULL) { 327 dev_err(&pci_dev->dev, 328 "[%s] err: no memory available!\n", __func__); 329 return -ENOMEM; 330 } 331 332 /* Only use buffering on incomplete pages */ 333 if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) { 334 sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, 335 &sgl->fpage_dma_addr); 336 if (sgl->fpage == NULL) 337 goto err_out; 338 339 /* Sync with user memory */ 340 if (copy_from_user(sgl->fpage + sgl->fpage_offs, 341 user_addr, sgl->fpage_size)) { 342 rc = -EFAULT; 343 goto err_out; 344 } 345 } 346 if (sgl->lpage_size != 0) { 347 sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, 348 &sgl->lpage_dma_addr); 349 if (sgl->lpage == NULL) 350 goto err_out1; 351 352 /* Sync with user memory */ 353 if (copy_from_user(sgl->lpage, user_addr + user_size - 354 sgl->lpage_size, sgl->lpage_size)) { 355 rc = -EFAULT; 356 goto err_out2; 357 } 358 } 359 return 0; 360 361 err_out2: 362 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage, 363 sgl->lpage_dma_addr); 364 sgl->lpage = NULL; 365 sgl->lpage_dma_addr = 0; 366 err_out1: 367 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, 368 sgl->fpage_dma_addr); 369 sgl->fpage = NULL; 370 sgl->fpage_dma_addr = 0; 371 err_out: 372 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, 373 sgl->sgl_dma_addr); 374 sgl->sgl = NULL; 375 sgl->sgl_dma_addr = 0; 376 sgl->sgl_size = 0; 377 return -ENOMEM; 378 } 379 380 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, 381 dma_addr_t *dma_list) 382 { 383 int i = 0, j = 0, p; 384 unsigned long dma_offs, map_offs; 385 dma_addr_t prev_daddr = 0; 386 struct sg_entry *s, *last_s = NULL; 387 size_t size = sgl->user_size; 388 389 dma_offs = 128; /* next block if needed/dma_offset */ 390 map_offs = sgl->fpage_offs; /* offset in first page */ 391 392 s = &sgl->sgl[0]; /* first set of 8 entries */ 393 p = 0; /* page */ 394 while (p < sgl->nr_pages) { 395 dma_addr_t daddr; 396 unsigned int size_to_map; 397 398 /* always write the chaining entry, cleanup is done later */ 399 j = 0; 400 s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs); 401 s[j].len = cpu_to_be32(128); 402 s[j].flags = cpu_to_be32(SG_CHAINED); 403 j++; 404 405 while (j < 8) { 406 /* DMA mapping for requested page, offs, size */ 407 size_to_map = min(size, PAGE_SIZE - map_offs); 408 409 if ((p == 0) && (sgl->fpage != NULL)) { 410 daddr = sgl->fpage_dma_addr + map_offs; 411 412 } else if ((p == sgl->nr_pages - 1) && 413 (sgl->lpage != NULL)) { 414 daddr = sgl->lpage_dma_addr; 415 } else { 416 daddr = dma_list[p] + map_offs; 417 } 418 419 size -= size_to_map; 420 map_offs = 0; 421 422 if (prev_daddr == daddr) { 423 u32 prev_len = be32_to_cpu(last_s->len); 424 425 /* pr_info("daddr combining: " 426 "%016llx/%08x -> %016llx\n", 427 prev_daddr, prev_len, daddr); */ 428 429 last_s->len = cpu_to_be32(prev_len + 430 size_to_map); 431 432 p++; /* process next page */ 433 if (p == sgl->nr_pages) 434 goto fixup; /* nothing to do */ 435 436 prev_daddr = daddr + size_to_map; 437 continue; 438 } 439 440 /* start new entry */ 441 s[j].target_addr = cpu_to_be64(daddr); 442 s[j].len = cpu_to_be32(size_to_map); 443 s[j].flags = cpu_to_be32(SG_DATA); 444 prev_daddr = daddr + size_to_map; 445 last_s = &s[j]; 446 j++; 447 448 p++; /* process next page */ 449 if (p == sgl->nr_pages) 450 goto fixup; /* nothing to do */ 451 } 452 dma_offs += 128; 453 s += 8; /* continue 8 elements further */ 454 } 455 fixup: 456 if (j == 1) { /* combining happend on last entry! */ 457 s -= 8; /* full shift needed on previous sgl block */ 458 j = 7; /* shift all elements */ 459 } 460 461 for (i = 0; i < j; i++) /* move elements 1 up */ 462 s[i] = s[i + 1]; 463 464 s[i].target_addr = cpu_to_be64(0); 465 s[i].len = cpu_to_be32(0); 466 s[i].flags = cpu_to_be32(SG_END_LIST); 467 return 0; 468 } 469 470 /** 471 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages 472 * 473 * After the DMA transfer has been completed we free the memory for 474 * the sgl and the cached pages. Data is being transfered from cached 475 * pages into user-space buffers. 476 */ 477 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl) 478 { 479 int rc = 0; 480 size_t offset; 481 unsigned long res; 482 struct pci_dev *pci_dev = cd->pci_dev; 483 484 if (sgl->fpage) { 485 if (sgl->write) { 486 res = copy_to_user(sgl->user_addr, 487 sgl->fpage + sgl->fpage_offs, sgl->fpage_size); 488 if (res) { 489 dev_err(&pci_dev->dev, 490 "[%s] err: copying fpage! (res=%lu)\n", 491 __func__, res); 492 rc = -EFAULT; 493 } 494 } 495 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, 496 sgl->fpage_dma_addr); 497 sgl->fpage = NULL; 498 sgl->fpage_dma_addr = 0; 499 } 500 if (sgl->lpage) { 501 if (sgl->write) { 502 offset = sgl->user_size - sgl->lpage_size; 503 res = copy_to_user(sgl->user_addr + offset, sgl->lpage, 504 sgl->lpage_size); 505 if (res) { 506 dev_err(&pci_dev->dev, 507 "[%s] err: copying lpage! (res=%lu)\n", 508 __func__, res); 509 rc = -EFAULT; 510 } 511 } 512 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage, 513 sgl->lpage_dma_addr); 514 sgl->lpage = NULL; 515 sgl->lpage_dma_addr = 0; 516 } 517 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, 518 sgl->sgl_dma_addr); 519 520 sgl->sgl = NULL; 521 sgl->sgl_dma_addr = 0x0; 522 sgl->sgl_size = 0; 523 return rc; 524 } 525 526 /** 527 * free_user_pages() - Give pinned pages back 528 * 529 * Documentation of get_user_pages is in mm/memory.c: 530 * 531 * If the page is written to, set_page_dirty (or set_page_dirty_lock, 532 * as appropriate) must be called after the page is finished with, and 533 * before put_page is called. 534 * 535 * FIXME Could be of use to others and might belong in the generic 536 * code, if others agree. E.g. 537 * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c 538 * ceph_put_page_vector in net/ceph/pagevec.c 539 * maybe more? 540 */ 541 static int free_user_pages(struct page **page_list, unsigned int nr_pages, 542 int dirty) 543 { 544 unsigned int i; 545 546 for (i = 0; i < nr_pages; i++) { 547 if (page_list[i] != NULL) { 548 if (dirty) 549 set_page_dirty_lock(page_list[i]); 550 put_page(page_list[i]); 551 } 552 } 553 return 0; 554 } 555 556 /** 557 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory 558 * @cd: pointer to genwqe device 559 * @m: mapping params 560 * @uaddr: user virtual address 561 * @size: size of memory to be mapped 562 * 563 * We need to think about how we could speed this up. Of course it is 564 * not a good idea to do this over and over again, like we are 565 * currently doing it. Nevertheless, I am curious where on the path 566 * the performance is spend. Most probably within the memory 567 * allocation functions, but maybe also in the DMA mapping code. 568 * 569 * Restrictions: The maximum size of the possible mapping currently depends 570 * on the amount of memory we can get using kzalloc() for the 571 * page_list and pci_alloc_consistent for the sg_list. 572 * The sg_list is currently itself not scattered, which could 573 * be fixed with some effort. The page_list must be split into 574 * PAGE_SIZE chunks too. All that will make the complicated 575 * code more complicated. 576 * 577 * Return: 0 if success 578 */ 579 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr, 580 unsigned long size, struct ddcb_requ *req) 581 { 582 int rc = -EINVAL; 583 unsigned long data, offs; 584 struct pci_dev *pci_dev = cd->pci_dev; 585 586 if ((uaddr == NULL) || (size == 0)) { 587 m->size = 0; /* mark unused and not added */ 588 return -EINVAL; 589 } 590 m->u_vaddr = uaddr; 591 m->size = size; 592 593 /* determine space needed for page_list. */ 594 data = (unsigned long)uaddr; 595 offs = offset_in_page(data); 596 m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE); 597 598 m->page_list = kcalloc(m->nr_pages, 599 sizeof(struct page *) + sizeof(dma_addr_t), 600 GFP_KERNEL); 601 if (!m->page_list) { 602 dev_err(&pci_dev->dev, "err: alloc page_list failed\n"); 603 m->nr_pages = 0; 604 m->u_vaddr = NULL; 605 m->size = 0; /* mark unused and not added */ 606 return -ENOMEM; 607 } 608 m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages); 609 610 /* pin user pages in memory */ 611 rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */ 612 m->nr_pages, 613 m->write, /* readable/writable */ 614 m->page_list); /* ptrs to pages */ 615 if (rc < 0) 616 goto fail_get_user_pages; 617 618 /* assumption: get_user_pages can be killed by signals. */ 619 if (rc < m->nr_pages) { 620 free_user_pages(m->page_list, rc, m->write); 621 rc = -EFAULT; 622 goto fail_get_user_pages; 623 } 624 625 rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list); 626 if (rc != 0) 627 goto fail_free_user_pages; 628 629 return 0; 630 631 fail_free_user_pages: 632 free_user_pages(m->page_list, m->nr_pages, m->write); 633 634 fail_get_user_pages: 635 kfree(m->page_list); 636 m->page_list = NULL; 637 m->dma_list = NULL; 638 m->nr_pages = 0; 639 m->u_vaddr = NULL; 640 m->size = 0; /* mark unused and not added */ 641 return rc; 642 } 643 644 /** 645 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel 646 * memory 647 * @cd: pointer to genwqe device 648 * @m: mapping params 649 */ 650 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m, 651 struct ddcb_requ *req) 652 { 653 struct pci_dev *pci_dev = cd->pci_dev; 654 655 if (!dma_mapping_used(m)) { 656 dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n", 657 __func__, m); 658 return -EINVAL; 659 } 660 661 if (m->dma_list) 662 genwqe_unmap_pages(cd, m->dma_list, m->nr_pages); 663 664 if (m->page_list) { 665 free_user_pages(m->page_list, m->nr_pages, m->write); 666 667 kfree(m->page_list); 668 m->page_list = NULL; 669 m->dma_list = NULL; 670 m->nr_pages = 0; 671 } 672 673 m->u_vaddr = NULL; 674 m->size = 0; /* mark as unused and not added */ 675 return 0; 676 } 677 678 /** 679 * genwqe_card_type() - Get chip type SLU Configuration Register 680 * @cd: pointer to the genwqe device descriptor 681 * Return: 0: Altera Stratix-IV 230 682 * 1: Altera Stratix-IV 530 683 * 2: Altera Stratix-V A4 684 * 3: Altera Stratix-V A7 685 */ 686 u8 genwqe_card_type(struct genwqe_dev *cd) 687 { 688 u64 card_type = cd->slu_unitcfg; 689 690 return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20); 691 } 692 693 /** 694 * genwqe_card_reset() - Reset the card 695 * @cd: pointer to the genwqe device descriptor 696 */ 697 int genwqe_card_reset(struct genwqe_dev *cd) 698 { 699 u64 softrst; 700 struct pci_dev *pci_dev = cd->pci_dev; 701 702 if (!genwqe_is_privileged(cd)) 703 return -ENODEV; 704 705 /* new SL */ 706 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull); 707 msleep(1000); 708 __genwqe_readq(cd, IO_HSU_FIR_CLR); 709 __genwqe_readq(cd, IO_APP_FIR_CLR); 710 __genwqe_readq(cd, IO_SLU_FIR_CLR); 711 712 /* 713 * Read-modify-write to preserve the stealth bits 714 * 715 * For SL >= 039, Stealth WE bit allows removing 716 * the read-modify-wrote. 717 * r-m-w may require a mask 0x3C to avoid hitting hard 718 * reset again for error reset (should be 0, chicken). 719 */ 720 softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull; 721 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull); 722 723 /* give ERRORRESET some time to finish */ 724 msleep(50); 725 726 if (genwqe_need_err_masking(cd)) { 727 dev_info(&pci_dev->dev, 728 "[%s] masking errors for old bitstreams\n", __func__); 729 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); 730 } 731 return 0; 732 } 733 734 int genwqe_read_softreset(struct genwqe_dev *cd) 735 { 736 u64 bitstream; 737 738 if (!genwqe_is_privileged(cd)) 739 return -ENODEV; 740 741 bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1; 742 cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull; 743 return 0; 744 } 745 746 /** 747 * genwqe_set_interrupt_capability() - Configure MSI capability structure 748 * @cd: pointer to the device 749 * Return: 0 if no error 750 */ 751 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count) 752 { 753 int rc; 754 755 rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI); 756 if (rc < 0) 757 return rc; 758 return 0; 759 } 760 761 /** 762 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability() 763 * @cd: pointer to the device 764 */ 765 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd) 766 { 767 pci_free_irq_vectors(cd->pci_dev); 768 } 769 770 /** 771 * set_reg_idx() - Fill array with data. Ignore illegal offsets. 772 * @cd: card device 773 * @r: debug register array 774 * @i: index to desired entry 775 * @m: maximum possible entries 776 * @addr: addr which is read 777 * @index: index in debug array 778 * @val: read value 779 */ 780 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r, 781 unsigned int *i, unsigned int m, u32 addr, u32 idx, 782 u64 val) 783 { 784 if (WARN_ON_ONCE(*i >= m)) 785 return -EFAULT; 786 787 r[*i].addr = addr; 788 r[*i].idx = idx; 789 r[*i].val = val; 790 ++*i; 791 return 0; 792 } 793 794 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r, 795 unsigned int *i, unsigned int m, u32 addr, u64 val) 796 { 797 return set_reg_idx(cd, r, i, m, addr, 0, val); 798 } 799 800 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs, 801 unsigned int max_regs, int all) 802 { 803 unsigned int i, j, idx = 0; 804 u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr; 805 u64 gfir, sluid, appid, ufir, ufec, sfir, sfec; 806 807 /* Global FIR */ 808 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); 809 set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir); 810 811 /* UnitCfg for SLU */ 812 sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */ 813 set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid); 814 815 /* UnitCfg for APP */ 816 appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */ 817 set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid); 818 819 /* Check all chip Units */ 820 for (i = 0; i < GENWQE_MAX_UNITS; i++) { 821 822 /* Unit FIR */ 823 ufir_addr = (i << 24) | 0x008; 824 ufir = __genwqe_readq(cd, ufir_addr); 825 set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir); 826 827 /* Unit FEC */ 828 ufec_addr = (i << 24) | 0x018; 829 ufec = __genwqe_readq(cd, ufec_addr); 830 set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec); 831 832 for (j = 0; j < 64; j++) { 833 /* wherever there is a primary 1, read the 2ndary */ 834 if (!all && (!(ufir & (1ull << j)))) 835 continue; 836 837 sfir_addr = (i << 24) | (0x100 + 8 * j); 838 sfir = __genwqe_readq(cd, sfir_addr); 839 set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir); 840 841 sfec_addr = (i << 24) | (0x300 + 8 * j); 842 sfec = __genwqe_readq(cd, sfec_addr); 843 set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec); 844 } 845 } 846 847 /* fill with invalid data until end */ 848 for (i = idx; i < max_regs; i++) { 849 regs[i].addr = 0xffffffff; 850 regs[i].val = 0xffffffffffffffffull; 851 } 852 return idx; 853 } 854 855 /** 856 * genwqe_ffdc_buff_size() - Calculates the number of dump registers 857 */ 858 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid) 859 { 860 int entries = 0, ring, traps, traces, trace_entries; 861 u32 eevptr_addr, l_addr, d_len, d_type; 862 u64 eevptr, val, addr; 863 864 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; 865 eevptr = __genwqe_readq(cd, eevptr_addr); 866 867 if ((eevptr != 0x0) && (eevptr != -1ull)) { 868 l_addr = GENWQE_UID_OFFS(uid) | eevptr; 869 870 while (1) { 871 val = __genwqe_readq(cd, l_addr); 872 873 if ((val == 0x0) || (val == -1ull)) 874 break; 875 876 /* 38:24 */ 877 d_len = (val & 0x0000007fff000000ull) >> 24; 878 879 /* 39 */ 880 d_type = (val & 0x0000008000000000ull) >> 36; 881 882 if (d_type) { /* repeat */ 883 entries += d_len; 884 } else { /* size in bytes! */ 885 entries += d_len >> 3; 886 } 887 888 l_addr += 8; 889 } 890 } 891 892 for (ring = 0; ring < 8; ring++) { 893 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); 894 val = __genwqe_readq(cd, addr); 895 896 if ((val == 0x0ull) || (val == -1ull)) 897 continue; 898 899 traps = (val >> 24) & 0xff; 900 traces = (val >> 16) & 0xff; 901 trace_entries = val & 0xffff; 902 903 entries += traps + (traces * trace_entries); 904 } 905 return entries; 906 } 907 908 /** 909 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure 910 */ 911 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid, 912 struct genwqe_reg *regs, unsigned int max_regs) 913 { 914 int i, traps, traces, trace, trace_entries, trace_entry, ring; 915 unsigned int idx = 0; 916 u32 eevptr_addr, l_addr, d_addr, d_len, d_type; 917 u64 eevptr, e, val, addr; 918 919 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; 920 eevptr = __genwqe_readq(cd, eevptr_addr); 921 922 if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) { 923 l_addr = GENWQE_UID_OFFS(uid) | eevptr; 924 while (1) { 925 e = __genwqe_readq(cd, l_addr); 926 if ((e == 0x0) || (e == 0xffffffffffffffffull)) 927 break; 928 929 d_addr = (e & 0x0000000000ffffffull); /* 23:0 */ 930 d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */ 931 d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */ 932 d_addr |= GENWQE_UID_OFFS(uid); 933 934 if (d_type) { 935 for (i = 0; i < (int)d_len; i++) { 936 val = __genwqe_readq(cd, d_addr); 937 set_reg_idx(cd, regs, &idx, max_regs, 938 d_addr, i, val); 939 } 940 } else { 941 d_len >>= 3; /* Size in bytes! */ 942 for (i = 0; i < (int)d_len; i++, d_addr += 8) { 943 val = __genwqe_readq(cd, d_addr); 944 set_reg_idx(cd, regs, &idx, max_regs, 945 d_addr, 0, val); 946 } 947 } 948 l_addr += 8; 949 } 950 } 951 952 /* 953 * To save time, there are only 6 traces poplulated on Uid=2, 954 * Ring=1. each with iters=512. 955 */ 956 for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds, 957 2...7 are ASI rings */ 958 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); 959 val = __genwqe_readq(cd, addr); 960 961 if ((val == 0x0ull) || (val == -1ull)) 962 continue; 963 964 traps = (val >> 24) & 0xff; /* Number of Traps */ 965 traces = (val >> 16) & 0xff; /* Number of Traces */ 966 trace_entries = val & 0xffff; /* Entries per trace */ 967 968 /* Note: This is a combined loop that dumps both the traps */ 969 /* (for the trace == 0 case) as well as the traces 1 to */ 970 /* 'traces'. */ 971 for (trace = 0; trace <= traces; trace++) { 972 u32 diag_sel = 973 GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace); 974 975 addr = (GENWQE_UID_OFFS(uid) | 976 IO_EXTENDED_DIAG_SELECTOR); 977 __genwqe_writeq(cd, addr, diag_sel); 978 979 for (trace_entry = 0; 980 trace_entry < (trace ? trace_entries : traps); 981 trace_entry++) { 982 addr = (GENWQE_UID_OFFS(uid) | 983 IO_EXTENDED_DIAG_READ_MBX); 984 val = __genwqe_readq(cd, addr); 985 set_reg_idx(cd, regs, &idx, max_regs, addr, 986 (diag_sel<<16) | trace_entry, val); 987 } 988 } 989 } 990 return 0; 991 } 992 993 /** 994 * genwqe_write_vreg() - Write register in virtual window 995 * 996 * Note, these registers are only accessible to the PF through the 997 * VF-window. It is not intended for the VF to access. 998 */ 999 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func) 1000 { 1001 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); 1002 __genwqe_writeq(cd, reg, val); 1003 return 0; 1004 } 1005 1006 /** 1007 * genwqe_read_vreg() - Read register in virtual window 1008 * 1009 * Note, these registers are only accessible to the PF through the 1010 * VF-window. It is not intended for the VF to access. 1011 */ 1012 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func) 1013 { 1014 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); 1015 return __genwqe_readq(cd, reg); 1016 } 1017 1018 /** 1019 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card 1020 * 1021 * Note: From a design perspective it turned out to be a bad idea to 1022 * use codes here to specifiy the frequency/speed values. An old 1023 * driver cannot understand new codes and is therefore always a 1024 * problem. Better is to measure out the value or put the 1025 * speed/frequency directly into a register which is always a valid 1026 * value for old as well as for new software. 1027 * 1028 * Return: Card clock in MHz 1029 */ 1030 int genwqe_base_clock_frequency(struct genwqe_dev *cd) 1031 { 1032 u16 speed; /* MHz MHz MHz MHz */ 1033 static const int speed_grade[] = { 250, 200, 166, 175 }; 1034 1035 speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full); 1036 if (speed >= ARRAY_SIZE(speed_grade)) 1037 return 0; /* illegal value */ 1038 1039 return speed_grade[speed]; 1040 } 1041 1042 /** 1043 * genwqe_stop_traps() - Stop traps 1044 * 1045 * Before reading out the analysis data, we need to stop the traps. 1046 */ 1047 void genwqe_stop_traps(struct genwqe_dev *cd) 1048 { 1049 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull); 1050 } 1051 1052 /** 1053 * genwqe_start_traps() - Start traps 1054 * 1055 * After having read the data, we can/must enable the traps again. 1056 */ 1057 void genwqe_start_traps(struct genwqe_dev *cd) 1058 { 1059 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull); 1060 1061 if (genwqe_need_err_masking(cd)) 1062 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); 1063 } 1064