xref: /openbmc/linux/drivers/misc/genwqe/card_utils.c (revision 64d85cc9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3  * IBM Accelerator Family 'GenWQE'
4  *
5  * (C) Copyright IBM Corp. 2013
6  *
7  * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
8  * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
9  * Author: Michael Jung <mijung@gmx.net>
10  * Author: Michael Ruettger <michael@ibmra.de>
11  */
12 
13 /*
14  * Miscelanous functionality used in the other GenWQE driver parts.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/page-flags.h>
21 #include <linux/scatterlist.h>
22 #include <linux/hugetlb.h>
23 #include <linux/iommu.h>
24 #include <linux/pci.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/ctype.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/delay.h>
30 #include <asm/pgtable.h>
31 
32 #include "genwqe_driver.h"
33 #include "card_base.h"
34 #include "card_ddcb.h"
35 
36 /**
37  * __genwqe_writeq() - Write 64-bit register
38  * @cd:	        genwqe device descriptor
39  * @byte_offs:  byte offset within BAR
40  * @val:        64-bit value
41  *
42  * Return: 0 if success; < 0 if error
43  */
44 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
45 {
46 	struct pci_dev *pci_dev = cd->pci_dev;
47 
48 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
49 		return -EIO;
50 
51 	if (cd->mmio == NULL)
52 		return -EIO;
53 
54 	if (pci_channel_offline(pci_dev))
55 		return -EIO;
56 
57 	__raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
58 	return 0;
59 }
60 
61 /**
62  * __genwqe_readq() - Read 64-bit register
63  * @cd:         genwqe device descriptor
64  * @byte_offs:  offset within BAR
65  *
66  * Return: value from register
67  */
68 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
69 {
70 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
71 		return 0xffffffffffffffffull;
72 
73 	if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
74 	    (byte_offs == IO_SLC_CFGREG_GFIR))
75 		return 0x000000000000ffffull;
76 
77 	if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
78 	    (byte_offs == IO_SLC_CFGREG_GFIR))
79 		return 0x00000000ffff0000ull;
80 
81 	if (cd->mmio == NULL)
82 		return 0xffffffffffffffffull;
83 
84 	return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
85 }
86 
87 /**
88  * __genwqe_writel() - Write 32-bit register
89  * @cd:	        genwqe device descriptor
90  * @byte_offs:  byte offset within BAR
91  * @val:        32-bit value
92  *
93  * Return: 0 if success; < 0 if error
94  */
95 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
96 {
97 	struct pci_dev *pci_dev = cd->pci_dev;
98 
99 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
100 		return -EIO;
101 
102 	if (cd->mmio == NULL)
103 		return -EIO;
104 
105 	if (pci_channel_offline(pci_dev))
106 		return -EIO;
107 
108 	__raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
109 	return 0;
110 }
111 
112 /**
113  * __genwqe_readl() - Read 32-bit register
114  * @cd:         genwqe device descriptor
115  * @byte_offs:  offset within BAR
116  *
117  * Return: Value from register
118  */
119 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
120 {
121 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
122 		return 0xffffffff;
123 
124 	if (cd->mmio == NULL)
125 		return 0xffffffff;
126 
127 	return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
128 }
129 
130 /**
131  * genwqe_read_app_id() - Extract app_id
132  *
133  * app_unitcfg need to be filled with valid data first
134  */
135 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
136 {
137 	int i, j;
138 	u32 app_id = (u32)cd->app_unitcfg;
139 
140 	memset(app_name, 0, len);
141 	for (i = 0, j = 0; j < min(len, 4); j++) {
142 		char ch = (char)((app_id >> (24 - j*8)) & 0xff);
143 
144 		if (ch == ' ')
145 			continue;
146 		app_name[i++] = isprint(ch) ? ch : 'X';
147 	}
148 	return i;
149 }
150 
151 /**
152  * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
153  *
154  * Existing kernel functions seem to use a different polynom,
155  * therefore we could not use them here.
156  *
157  * Genwqe's Polynomial = 0x20044009
158  */
159 #define CRC32_POLYNOMIAL	0x20044009
160 static u32 crc32_tab[256];	/* crc32 lookup table */
161 
162 void genwqe_init_crc32(void)
163 {
164 	int i, j;
165 	u32 crc;
166 
167 	for (i = 0;  i < 256;  i++) {
168 		crc = i << 24;
169 		for (j = 0;  j < 8;  j++) {
170 			if (crc & 0x80000000)
171 				crc = (crc << 1) ^ CRC32_POLYNOMIAL;
172 			else
173 				crc = (crc << 1);
174 		}
175 		crc32_tab[i] = crc;
176 	}
177 }
178 
179 /**
180  * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
181  * @buff:       pointer to data buffer
182  * @len:        length of data for calculation
183  * @init:       initial crc (0xffffffff at start)
184  *
185  * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
186 
187  * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
188  * result in a crc32 of 0xf33cb7d3.
189  *
190  * The existing kernel crc functions did not cover this polynom yet.
191  *
192  * Return: crc32 checksum.
193  */
194 u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
195 {
196 	int i;
197 	u32 crc;
198 
199 	crc = init;
200 	while (len--) {
201 		i = ((crc >> 24) ^ *buff++) & 0xFF;
202 		crc = (crc << 8) ^ crc32_tab[i];
203 	}
204 	return crc;
205 }
206 
207 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
208 			       dma_addr_t *dma_handle)
209 {
210 	if (get_order(size) >= MAX_ORDER)
211 		return NULL;
212 
213 	return dma_alloc_coherent(&cd->pci_dev->dev, size, dma_handle,
214 				  GFP_KERNEL);
215 }
216 
217 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
218 			     void *vaddr, dma_addr_t dma_handle)
219 {
220 	if (vaddr == NULL)
221 		return;
222 
223 	dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
224 }
225 
226 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
227 			      int num_pages)
228 {
229 	int i;
230 	struct pci_dev *pci_dev = cd->pci_dev;
231 
232 	for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
233 		pci_unmap_page(pci_dev, dma_list[i],
234 			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
235 		dma_list[i] = 0x0;
236 	}
237 }
238 
239 static int genwqe_map_pages(struct genwqe_dev *cd,
240 			   struct page **page_list, int num_pages,
241 			   dma_addr_t *dma_list)
242 {
243 	int i;
244 	struct pci_dev *pci_dev = cd->pci_dev;
245 
246 	/* establish DMA mapping for requested pages */
247 	for (i = 0; i < num_pages; i++) {
248 		dma_addr_t daddr;
249 
250 		dma_list[i] = 0x0;
251 		daddr = pci_map_page(pci_dev, page_list[i],
252 				     0,	 /* map_offs */
253 				     PAGE_SIZE,
254 				     PCI_DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
255 
256 		if (pci_dma_mapping_error(pci_dev, daddr)) {
257 			dev_err(&pci_dev->dev,
258 				"[%s] err: no dma addr daddr=%016llx!\n",
259 				__func__, (long long)daddr);
260 			goto err;
261 		}
262 
263 		dma_list[i] = daddr;
264 	}
265 	return 0;
266 
267  err:
268 	genwqe_unmap_pages(cd, dma_list, num_pages);
269 	return -EIO;
270 }
271 
272 static int genwqe_sgl_size(int num_pages)
273 {
274 	int len, num_tlb = num_pages / 7;
275 
276 	len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
277 	return roundup(len, PAGE_SIZE);
278 }
279 
280 /**
281  * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
282  *
283  * Allocates memory for sgl and overlapping pages. Pages which might
284  * overlap other user-space memory blocks are being cached for DMAs,
285  * such that we do not run into syncronization issues. Data is copied
286  * from user-space into the cached pages.
287  */
288 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
289 			  void __user *user_addr, size_t user_size, int write)
290 {
291 	int ret = -ENOMEM;
292 	struct pci_dev *pci_dev = cd->pci_dev;
293 
294 	sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
295 	sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
296 	sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
297 	sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
298 
299 	dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
300 		__func__, user_addr, user_size, sgl->nr_pages,
301 		sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
302 
303 	sgl->user_addr = user_addr;
304 	sgl->user_size = user_size;
305 	sgl->write = write;
306 	sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
307 
308 	if (get_order(sgl->sgl_size) > MAX_ORDER) {
309 		dev_err(&pci_dev->dev,
310 			"[%s] err: too much memory requested!\n", __func__);
311 		return ret;
312 	}
313 
314 	sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
315 					     &sgl->sgl_dma_addr);
316 	if (sgl->sgl == NULL) {
317 		dev_err(&pci_dev->dev,
318 			"[%s] err: no memory available!\n", __func__);
319 		return ret;
320 	}
321 
322 	/* Only use buffering on incomplete pages */
323 	if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
324 		sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
325 						       &sgl->fpage_dma_addr);
326 		if (sgl->fpage == NULL)
327 			goto err_out;
328 
329 		/* Sync with user memory */
330 		if (copy_from_user(sgl->fpage + sgl->fpage_offs,
331 				   user_addr, sgl->fpage_size)) {
332 			ret = -EFAULT;
333 			goto err_out;
334 		}
335 	}
336 	if (sgl->lpage_size != 0) {
337 		sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
338 						       &sgl->lpage_dma_addr);
339 		if (sgl->lpage == NULL)
340 			goto err_out1;
341 
342 		/* Sync with user memory */
343 		if (copy_from_user(sgl->lpage, user_addr + user_size -
344 				   sgl->lpage_size, sgl->lpage_size)) {
345 			ret = -EFAULT;
346 			goto err_out2;
347 		}
348 	}
349 	return 0;
350 
351  err_out2:
352 	__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
353 				 sgl->lpage_dma_addr);
354 	sgl->lpage = NULL;
355 	sgl->lpage_dma_addr = 0;
356  err_out1:
357 	__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
358 				 sgl->fpage_dma_addr);
359 	sgl->fpage = NULL;
360 	sgl->fpage_dma_addr = 0;
361  err_out:
362 	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
363 				 sgl->sgl_dma_addr);
364 	sgl->sgl = NULL;
365 	sgl->sgl_dma_addr = 0;
366 	sgl->sgl_size = 0;
367 
368 	return ret;
369 }
370 
371 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
372 		     dma_addr_t *dma_list)
373 {
374 	int i = 0, j = 0, p;
375 	unsigned long dma_offs, map_offs;
376 	dma_addr_t prev_daddr = 0;
377 	struct sg_entry *s, *last_s = NULL;
378 	size_t size = sgl->user_size;
379 
380 	dma_offs = 128;		/* next block if needed/dma_offset */
381 	map_offs = sgl->fpage_offs; /* offset in first page */
382 
383 	s = &sgl->sgl[0];	/* first set of 8 entries */
384 	p = 0;			/* page */
385 	while (p < sgl->nr_pages) {
386 		dma_addr_t daddr;
387 		unsigned int size_to_map;
388 
389 		/* always write the chaining entry, cleanup is done later */
390 		j = 0;
391 		s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
392 		s[j].len	 = cpu_to_be32(128);
393 		s[j].flags	 = cpu_to_be32(SG_CHAINED);
394 		j++;
395 
396 		while (j < 8) {
397 			/* DMA mapping for requested page, offs, size */
398 			size_to_map = min(size, PAGE_SIZE - map_offs);
399 
400 			if ((p == 0) && (sgl->fpage != NULL)) {
401 				daddr = sgl->fpage_dma_addr + map_offs;
402 
403 			} else if ((p == sgl->nr_pages - 1) &&
404 				   (sgl->lpage != NULL)) {
405 				daddr = sgl->lpage_dma_addr;
406 			} else {
407 				daddr = dma_list[p] + map_offs;
408 			}
409 
410 			size -= size_to_map;
411 			map_offs = 0;
412 
413 			if (prev_daddr == daddr) {
414 				u32 prev_len = be32_to_cpu(last_s->len);
415 
416 				/* pr_info("daddr combining: "
417 					"%016llx/%08x -> %016llx\n",
418 					prev_daddr, prev_len, daddr); */
419 
420 				last_s->len = cpu_to_be32(prev_len +
421 							  size_to_map);
422 
423 				p++; /* process next page */
424 				if (p == sgl->nr_pages)
425 					goto fixup;  /* nothing to do */
426 
427 				prev_daddr = daddr + size_to_map;
428 				continue;
429 			}
430 
431 			/* start new entry */
432 			s[j].target_addr = cpu_to_be64(daddr);
433 			s[j].len	 = cpu_to_be32(size_to_map);
434 			s[j].flags	 = cpu_to_be32(SG_DATA);
435 			prev_daddr = daddr + size_to_map;
436 			last_s = &s[j];
437 			j++;
438 
439 			p++;	/* process next page */
440 			if (p == sgl->nr_pages)
441 				goto fixup;  /* nothing to do */
442 		}
443 		dma_offs += 128;
444 		s += 8;		/* continue 8 elements further */
445 	}
446  fixup:
447 	if (j == 1) {		/* combining happened on last entry! */
448 		s -= 8;		/* full shift needed on previous sgl block */
449 		j =  7;		/* shift all elements */
450 	}
451 
452 	for (i = 0; i < j; i++)	/* move elements 1 up */
453 		s[i] = s[i + 1];
454 
455 	s[i].target_addr = cpu_to_be64(0);
456 	s[i].len	 = cpu_to_be32(0);
457 	s[i].flags	 = cpu_to_be32(SG_END_LIST);
458 	return 0;
459 }
460 
461 /**
462  * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
463  *
464  * After the DMA transfer has been completed we free the memory for
465  * the sgl and the cached pages. Data is being transferred from cached
466  * pages into user-space buffers.
467  */
468 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
469 {
470 	int rc = 0;
471 	size_t offset;
472 	unsigned long res;
473 	struct pci_dev *pci_dev = cd->pci_dev;
474 
475 	if (sgl->fpage) {
476 		if (sgl->write) {
477 			res = copy_to_user(sgl->user_addr,
478 				sgl->fpage + sgl->fpage_offs, sgl->fpage_size);
479 			if (res) {
480 				dev_err(&pci_dev->dev,
481 					"[%s] err: copying fpage! (res=%lu)\n",
482 					__func__, res);
483 				rc = -EFAULT;
484 			}
485 		}
486 		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
487 					 sgl->fpage_dma_addr);
488 		sgl->fpage = NULL;
489 		sgl->fpage_dma_addr = 0;
490 	}
491 	if (sgl->lpage) {
492 		if (sgl->write) {
493 			offset = sgl->user_size - sgl->lpage_size;
494 			res = copy_to_user(sgl->user_addr + offset, sgl->lpage,
495 					   sgl->lpage_size);
496 			if (res) {
497 				dev_err(&pci_dev->dev,
498 					"[%s] err: copying lpage! (res=%lu)\n",
499 					__func__, res);
500 				rc = -EFAULT;
501 			}
502 		}
503 		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
504 					 sgl->lpage_dma_addr);
505 		sgl->lpage = NULL;
506 		sgl->lpage_dma_addr = 0;
507 	}
508 	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
509 				 sgl->sgl_dma_addr);
510 
511 	sgl->sgl = NULL;
512 	sgl->sgl_dma_addr = 0x0;
513 	sgl->sgl_size = 0;
514 	return rc;
515 }
516 
517 /**
518  * genwqe_free_user_pages() - Give pinned pages back
519  *
520  * Documentation of get_user_pages is in mm/gup.c:
521  *
522  * If the page is written to, set_page_dirty (or set_page_dirty_lock,
523  * as appropriate) must be called after the page is finished with, and
524  * before put_page is called.
525  */
526 static int genwqe_free_user_pages(struct page **page_list,
527 			unsigned int nr_pages, int dirty)
528 {
529 	unsigned int i;
530 
531 	for (i = 0; i < nr_pages; i++) {
532 		if (page_list[i] != NULL) {
533 			if (dirty)
534 				set_page_dirty_lock(page_list[i]);
535 			put_page(page_list[i]);
536 		}
537 	}
538 	return 0;
539 }
540 
541 /**
542  * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
543  * @cd:         pointer to genwqe device
544  * @m:          mapping params
545  * @uaddr:      user virtual address
546  * @size:       size of memory to be mapped
547  *
548  * We need to think about how we could speed this up. Of course it is
549  * not a good idea to do this over and over again, like we are
550  * currently doing it. Nevertheless, I am curious where on the path
551  * the performance is spend. Most probably within the memory
552  * allocation functions, but maybe also in the DMA mapping code.
553  *
554  * Restrictions: The maximum size of the possible mapping currently depends
555  *               on the amount of memory we can get using kzalloc() for the
556  *               page_list and pci_alloc_consistent for the sg_list.
557  *               The sg_list is currently itself not scattered, which could
558  *               be fixed with some effort. The page_list must be split into
559  *               PAGE_SIZE chunks too. All that will make the complicated
560  *               code more complicated.
561  *
562  * Return: 0 if success
563  */
564 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
565 		     unsigned long size)
566 {
567 	int rc = -EINVAL;
568 	unsigned long data, offs;
569 	struct pci_dev *pci_dev = cd->pci_dev;
570 
571 	if ((uaddr == NULL) || (size == 0)) {
572 		m->size = 0;	/* mark unused and not added */
573 		return -EINVAL;
574 	}
575 	m->u_vaddr = uaddr;
576 	m->size    = size;
577 
578 	/* determine space needed for page_list. */
579 	data = (unsigned long)uaddr;
580 	offs = offset_in_page(data);
581 	m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
582 
583 	m->page_list = kcalloc(m->nr_pages,
584 			       sizeof(struct page *) + sizeof(dma_addr_t),
585 			       GFP_KERNEL);
586 	if (!m->page_list) {
587 		dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
588 		m->nr_pages = 0;
589 		m->u_vaddr = NULL;
590 		m->size = 0;	/* mark unused and not added */
591 		return -ENOMEM;
592 	}
593 	m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
594 
595 	/* pin user pages in memory */
596 	rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
597 				 m->nr_pages,
598 				 m->write ? FOLL_WRITE : 0,	/* readable/writable */
599 				 m->page_list);	/* ptrs to pages */
600 	if (rc < 0)
601 		goto fail_get_user_pages;
602 
603 	/* assumption: get_user_pages can be killed by signals. */
604 	if (rc < m->nr_pages) {
605 		genwqe_free_user_pages(m->page_list, rc, m->write);
606 		rc = -EFAULT;
607 		goto fail_get_user_pages;
608 	}
609 
610 	rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
611 	if (rc != 0)
612 		goto fail_free_user_pages;
613 
614 	return 0;
615 
616  fail_free_user_pages:
617 	genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
618 
619  fail_get_user_pages:
620 	kfree(m->page_list);
621 	m->page_list = NULL;
622 	m->dma_list = NULL;
623 	m->nr_pages = 0;
624 	m->u_vaddr = NULL;
625 	m->size = 0;		/* mark unused and not added */
626 	return rc;
627 }
628 
629 /**
630  * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
631  *                        memory
632  * @cd:         pointer to genwqe device
633  * @m:          mapping params
634  */
635 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m)
636 {
637 	struct pci_dev *pci_dev = cd->pci_dev;
638 
639 	if (!dma_mapping_used(m)) {
640 		dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
641 			__func__, m);
642 		return -EINVAL;
643 	}
644 
645 	if (m->dma_list)
646 		genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
647 
648 	if (m->page_list) {
649 		genwqe_free_user_pages(m->page_list, m->nr_pages, m->write);
650 
651 		kfree(m->page_list);
652 		m->page_list = NULL;
653 		m->dma_list = NULL;
654 		m->nr_pages = 0;
655 	}
656 
657 	m->u_vaddr = NULL;
658 	m->size = 0;		/* mark as unused and not added */
659 	return 0;
660 }
661 
662 /**
663  * genwqe_card_type() - Get chip type SLU Configuration Register
664  * @cd:         pointer to the genwqe device descriptor
665  * Return: 0: Altera Stratix-IV 230
666  *         1: Altera Stratix-IV 530
667  *         2: Altera Stratix-V A4
668  *         3: Altera Stratix-V A7
669  */
670 u8 genwqe_card_type(struct genwqe_dev *cd)
671 {
672 	u64 card_type = cd->slu_unitcfg;
673 
674 	return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
675 }
676 
677 /**
678  * genwqe_card_reset() - Reset the card
679  * @cd:         pointer to the genwqe device descriptor
680  */
681 int genwqe_card_reset(struct genwqe_dev *cd)
682 {
683 	u64 softrst;
684 	struct pci_dev *pci_dev = cd->pci_dev;
685 
686 	if (!genwqe_is_privileged(cd))
687 		return -ENODEV;
688 
689 	/* new SL */
690 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
691 	msleep(1000);
692 	__genwqe_readq(cd, IO_HSU_FIR_CLR);
693 	__genwqe_readq(cd, IO_APP_FIR_CLR);
694 	__genwqe_readq(cd, IO_SLU_FIR_CLR);
695 
696 	/*
697 	 * Read-modify-write to preserve the stealth bits
698 	 *
699 	 * For SL >= 039, Stealth WE bit allows removing
700 	 * the read-modify-wrote.
701 	 * r-m-w may require a mask 0x3C to avoid hitting hard
702 	 * reset again for error reset (should be 0, chicken).
703 	 */
704 	softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
705 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
706 
707 	/* give ERRORRESET some time to finish */
708 	msleep(50);
709 
710 	if (genwqe_need_err_masking(cd)) {
711 		dev_info(&pci_dev->dev,
712 			 "[%s] masking errors for old bitstreams\n", __func__);
713 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
714 	}
715 	return 0;
716 }
717 
718 int genwqe_read_softreset(struct genwqe_dev *cd)
719 {
720 	u64 bitstream;
721 
722 	if (!genwqe_is_privileged(cd))
723 		return -ENODEV;
724 
725 	bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
726 	cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
727 	return 0;
728 }
729 
730 /**
731  * genwqe_set_interrupt_capability() - Configure MSI capability structure
732  * @cd:         pointer to the device
733  * Return: 0 if no error
734  */
735 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
736 {
737 	int rc;
738 
739 	rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
740 	if (rc < 0)
741 		return rc;
742 	return 0;
743 }
744 
745 /**
746  * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
747  * @cd:         pointer to the device
748  */
749 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
750 {
751 	pci_free_irq_vectors(cd->pci_dev);
752 }
753 
754 /**
755  * set_reg_idx() - Fill array with data. Ignore illegal offsets.
756  * @cd:         card device
757  * @r:          debug register array
758  * @i:          index to desired entry
759  * @m:          maximum possible entries
760  * @addr:       addr which is read
761  * @index:      index in debug array
762  * @val:        read value
763  */
764 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
765 		       unsigned int *i, unsigned int m, u32 addr, u32 idx,
766 		       u64 val)
767 {
768 	if (WARN_ON_ONCE(*i >= m))
769 		return -EFAULT;
770 
771 	r[*i].addr = addr;
772 	r[*i].idx = idx;
773 	r[*i].val = val;
774 	++*i;
775 	return 0;
776 }
777 
778 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
779 		   unsigned int *i, unsigned int m, u32 addr, u64 val)
780 {
781 	return set_reg_idx(cd, r, i, m, addr, 0, val);
782 }
783 
784 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
785 			 unsigned int max_regs, int all)
786 {
787 	unsigned int i, j, idx = 0;
788 	u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
789 	u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
790 
791 	/* Global FIR */
792 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
793 	set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
794 
795 	/* UnitCfg for SLU */
796 	sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
797 	set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
798 
799 	/* UnitCfg for APP */
800 	appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
801 	set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
802 
803 	/* Check all chip Units */
804 	for (i = 0; i < GENWQE_MAX_UNITS; i++) {
805 
806 		/* Unit FIR */
807 		ufir_addr = (i << 24) | 0x008;
808 		ufir = __genwqe_readq(cd, ufir_addr);
809 		set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
810 
811 		/* Unit FEC */
812 		ufec_addr = (i << 24) | 0x018;
813 		ufec = __genwqe_readq(cd, ufec_addr);
814 		set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
815 
816 		for (j = 0; j < 64; j++) {
817 			/* wherever there is a primary 1, read the 2ndary */
818 			if (!all && (!(ufir & (1ull << j))))
819 				continue;
820 
821 			sfir_addr = (i << 24) | (0x100 + 8 * j);
822 			sfir = __genwqe_readq(cd, sfir_addr);
823 			set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
824 
825 			sfec_addr = (i << 24) | (0x300 + 8 * j);
826 			sfec = __genwqe_readq(cd, sfec_addr);
827 			set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
828 		}
829 	}
830 
831 	/* fill with invalid data until end */
832 	for (i = idx; i < max_regs; i++) {
833 		regs[i].addr = 0xffffffff;
834 		regs[i].val = 0xffffffffffffffffull;
835 	}
836 	return idx;
837 }
838 
839 /**
840  * genwqe_ffdc_buff_size() - Calculates the number of dump registers
841  */
842 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
843 {
844 	int entries = 0, ring, traps, traces, trace_entries;
845 	u32 eevptr_addr, l_addr, d_len, d_type;
846 	u64 eevptr, val, addr;
847 
848 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
849 	eevptr = __genwqe_readq(cd, eevptr_addr);
850 
851 	if ((eevptr != 0x0) && (eevptr != -1ull)) {
852 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
853 
854 		while (1) {
855 			val = __genwqe_readq(cd, l_addr);
856 
857 			if ((val == 0x0) || (val == -1ull))
858 				break;
859 
860 			/* 38:24 */
861 			d_len  = (val & 0x0000007fff000000ull) >> 24;
862 
863 			/* 39 */
864 			d_type = (val & 0x0000008000000000ull) >> 36;
865 
866 			if (d_type) {	/* repeat */
867 				entries += d_len;
868 			} else {	/* size in bytes! */
869 				entries += d_len >> 3;
870 			}
871 
872 			l_addr += 8;
873 		}
874 	}
875 
876 	for (ring = 0; ring < 8; ring++) {
877 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
878 		val = __genwqe_readq(cd, addr);
879 
880 		if ((val == 0x0ull) || (val == -1ull))
881 			continue;
882 
883 		traps = (val >> 24) & 0xff;
884 		traces = (val >> 16) & 0xff;
885 		trace_entries = val & 0xffff;
886 
887 		entries += traps + (traces * trace_entries);
888 	}
889 	return entries;
890 }
891 
892 /**
893  * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
894  */
895 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
896 			  struct genwqe_reg *regs, unsigned int max_regs)
897 {
898 	int i, traps, traces, trace, trace_entries, trace_entry, ring;
899 	unsigned int idx = 0;
900 	u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
901 	u64 eevptr, e, val, addr;
902 
903 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
904 	eevptr = __genwqe_readq(cd, eevptr_addr);
905 
906 	if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
907 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
908 		while (1) {
909 			e = __genwqe_readq(cd, l_addr);
910 			if ((e == 0x0) || (e == 0xffffffffffffffffull))
911 				break;
912 
913 			d_addr = (e & 0x0000000000ffffffull);	    /* 23:0 */
914 			d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
915 			d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
916 			d_addr |= GENWQE_UID_OFFS(uid);
917 
918 			if (d_type) {
919 				for (i = 0; i < (int)d_len; i++) {
920 					val = __genwqe_readq(cd, d_addr);
921 					set_reg_idx(cd, regs, &idx, max_regs,
922 						    d_addr, i, val);
923 				}
924 			} else {
925 				d_len >>= 3; /* Size in bytes! */
926 				for (i = 0; i < (int)d_len; i++, d_addr += 8) {
927 					val = __genwqe_readq(cd, d_addr);
928 					set_reg_idx(cd, regs, &idx, max_regs,
929 						    d_addr, 0, val);
930 				}
931 			}
932 			l_addr += 8;
933 		}
934 	}
935 
936 	/*
937 	 * To save time, there are only 6 traces poplulated on Uid=2,
938 	 * Ring=1. each with iters=512.
939 	 */
940 	for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
941 					      2...7 are ASI rings */
942 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
943 		val = __genwqe_readq(cd, addr);
944 
945 		if ((val == 0x0ull) || (val == -1ull))
946 			continue;
947 
948 		traps = (val >> 24) & 0xff;	/* Number of Traps	*/
949 		traces = (val >> 16) & 0xff;	/* Number of Traces	*/
950 		trace_entries = val & 0xffff;	/* Entries per trace	*/
951 
952 		/* Note: This is a combined loop that dumps both the traps */
953 		/* (for the trace == 0 case) as well as the traces 1 to    */
954 		/* 'traces'.						   */
955 		for (trace = 0; trace <= traces; trace++) {
956 			u32 diag_sel =
957 				GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
958 
959 			addr = (GENWQE_UID_OFFS(uid) |
960 				IO_EXTENDED_DIAG_SELECTOR);
961 			__genwqe_writeq(cd, addr, diag_sel);
962 
963 			for (trace_entry = 0;
964 			     trace_entry < (trace ? trace_entries : traps);
965 			     trace_entry++) {
966 				addr = (GENWQE_UID_OFFS(uid) |
967 					IO_EXTENDED_DIAG_READ_MBX);
968 				val = __genwqe_readq(cd, addr);
969 				set_reg_idx(cd, regs, &idx, max_regs, addr,
970 					    (diag_sel<<16) | trace_entry, val);
971 			}
972 		}
973 	}
974 	return 0;
975 }
976 
977 /**
978  * genwqe_write_vreg() - Write register in virtual window
979  *
980  * Note, these registers are only accessible to the PF through the
981  * VF-window. It is not intended for the VF to access.
982  */
983 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
984 {
985 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
986 	__genwqe_writeq(cd, reg, val);
987 	return 0;
988 }
989 
990 /**
991  * genwqe_read_vreg() - Read register in virtual window
992  *
993  * Note, these registers are only accessible to the PF through the
994  * VF-window. It is not intended for the VF to access.
995  */
996 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
997 {
998 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
999 	return __genwqe_readq(cd, reg);
1000 }
1001 
1002 /**
1003  * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1004  *
1005  * Note: From a design perspective it turned out to be a bad idea to
1006  * use codes here to specifiy the frequency/speed values. An old
1007  * driver cannot understand new codes and is therefore always a
1008  * problem. Better is to measure out the value or put the
1009  * speed/frequency directly into a register which is always a valid
1010  * value for old as well as for new software.
1011  *
1012  * Return: Card clock in MHz
1013  */
1014 int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1015 {
1016 	u16 speed;		/*         MHz  MHz  MHz  MHz */
1017 	static const int speed_grade[] = { 250, 200, 166, 175 };
1018 
1019 	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1020 	if (speed >= ARRAY_SIZE(speed_grade))
1021 		return 0;	/* illegal value */
1022 
1023 	return speed_grade[speed];
1024 }
1025 
1026 /**
1027  * genwqe_stop_traps() - Stop traps
1028  *
1029  * Before reading out the analysis data, we need to stop the traps.
1030  */
1031 void genwqe_stop_traps(struct genwqe_dev *cd)
1032 {
1033 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1034 }
1035 
1036 /**
1037  * genwqe_start_traps() - Start traps
1038  *
1039  * After having read the data, we can/must enable the traps again.
1040  */
1041 void genwqe_start_traps(struct genwqe_dev *cd)
1042 {
1043 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1044 
1045 	if (genwqe_need_err_masking(cd))
1046 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1047 }
1048