1 /** 2 * IBM Accelerator Family 'GenWQE' 3 * 4 * (C) Copyright IBM Corp. 2013 5 * 6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com> 7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com> 8 * Author: Michael Jung <mijung@gmx.net> 9 * Author: Michael Ruettger <michael@ibmra.de> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License (version 2 only) 13 * as published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 */ 20 21 /* 22 * Miscelanous functionality used in the other GenWQE driver parts. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/sched.h> 28 #include <linux/vmalloc.h> 29 #include <linux/page-flags.h> 30 #include <linux/scatterlist.h> 31 #include <linux/hugetlb.h> 32 #include <linux/iommu.h> 33 #include <linux/delay.h> 34 #include <linux/pci.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/ctype.h> 37 #include <linux/module.h> 38 #include <linux/platform_device.h> 39 #include <linux/delay.h> 40 #include <asm/pgtable.h> 41 42 #include "genwqe_driver.h" 43 #include "card_base.h" 44 #include "card_ddcb.h" 45 46 /** 47 * __genwqe_writeq() - Write 64-bit register 48 * @cd: genwqe device descriptor 49 * @byte_offs: byte offset within BAR 50 * @val: 64-bit value 51 * 52 * Return: 0 if success; < 0 if error 53 */ 54 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val) 55 { 56 struct pci_dev *pci_dev = cd->pci_dev; 57 58 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 59 return -EIO; 60 61 if (cd->mmio == NULL) 62 return -EIO; 63 64 if (pci_channel_offline(pci_dev)) 65 return -EIO; 66 67 __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs); 68 return 0; 69 } 70 71 /** 72 * __genwqe_readq() - Read 64-bit register 73 * @cd: genwqe device descriptor 74 * @byte_offs: offset within BAR 75 * 76 * Return: value from register 77 */ 78 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs) 79 { 80 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 81 return 0xffffffffffffffffull; 82 83 if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) && 84 (byte_offs == IO_SLC_CFGREG_GFIR)) 85 return 0x000000000000ffffull; 86 87 if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) && 88 (byte_offs == IO_SLC_CFGREG_GFIR)) 89 return 0x00000000ffff0000ull; 90 91 if (cd->mmio == NULL) 92 return 0xffffffffffffffffull; 93 94 return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs)); 95 } 96 97 /** 98 * __genwqe_writel() - Write 32-bit register 99 * @cd: genwqe device descriptor 100 * @byte_offs: byte offset within BAR 101 * @val: 32-bit value 102 * 103 * Return: 0 if success; < 0 if error 104 */ 105 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val) 106 { 107 struct pci_dev *pci_dev = cd->pci_dev; 108 109 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 110 return -EIO; 111 112 if (cd->mmio == NULL) 113 return -EIO; 114 115 if (pci_channel_offline(pci_dev)) 116 return -EIO; 117 118 __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs); 119 return 0; 120 } 121 122 /** 123 * __genwqe_readl() - Read 32-bit register 124 * @cd: genwqe device descriptor 125 * @byte_offs: offset within BAR 126 * 127 * Return: Value from register 128 */ 129 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs) 130 { 131 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 132 return 0xffffffff; 133 134 if (cd->mmio == NULL) 135 return 0xffffffff; 136 137 return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs)); 138 } 139 140 /** 141 * genwqe_read_app_id() - Extract app_id 142 * 143 * app_unitcfg need to be filled with valid data first 144 */ 145 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len) 146 { 147 int i, j; 148 u32 app_id = (u32)cd->app_unitcfg; 149 150 memset(app_name, 0, len); 151 for (i = 0, j = 0; j < min(len, 4); j++) { 152 char ch = (char)((app_id >> (24 - j*8)) & 0xff); 153 154 if (ch == ' ') 155 continue; 156 app_name[i++] = isprint(ch) ? ch : 'X'; 157 } 158 return i; 159 } 160 161 /** 162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations 163 * 164 * Existing kernel functions seem to use a different polynom, 165 * therefore we could not use them here. 166 * 167 * Genwqe's Polynomial = 0x20044009 168 */ 169 #define CRC32_POLYNOMIAL 0x20044009 170 static u32 crc32_tab[256]; /* crc32 lookup table */ 171 172 void genwqe_init_crc32(void) 173 { 174 int i, j; 175 u32 crc; 176 177 for (i = 0; i < 256; i++) { 178 crc = i << 24; 179 for (j = 0; j < 8; j++) { 180 if (crc & 0x80000000) 181 crc = (crc << 1) ^ CRC32_POLYNOMIAL; 182 else 183 crc = (crc << 1); 184 } 185 crc32_tab[i] = crc; 186 } 187 } 188 189 /** 190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs 191 * @buff: pointer to data buffer 192 * @len: length of data for calculation 193 * @init: initial crc (0xffffffff at start) 194 * 195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009) 196 197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should 198 * result in a crc32 of 0xf33cb7d3. 199 * 200 * The existing kernel crc functions did not cover this polynom yet. 201 * 202 * Return: crc32 checksum. 203 */ 204 u32 genwqe_crc32(u8 *buff, size_t len, u32 init) 205 { 206 int i; 207 u32 crc; 208 209 crc = init; 210 while (len--) { 211 i = ((crc >> 24) ^ *buff++) & 0xFF; 212 crc = (crc << 8) ^ crc32_tab[i]; 213 } 214 return crc; 215 } 216 217 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size, 218 dma_addr_t *dma_handle) 219 { 220 if (get_order(size) > MAX_ORDER) 221 return NULL; 222 223 return dma_zalloc_coherent(&cd->pci_dev->dev, size, dma_handle, 224 GFP_KERNEL); 225 } 226 227 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size, 228 void *vaddr, dma_addr_t dma_handle) 229 { 230 if (vaddr == NULL) 231 return; 232 233 dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle); 234 } 235 236 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list, 237 int num_pages) 238 { 239 int i; 240 struct pci_dev *pci_dev = cd->pci_dev; 241 242 for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) { 243 pci_unmap_page(pci_dev, dma_list[i], 244 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 245 dma_list[i] = 0x0; 246 } 247 } 248 249 static int genwqe_map_pages(struct genwqe_dev *cd, 250 struct page **page_list, int num_pages, 251 dma_addr_t *dma_list) 252 { 253 int i; 254 struct pci_dev *pci_dev = cd->pci_dev; 255 256 /* establish DMA mapping for requested pages */ 257 for (i = 0; i < num_pages; i++) { 258 dma_addr_t daddr; 259 260 dma_list[i] = 0x0; 261 daddr = pci_map_page(pci_dev, page_list[i], 262 0, /* map_offs */ 263 PAGE_SIZE, 264 PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */ 265 266 if (pci_dma_mapping_error(pci_dev, daddr)) { 267 dev_err(&pci_dev->dev, 268 "[%s] err: no dma addr daddr=%016llx!\n", 269 __func__, (long long)daddr); 270 goto err; 271 } 272 273 dma_list[i] = daddr; 274 } 275 return 0; 276 277 err: 278 genwqe_unmap_pages(cd, dma_list, num_pages); 279 return -EIO; 280 } 281 282 static int genwqe_sgl_size(int num_pages) 283 { 284 int len, num_tlb = num_pages / 7; 285 286 len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1); 287 return roundup(len, PAGE_SIZE); 288 } 289 290 /** 291 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages 292 * 293 * Allocates memory for sgl and overlapping pages. Pages which might 294 * overlap other user-space memory blocks are being cached for DMAs, 295 * such that we do not run into syncronization issues. Data is copied 296 * from user-space into the cached pages. 297 */ 298 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, 299 void __user *user_addr, size_t user_size) 300 { 301 int rc; 302 struct pci_dev *pci_dev = cd->pci_dev; 303 304 sgl->fpage_offs = offset_in_page((unsigned long)user_addr); 305 sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size); 306 sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE); 307 sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE; 308 309 dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n", 310 __func__, user_addr, user_size, sgl->nr_pages, 311 sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size); 312 313 sgl->user_addr = user_addr; 314 sgl->user_size = user_size; 315 sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages); 316 317 if (get_order(sgl->sgl_size) > MAX_ORDER) { 318 dev_err(&pci_dev->dev, 319 "[%s] err: too much memory requested!\n", __func__); 320 return -ENOMEM; 321 } 322 323 sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size, 324 &sgl->sgl_dma_addr); 325 if (sgl->sgl == NULL) { 326 dev_err(&pci_dev->dev, 327 "[%s] err: no memory available!\n", __func__); 328 return -ENOMEM; 329 } 330 331 /* Only use buffering on incomplete pages */ 332 if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) { 333 sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, 334 &sgl->fpage_dma_addr); 335 if (sgl->fpage == NULL) 336 goto err_out; 337 338 /* Sync with user memory */ 339 if (copy_from_user(sgl->fpage + sgl->fpage_offs, 340 user_addr, sgl->fpage_size)) { 341 rc = -EFAULT; 342 goto err_out; 343 } 344 } 345 if (sgl->lpage_size != 0) { 346 sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, 347 &sgl->lpage_dma_addr); 348 if (sgl->lpage == NULL) 349 goto err_out1; 350 351 /* Sync with user memory */ 352 if (copy_from_user(sgl->lpage, user_addr + user_size - 353 sgl->lpage_size, sgl->lpage_size)) { 354 rc = -EFAULT; 355 goto err_out2; 356 } 357 } 358 return 0; 359 360 err_out2: 361 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage, 362 sgl->lpage_dma_addr); 363 sgl->lpage = NULL; 364 sgl->lpage_dma_addr = 0; 365 err_out1: 366 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, 367 sgl->fpage_dma_addr); 368 sgl->fpage = NULL; 369 sgl->fpage_dma_addr = 0; 370 err_out: 371 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, 372 sgl->sgl_dma_addr); 373 sgl->sgl = NULL; 374 sgl->sgl_dma_addr = 0; 375 sgl->sgl_size = 0; 376 return -ENOMEM; 377 } 378 379 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, 380 dma_addr_t *dma_list) 381 { 382 int i = 0, j = 0, p; 383 unsigned long dma_offs, map_offs; 384 dma_addr_t prev_daddr = 0; 385 struct sg_entry *s, *last_s = NULL; 386 size_t size = sgl->user_size; 387 388 dma_offs = 128; /* next block if needed/dma_offset */ 389 map_offs = sgl->fpage_offs; /* offset in first page */ 390 391 s = &sgl->sgl[0]; /* first set of 8 entries */ 392 p = 0; /* page */ 393 while (p < sgl->nr_pages) { 394 dma_addr_t daddr; 395 unsigned int size_to_map; 396 397 /* always write the chaining entry, cleanup is done later */ 398 j = 0; 399 s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs); 400 s[j].len = cpu_to_be32(128); 401 s[j].flags = cpu_to_be32(SG_CHAINED); 402 j++; 403 404 while (j < 8) { 405 /* DMA mapping for requested page, offs, size */ 406 size_to_map = min(size, PAGE_SIZE - map_offs); 407 408 if ((p == 0) && (sgl->fpage != NULL)) { 409 daddr = sgl->fpage_dma_addr + map_offs; 410 411 } else if ((p == sgl->nr_pages - 1) && 412 (sgl->lpage != NULL)) { 413 daddr = sgl->lpage_dma_addr; 414 } else { 415 daddr = dma_list[p] + map_offs; 416 } 417 418 size -= size_to_map; 419 map_offs = 0; 420 421 if (prev_daddr == daddr) { 422 u32 prev_len = be32_to_cpu(last_s->len); 423 424 /* pr_info("daddr combining: " 425 "%016llx/%08x -> %016llx\n", 426 prev_daddr, prev_len, daddr); */ 427 428 last_s->len = cpu_to_be32(prev_len + 429 size_to_map); 430 431 p++; /* process next page */ 432 if (p == sgl->nr_pages) 433 goto fixup; /* nothing to do */ 434 435 prev_daddr = daddr + size_to_map; 436 continue; 437 } 438 439 /* start new entry */ 440 s[j].target_addr = cpu_to_be64(daddr); 441 s[j].len = cpu_to_be32(size_to_map); 442 s[j].flags = cpu_to_be32(SG_DATA); 443 prev_daddr = daddr + size_to_map; 444 last_s = &s[j]; 445 j++; 446 447 p++; /* process next page */ 448 if (p == sgl->nr_pages) 449 goto fixup; /* nothing to do */ 450 } 451 dma_offs += 128; 452 s += 8; /* continue 8 elements further */ 453 } 454 fixup: 455 if (j == 1) { /* combining happend on last entry! */ 456 s -= 8; /* full shift needed on previous sgl block */ 457 j = 7; /* shift all elements */ 458 } 459 460 for (i = 0; i < j; i++) /* move elements 1 up */ 461 s[i] = s[i + 1]; 462 463 s[i].target_addr = cpu_to_be64(0); 464 s[i].len = cpu_to_be32(0); 465 s[i].flags = cpu_to_be32(SG_END_LIST); 466 return 0; 467 } 468 469 /** 470 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages 471 * 472 * After the DMA transfer has been completed we free the memory for 473 * the sgl and the cached pages. Data is being transfered from cached 474 * pages into user-space buffers. 475 */ 476 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl) 477 { 478 int rc = 0; 479 struct pci_dev *pci_dev = cd->pci_dev; 480 481 if (sgl->fpage) { 482 if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs, 483 sgl->fpage_size)) { 484 dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n", 485 __func__); 486 rc = -EFAULT; 487 } 488 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, 489 sgl->fpage_dma_addr); 490 sgl->fpage = NULL; 491 sgl->fpage_dma_addr = 0; 492 } 493 if (sgl->lpage) { 494 if (copy_to_user(sgl->user_addr + sgl->user_size - 495 sgl->lpage_size, sgl->lpage, 496 sgl->lpage_size)) { 497 dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n", 498 __func__); 499 rc = -EFAULT; 500 } 501 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage, 502 sgl->lpage_dma_addr); 503 sgl->lpage = NULL; 504 sgl->lpage_dma_addr = 0; 505 } 506 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, 507 sgl->sgl_dma_addr); 508 509 sgl->sgl = NULL; 510 sgl->sgl_dma_addr = 0x0; 511 sgl->sgl_size = 0; 512 return rc; 513 } 514 515 /** 516 * free_user_pages() - Give pinned pages back 517 * 518 * Documentation of get_user_pages is in mm/memory.c: 519 * 520 * If the page is written to, set_page_dirty (or set_page_dirty_lock, 521 * as appropriate) must be called after the page is finished with, and 522 * before put_page is called. 523 * 524 * FIXME Could be of use to others and might belong in the generic 525 * code, if others agree. E.g. 526 * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c 527 * ceph_put_page_vector in net/ceph/pagevec.c 528 * maybe more? 529 */ 530 static int free_user_pages(struct page **page_list, unsigned int nr_pages, 531 int dirty) 532 { 533 unsigned int i; 534 535 for (i = 0; i < nr_pages; i++) { 536 if (page_list[i] != NULL) { 537 if (dirty) 538 set_page_dirty_lock(page_list[i]); 539 put_page(page_list[i]); 540 } 541 } 542 return 0; 543 } 544 545 /** 546 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory 547 * @cd: pointer to genwqe device 548 * @m: mapping params 549 * @uaddr: user virtual address 550 * @size: size of memory to be mapped 551 * 552 * We need to think about how we could speed this up. Of course it is 553 * not a good idea to do this over and over again, like we are 554 * currently doing it. Nevertheless, I am curious where on the path 555 * the performance is spend. Most probably within the memory 556 * allocation functions, but maybe also in the DMA mapping code. 557 * 558 * Restrictions: The maximum size of the possible mapping currently depends 559 * on the amount of memory we can get using kzalloc() for the 560 * page_list and pci_alloc_consistent for the sg_list. 561 * The sg_list is currently itself not scattered, which could 562 * be fixed with some effort. The page_list must be split into 563 * PAGE_SIZE chunks too. All that will make the complicated 564 * code more complicated. 565 * 566 * Return: 0 if success 567 */ 568 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr, 569 unsigned long size, struct ddcb_requ *req) 570 { 571 int rc = -EINVAL; 572 unsigned long data, offs; 573 struct pci_dev *pci_dev = cd->pci_dev; 574 575 if ((uaddr == NULL) || (size == 0)) { 576 m->size = 0; /* mark unused and not added */ 577 return -EINVAL; 578 } 579 m->u_vaddr = uaddr; 580 m->size = size; 581 582 /* determine space needed for page_list. */ 583 data = (unsigned long)uaddr; 584 offs = offset_in_page(data); 585 m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE); 586 587 m->page_list = kcalloc(m->nr_pages, 588 sizeof(struct page *) + sizeof(dma_addr_t), 589 GFP_KERNEL); 590 if (!m->page_list) { 591 dev_err(&pci_dev->dev, "err: alloc page_list failed\n"); 592 m->nr_pages = 0; 593 m->u_vaddr = NULL; 594 m->size = 0; /* mark unused and not added */ 595 return -ENOMEM; 596 } 597 m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages); 598 599 /* pin user pages in memory */ 600 rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */ 601 m->nr_pages, 602 1, /* write by caller */ 603 m->page_list); /* ptrs to pages */ 604 if (rc < 0) 605 goto fail_get_user_pages; 606 607 /* assumption: get_user_pages can be killed by signals. */ 608 if (rc < m->nr_pages) { 609 free_user_pages(m->page_list, rc, 0); 610 rc = -EFAULT; 611 goto fail_get_user_pages; 612 } 613 614 rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list); 615 if (rc != 0) 616 goto fail_free_user_pages; 617 618 return 0; 619 620 fail_free_user_pages: 621 free_user_pages(m->page_list, m->nr_pages, 0); 622 623 fail_get_user_pages: 624 kfree(m->page_list); 625 m->page_list = NULL; 626 m->dma_list = NULL; 627 m->nr_pages = 0; 628 m->u_vaddr = NULL; 629 m->size = 0; /* mark unused and not added */ 630 return rc; 631 } 632 633 /** 634 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel 635 * memory 636 * @cd: pointer to genwqe device 637 * @m: mapping params 638 */ 639 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m, 640 struct ddcb_requ *req) 641 { 642 struct pci_dev *pci_dev = cd->pci_dev; 643 644 if (!dma_mapping_used(m)) { 645 dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n", 646 __func__, m); 647 return -EINVAL; 648 } 649 650 if (m->dma_list) 651 genwqe_unmap_pages(cd, m->dma_list, m->nr_pages); 652 653 if (m->page_list) { 654 free_user_pages(m->page_list, m->nr_pages, 1); 655 656 kfree(m->page_list); 657 m->page_list = NULL; 658 m->dma_list = NULL; 659 m->nr_pages = 0; 660 } 661 662 m->u_vaddr = NULL; 663 m->size = 0; /* mark as unused and not added */ 664 return 0; 665 } 666 667 /** 668 * genwqe_card_type() - Get chip type SLU Configuration Register 669 * @cd: pointer to the genwqe device descriptor 670 * Return: 0: Altera Stratix-IV 230 671 * 1: Altera Stratix-IV 530 672 * 2: Altera Stratix-V A4 673 * 3: Altera Stratix-V A7 674 */ 675 u8 genwqe_card_type(struct genwqe_dev *cd) 676 { 677 u64 card_type = cd->slu_unitcfg; 678 679 return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20); 680 } 681 682 /** 683 * genwqe_card_reset() - Reset the card 684 * @cd: pointer to the genwqe device descriptor 685 */ 686 int genwqe_card_reset(struct genwqe_dev *cd) 687 { 688 u64 softrst; 689 struct pci_dev *pci_dev = cd->pci_dev; 690 691 if (!genwqe_is_privileged(cd)) 692 return -ENODEV; 693 694 /* new SL */ 695 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull); 696 msleep(1000); 697 __genwqe_readq(cd, IO_HSU_FIR_CLR); 698 __genwqe_readq(cd, IO_APP_FIR_CLR); 699 __genwqe_readq(cd, IO_SLU_FIR_CLR); 700 701 /* 702 * Read-modify-write to preserve the stealth bits 703 * 704 * For SL >= 039, Stealth WE bit allows removing 705 * the read-modify-wrote. 706 * r-m-w may require a mask 0x3C to avoid hitting hard 707 * reset again for error reset (should be 0, chicken). 708 */ 709 softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull; 710 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull); 711 712 /* give ERRORRESET some time to finish */ 713 msleep(50); 714 715 if (genwqe_need_err_masking(cd)) { 716 dev_info(&pci_dev->dev, 717 "[%s] masking errors for old bitstreams\n", __func__); 718 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); 719 } 720 return 0; 721 } 722 723 int genwqe_read_softreset(struct genwqe_dev *cd) 724 { 725 u64 bitstream; 726 727 if (!genwqe_is_privileged(cd)) 728 return -ENODEV; 729 730 bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1; 731 cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull; 732 return 0; 733 } 734 735 /** 736 * genwqe_set_interrupt_capability() - Configure MSI capability structure 737 * @cd: pointer to the device 738 * Return: 0 if no error 739 */ 740 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count) 741 { 742 int rc; 743 744 rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI); 745 if (rc < 0) 746 return rc; 747 return 0; 748 } 749 750 /** 751 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability() 752 * @cd: pointer to the device 753 */ 754 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd) 755 { 756 pci_free_irq_vectors(cd->pci_dev); 757 } 758 759 /** 760 * set_reg_idx() - Fill array with data. Ignore illegal offsets. 761 * @cd: card device 762 * @r: debug register array 763 * @i: index to desired entry 764 * @m: maximum possible entries 765 * @addr: addr which is read 766 * @index: index in debug array 767 * @val: read value 768 */ 769 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r, 770 unsigned int *i, unsigned int m, u32 addr, u32 idx, 771 u64 val) 772 { 773 if (WARN_ON_ONCE(*i >= m)) 774 return -EFAULT; 775 776 r[*i].addr = addr; 777 r[*i].idx = idx; 778 r[*i].val = val; 779 ++*i; 780 return 0; 781 } 782 783 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r, 784 unsigned int *i, unsigned int m, u32 addr, u64 val) 785 { 786 return set_reg_idx(cd, r, i, m, addr, 0, val); 787 } 788 789 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs, 790 unsigned int max_regs, int all) 791 { 792 unsigned int i, j, idx = 0; 793 u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr; 794 u64 gfir, sluid, appid, ufir, ufec, sfir, sfec; 795 796 /* Global FIR */ 797 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); 798 set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir); 799 800 /* UnitCfg for SLU */ 801 sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */ 802 set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid); 803 804 /* UnitCfg for APP */ 805 appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */ 806 set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid); 807 808 /* Check all chip Units */ 809 for (i = 0; i < GENWQE_MAX_UNITS; i++) { 810 811 /* Unit FIR */ 812 ufir_addr = (i << 24) | 0x008; 813 ufir = __genwqe_readq(cd, ufir_addr); 814 set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir); 815 816 /* Unit FEC */ 817 ufec_addr = (i << 24) | 0x018; 818 ufec = __genwqe_readq(cd, ufec_addr); 819 set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec); 820 821 for (j = 0; j < 64; j++) { 822 /* wherever there is a primary 1, read the 2ndary */ 823 if (!all && (!(ufir & (1ull << j)))) 824 continue; 825 826 sfir_addr = (i << 24) | (0x100 + 8 * j); 827 sfir = __genwqe_readq(cd, sfir_addr); 828 set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir); 829 830 sfec_addr = (i << 24) | (0x300 + 8 * j); 831 sfec = __genwqe_readq(cd, sfec_addr); 832 set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec); 833 } 834 } 835 836 /* fill with invalid data until end */ 837 for (i = idx; i < max_regs; i++) { 838 regs[i].addr = 0xffffffff; 839 regs[i].val = 0xffffffffffffffffull; 840 } 841 return idx; 842 } 843 844 /** 845 * genwqe_ffdc_buff_size() - Calculates the number of dump registers 846 */ 847 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid) 848 { 849 int entries = 0, ring, traps, traces, trace_entries; 850 u32 eevptr_addr, l_addr, d_len, d_type; 851 u64 eevptr, val, addr; 852 853 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; 854 eevptr = __genwqe_readq(cd, eevptr_addr); 855 856 if ((eevptr != 0x0) && (eevptr != -1ull)) { 857 l_addr = GENWQE_UID_OFFS(uid) | eevptr; 858 859 while (1) { 860 val = __genwqe_readq(cd, l_addr); 861 862 if ((val == 0x0) || (val == -1ull)) 863 break; 864 865 /* 38:24 */ 866 d_len = (val & 0x0000007fff000000ull) >> 24; 867 868 /* 39 */ 869 d_type = (val & 0x0000008000000000ull) >> 36; 870 871 if (d_type) { /* repeat */ 872 entries += d_len; 873 } else { /* size in bytes! */ 874 entries += d_len >> 3; 875 } 876 877 l_addr += 8; 878 } 879 } 880 881 for (ring = 0; ring < 8; ring++) { 882 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); 883 val = __genwqe_readq(cd, addr); 884 885 if ((val == 0x0ull) || (val == -1ull)) 886 continue; 887 888 traps = (val >> 24) & 0xff; 889 traces = (val >> 16) & 0xff; 890 trace_entries = val & 0xffff; 891 892 entries += traps + (traces * trace_entries); 893 } 894 return entries; 895 } 896 897 /** 898 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure 899 */ 900 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid, 901 struct genwqe_reg *regs, unsigned int max_regs) 902 { 903 int i, traps, traces, trace, trace_entries, trace_entry, ring; 904 unsigned int idx = 0; 905 u32 eevptr_addr, l_addr, d_addr, d_len, d_type; 906 u64 eevptr, e, val, addr; 907 908 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; 909 eevptr = __genwqe_readq(cd, eevptr_addr); 910 911 if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) { 912 l_addr = GENWQE_UID_OFFS(uid) | eevptr; 913 while (1) { 914 e = __genwqe_readq(cd, l_addr); 915 if ((e == 0x0) || (e == 0xffffffffffffffffull)) 916 break; 917 918 d_addr = (e & 0x0000000000ffffffull); /* 23:0 */ 919 d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */ 920 d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */ 921 d_addr |= GENWQE_UID_OFFS(uid); 922 923 if (d_type) { 924 for (i = 0; i < (int)d_len; i++) { 925 val = __genwqe_readq(cd, d_addr); 926 set_reg_idx(cd, regs, &idx, max_regs, 927 d_addr, i, val); 928 } 929 } else { 930 d_len >>= 3; /* Size in bytes! */ 931 for (i = 0; i < (int)d_len; i++, d_addr += 8) { 932 val = __genwqe_readq(cd, d_addr); 933 set_reg_idx(cd, regs, &idx, max_regs, 934 d_addr, 0, val); 935 } 936 } 937 l_addr += 8; 938 } 939 } 940 941 /* 942 * To save time, there are only 6 traces poplulated on Uid=2, 943 * Ring=1. each with iters=512. 944 */ 945 for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds, 946 2...7 are ASI rings */ 947 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); 948 val = __genwqe_readq(cd, addr); 949 950 if ((val == 0x0ull) || (val == -1ull)) 951 continue; 952 953 traps = (val >> 24) & 0xff; /* Number of Traps */ 954 traces = (val >> 16) & 0xff; /* Number of Traces */ 955 trace_entries = val & 0xffff; /* Entries per trace */ 956 957 /* Note: This is a combined loop that dumps both the traps */ 958 /* (for the trace == 0 case) as well as the traces 1 to */ 959 /* 'traces'. */ 960 for (trace = 0; trace <= traces; trace++) { 961 u32 diag_sel = 962 GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace); 963 964 addr = (GENWQE_UID_OFFS(uid) | 965 IO_EXTENDED_DIAG_SELECTOR); 966 __genwqe_writeq(cd, addr, diag_sel); 967 968 for (trace_entry = 0; 969 trace_entry < (trace ? trace_entries : traps); 970 trace_entry++) { 971 addr = (GENWQE_UID_OFFS(uid) | 972 IO_EXTENDED_DIAG_READ_MBX); 973 val = __genwqe_readq(cd, addr); 974 set_reg_idx(cd, regs, &idx, max_regs, addr, 975 (diag_sel<<16) | trace_entry, val); 976 } 977 } 978 } 979 return 0; 980 } 981 982 /** 983 * genwqe_write_vreg() - Write register in virtual window 984 * 985 * Note, these registers are only accessible to the PF through the 986 * VF-window. It is not intended for the VF to access. 987 */ 988 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func) 989 { 990 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); 991 __genwqe_writeq(cd, reg, val); 992 return 0; 993 } 994 995 /** 996 * genwqe_read_vreg() - Read register in virtual window 997 * 998 * Note, these registers are only accessible to the PF through the 999 * VF-window. It is not intended for the VF to access. 1000 */ 1001 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func) 1002 { 1003 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); 1004 return __genwqe_readq(cd, reg); 1005 } 1006 1007 /** 1008 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card 1009 * 1010 * Note: From a design perspective it turned out to be a bad idea to 1011 * use codes here to specifiy the frequency/speed values. An old 1012 * driver cannot understand new codes and is therefore always a 1013 * problem. Better is to measure out the value or put the 1014 * speed/frequency directly into a register which is always a valid 1015 * value for old as well as for new software. 1016 * 1017 * Return: Card clock in MHz 1018 */ 1019 int genwqe_base_clock_frequency(struct genwqe_dev *cd) 1020 { 1021 u16 speed; /* MHz MHz MHz MHz */ 1022 static const int speed_grade[] = { 250, 200, 166, 175 }; 1023 1024 speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full); 1025 if (speed >= ARRAY_SIZE(speed_grade)) 1026 return 0; /* illegal value */ 1027 1028 return speed_grade[speed]; 1029 } 1030 1031 /** 1032 * genwqe_stop_traps() - Stop traps 1033 * 1034 * Before reading out the analysis data, we need to stop the traps. 1035 */ 1036 void genwqe_stop_traps(struct genwqe_dev *cd) 1037 { 1038 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull); 1039 } 1040 1041 /** 1042 * genwqe_start_traps() - Start traps 1043 * 1044 * After having read the data, we can/must enable the traps again. 1045 */ 1046 void genwqe_start_traps(struct genwqe_dev *cd) 1047 { 1048 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull); 1049 1050 if (genwqe_need_err_masking(cd)) 1051 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); 1052 } 1053