xref: /openbmc/linux/drivers/misc/genwqe/card_utils.c (revision 483eb062)
1 /**
2  * IBM Accelerator Family 'GenWQE'
3  *
4  * (C) Copyright IBM Corp. 2013
5  *
6  * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7  * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8  * Author: Michael Jung <mijung@de.ibm.com>
9  * Author: Michael Ruettger <michael@ibmra.de>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License (version 2 only)
13  * as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  */
20 
21 /*
22  * Miscelanous functionality used in the other GenWQE driver parts.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/sched.h>
28 #include <linux/vmalloc.h>
29 #include <linux/page-flags.h>
30 #include <linux/scatterlist.h>
31 #include <linux/hugetlb.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/ctype.h>
37 #include <linux/module.h>
38 #include <linux/platform_device.h>
39 #include <linux/delay.h>
40 #include <asm/pgtable.h>
41 
42 #include "genwqe_driver.h"
43 #include "card_base.h"
44 #include "card_ddcb.h"
45 
46 /**
47  * __genwqe_writeq() - Write 64-bit register
48  * @cd:	        genwqe device descriptor
49  * @byte_offs:  byte offset within BAR
50  * @val:        64-bit value
51  *
52  * Return: 0 if success; < 0 if error
53  */
54 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
55 {
56 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
57 		return -EIO;
58 
59 	if (cd->mmio == NULL)
60 		return -EIO;
61 
62 	__raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
63 	return 0;
64 }
65 
66 /**
67  * __genwqe_readq() - Read 64-bit register
68  * @cd:         genwqe device descriptor
69  * @byte_offs:  offset within BAR
70  *
71  * Return: value from register
72  */
73 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
74 {
75 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
76 		return 0xffffffffffffffffull;
77 
78 	if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
79 	    (byte_offs == IO_SLC_CFGREG_GFIR))
80 		return 0x000000000000ffffull;
81 
82 	if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
83 	    (byte_offs == IO_SLC_CFGREG_GFIR))
84 		return 0x00000000ffff0000ull;
85 
86 	if (cd->mmio == NULL)
87 		return 0xffffffffffffffffull;
88 
89 	return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
90 }
91 
92 /**
93  * __genwqe_writel() - Write 32-bit register
94  * @cd:	        genwqe device descriptor
95  * @byte_offs:  byte offset within BAR
96  * @val:        32-bit value
97  *
98  * Return: 0 if success; < 0 if error
99  */
100 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
101 {
102 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
103 		return -EIO;
104 
105 	if (cd->mmio == NULL)
106 		return -EIO;
107 
108 	__raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
109 	return 0;
110 }
111 
112 /**
113  * __genwqe_readl() - Read 32-bit register
114  * @cd:         genwqe device descriptor
115  * @byte_offs:  offset within BAR
116  *
117  * Return: Value from register
118  */
119 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
120 {
121 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
122 		return 0xffffffff;
123 
124 	if (cd->mmio == NULL)
125 		return 0xffffffff;
126 
127 	return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
128 }
129 
130 /**
131  * genwqe_read_app_id() - Extract app_id
132  *
133  * app_unitcfg need to be filled with valid data first
134  */
135 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
136 {
137 	int i, j;
138 	u32 app_id = (u32)cd->app_unitcfg;
139 
140 	memset(app_name, 0, len);
141 	for (i = 0, j = 0; j < min(len, 4); j++) {
142 		char ch = (char)((app_id >> (24 - j*8)) & 0xff);
143 		if (ch == ' ')
144 			continue;
145 		app_name[i++] = isprint(ch) ? ch : 'X';
146 	}
147 	return i;
148 }
149 
150 /**
151  * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
152  *
153  * Existing kernel functions seem to use a different polynom,
154  * therefore we could not use them here.
155  *
156  * Genwqe's Polynomial = 0x20044009
157  */
158 #define CRC32_POLYNOMIAL	0x20044009
159 static u32 crc32_tab[256];	/* crc32 lookup table */
160 
161 void genwqe_init_crc32(void)
162 {
163 	int i, j;
164 	u32 crc;
165 
166 	for (i = 0;  i < 256;  i++) {
167 		crc = i << 24;
168 		for (j = 0;  j < 8;  j++) {
169 			if (crc & 0x80000000)
170 				crc = (crc << 1) ^ CRC32_POLYNOMIAL;
171 			else
172 				crc = (crc << 1);
173 		}
174 		crc32_tab[i] = crc;
175 	}
176 }
177 
178 /**
179  * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
180  * @buff:       pointer to data buffer
181  * @len:        length of data for calculation
182  * @init:       initial crc (0xffffffff at start)
183  *
184  * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
185 
186  * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
187  * result in a crc32 of 0xf33cb7d3.
188  *
189  * The existing kernel crc functions did not cover this polynom yet.
190  *
191  * Return: crc32 checksum.
192  */
193 u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
194 {
195 	int i;
196 	u32 crc;
197 
198 	crc = init;
199 	while (len--) {
200 		i = ((crc >> 24) ^ *buff++) & 0xFF;
201 		crc = (crc << 8) ^ crc32_tab[i];
202 	}
203 	return crc;
204 }
205 
206 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
207 			       dma_addr_t *dma_handle)
208 {
209 	if (get_order(size) > MAX_ORDER)
210 		return NULL;
211 
212 	return pci_alloc_consistent(cd->pci_dev, size, dma_handle);
213 }
214 
215 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
216 			     void *vaddr, dma_addr_t dma_handle)
217 {
218 	if (vaddr == NULL)
219 		return;
220 
221 	pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle);
222 }
223 
224 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
225 			      int num_pages)
226 {
227 	int i;
228 	struct pci_dev *pci_dev = cd->pci_dev;
229 
230 	for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
231 		pci_unmap_page(pci_dev, dma_list[i],
232 			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
233 		dma_list[i] = 0x0;
234 	}
235 }
236 
237 static int genwqe_map_pages(struct genwqe_dev *cd,
238 			   struct page **page_list, int num_pages,
239 			   dma_addr_t *dma_list)
240 {
241 	int i;
242 	struct pci_dev *pci_dev = cd->pci_dev;
243 
244 	/* establish DMA mapping for requested pages */
245 	for (i = 0; i < num_pages; i++) {
246 		dma_addr_t daddr;
247 
248 		dma_list[i] = 0x0;
249 		daddr = pci_map_page(pci_dev, page_list[i],
250 				     0,	 /* map_offs */
251 				     PAGE_SIZE,
252 				     PCI_DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
253 
254 		if (pci_dma_mapping_error(pci_dev, daddr)) {
255 			dev_err(&pci_dev->dev,
256 				"[%s] err: no dma addr daddr=%016llx!\n",
257 				__func__, (long long)daddr);
258 			goto err;
259 		}
260 
261 		dma_list[i] = daddr;
262 	}
263 	return 0;
264 
265  err:
266 	genwqe_unmap_pages(cd, dma_list, num_pages);
267 	return -EIO;
268 }
269 
270 static int genwqe_sgl_size(int num_pages)
271 {
272 	int len, num_tlb = num_pages / 7;
273 
274 	len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
275 	return roundup(len, PAGE_SIZE);
276 }
277 
278 struct sg_entry *genwqe_alloc_sgl(struct genwqe_dev *cd, int num_pages,
279 				  dma_addr_t *dma_addr, size_t *sgl_size)
280 {
281 	struct pci_dev *pci_dev = cd->pci_dev;
282 	struct sg_entry *sgl;
283 
284 	*sgl_size = genwqe_sgl_size(num_pages);
285 	if (get_order(*sgl_size) > MAX_ORDER) {
286 		dev_err(&pci_dev->dev,
287 			"[%s] err: too much memory requested!\n", __func__);
288 		return NULL;
289 	}
290 
291 	sgl = __genwqe_alloc_consistent(cd, *sgl_size, dma_addr);
292 	if (sgl == NULL) {
293 		dev_err(&pci_dev->dev,
294 			"[%s] err: no memory available!\n", __func__);
295 		return NULL;
296 	}
297 
298 	return sgl;
299 }
300 
301 int genwqe_setup_sgl(struct genwqe_dev *cd,
302 		     unsigned long offs,
303 		     unsigned long size,
304 		     struct sg_entry *sgl,
305 		     dma_addr_t dma_addr, size_t sgl_size,
306 		     dma_addr_t *dma_list, int page_offs, int num_pages)
307 {
308 	int i = 0, j = 0, p;
309 	unsigned long dma_offs, map_offs;
310 	struct pci_dev *pci_dev = cd->pci_dev;
311 	dma_addr_t prev_daddr = 0;
312 	struct sg_entry *s, *last_s = NULL;
313 
314 	/* sanity checks */
315 	if (offs > PAGE_SIZE) {
316 		dev_err(&pci_dev->dev,
317 			"[%s] too large start offs %08lx\n", __func__, offs);
318 		return -EFAULT;
319 	}
320 	if (sgl_size < genwqe_sgl_size(num_pages)) {
321 		dev_err(&pci_dev->dev,
322 			"[%s] sgl_size too small %08lx for %d pages\n",
323 			__func__, sgl_size, num_pages);
324 		return -EFAULT;
325 	}
326 
327 	dma_offs = 128;		/* next block if needed/dma_offset */
328 	map_offs = offs;	/* offset in first page */
329 
330 	s = &sgl[0];		/* first set of 8 entries */
331 	p = 0;			/* page */
332 	while (p < num_pages) {
333 		dma_addr_t daddr;
334 		unsigned int size_to_map;
335 
336 		/* always write the chaining entry, cleanup is done later */
337 		j = 0;
338 		s[j].target_addr = cpu_to_be64(dma_addr + dma_offs);
339 		s[j].len	 = cpu_to_be32(128);
340 		s[j].flags	 = cpu_to_be32(SG_CHAINED);
341 		j++;
342 
343 		while (j < 8) {
344 			/* DMA mapping for requested page, offs, size */
345 			size_to_map = min(size, PAGE_SIZE - map_offs);
346 			daddr = dma_list[page_offs + p] + map_offs;
347 			size -= size_to_map;
348 			map_offs = 0;
349 
350 			if (prev_daddr == daddr) {
351 				u32 prev_len = be32_to_cpu(last_s->len);
352 
353 				/* pr_info("daddr combining: "
354 					"%016llx/%08x -> %016llx\n",
355 					prev_daddr, prev_len, daddr); */
356 
357 				last_s->len = cpu_to_be32(prev_len +
358 							  size_to_map);
359 
360 				p++; /* process next page */
361 				if (p == num_pages)
362 					goto fixup;  /* nothing to do */
363 
364 				prev_daddr = daddr + size_to_map;
365 				continue;
366 			}
367 
368 			/* start new entry */
369 			s[j].target_addr = cpu_to_be64(daddr);
370 			s[j].len	 = cpu_to_be32(size_to_map);
371 			s[j].flags	 = cpu_to_be32(SG_DATA);
372 			prev_daddr = daddr + size_to_map;
373 			last_s = &s[j];
374 			j++;
375 
376 			p++;	/* process next page */
377 			if (p == num_pages)
378 				goto fixup;  /* nothing to do */
379 		}
380 		dma_offs += 128;
381 		s += 8;		/* continue 8 elements further */
382 	}
383  fixup:
384 	if (j == 1) {		/* combining happend on last entry! */
385 		s -= 8;		/* full shift needed on previous sgl block */
386 		j =  7;		/* shift all elements */
387 	}
388 
389 	for (i = 0; i < j; i++)	/* move elements 1 up */
390 		s[i] = s[i + 1];
391 
392 	s[i].target_addr = cpu_to_be64(0);
393 	s[i].len	 = cpu_to_be32(0);
394 	s[i].flags	 = cpu_to_be32(SG_END_LIST);
395 	return 0;
396 }
397 
398 void genwqe_free_sgl(struct genwqe_dev *cd, struct sg_entry *sg_list,
399 		    dma_addr_t dma_addr, size_t size)
400 {
401 	__genwqe_free_consistent(cd, size, sg_list, dma_addr);
402 }
403 
404 /**
405  * free_user_pages() - Give pinned pages back
406  *
407  * Documentation of get_user_pages is in mm/memory.c:
408  *
409  * If the page is written to, set_page_dirty (or set_page_dirty_lock,
410  * as appropriate) must be called after the page is finished with, and
411  * before put_page is called.
412  *
413  * FIXME Could be of use to others and might belong in the generic
414  * code, if others agree. E.g.
415  *    ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
416  *    ceph_put_page_vector in net/ceph/pagevec.c
417  *    maybe more?
418  */
419 static int free_user_pages(struct page **page_list, unsigned int nr_pages,
420 			   int dirty)
421 {
422 	unsigned int i;
423 
424 	for (i = 0; i < nr_pages; i++) {
425 		if (page_list[i] != NULL) {
426 			if (dirty)
427 				set_page_dirty_lock(page_list[i]);
428 			put_page(page_list[i]);
429 		}
430 	}
431 	return 0;
432 }
433 
434 /**
435  * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
436  * @cd:         pointer to genwqe device
437  * @m:          mapping params
438  * @uaddr:      user virtual address
439  * @size:       size of memory to be mapped
440  *
441  * We need to think about how we could speed this up. Of course it is
442  * not a good idea to do this over and over again, like we are
443  * currently doing it. Nevertheless, I am curious where on the path
444  * the performance is spend. Most probably within the memory
445  * allocation functions, but maybe also in the DMA mapping code.
446  *
447  * Restrictions: The maximum size of the possible mapping currently depends
448  *               on the amount of memory we can get using kzalloc() for the
449  *               page_list and pci_alloc_consistent for the sg_list.
450  *               The sg_list is currently itself not scattered, which could
451  *               be fixed with some effort. The page_list must be split into
452  *               PAGE_SIZE chunks too. All that will make the complicated
453  *               code more complicated.
454  *
455  * Return: 0 if success
456  */
457 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
458 		     unsigned long size, struct ddcb_requ *req)
459 {
460 	int rc = -EINVAL;
461 	unsigned long data, offs;
462 	struct pci_dev *pci_dev = cd->pci_dev;
463 
464 	if ((uaddr == NULL) || (size == 0)) {
465 		m->size = 0;	/* mark unused and not added */
466 		return -EINVAL;
467 	}
468 	m->u_vaddr = uaddr;
469 	m->size    = size;
470 
471 	/* determine space needed for page_list. */
472 	data = (unsigned long)uaddr;
473 	offs = offset_in_page(data);
474 	m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
475 
476 	m->page_list = kcalloc(m->nr_pages,
477 			       sizeof(struct page *) + sizeof(dma_addr_t),
478 			       GFP_KERNEL);
479 	if (!m->page_list) {
480 		dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
481 		m->nr_pages = 0;
482 		m->u_vaddr = NULL;
483 		m->size = 0;	/* mark unused and not added */
484 		return -ENOMEM;
485 	}
486 	m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
487 
488 	/* pin user pages in memory */
489 	rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
490 				 m->nr_pages,
491 				 1,		/* write by caller */
492 				 m->page_list);	/* ptrs to pages */
493 
494 	/* assumption: get_user_pages can be killed by signals. */
495 	if (rc < m->nr_pages) {
496 		free_user_pages(m->page_list, rc, 0);
497 		rc = -EFAULT;
498 		goto fail_get_user_pages;
499 	}
500 
501 	rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
502 	if (rc != 0)
503 		goto fail_free_user_pages;
504 
505 	return 0;
506 
507  fail_free_user_pages:
508 	free_user_pages(m->page_list, m->nr_pages, 0);
509 
510  fail_get_user_pages:
511 	kfree(m->page_list);
512 	m->page_list = NULL;
513 	m->dma_list = NULL;
514 	m->nr_pages = 0;
515 	m->u_vaddr = NULL;
516 	m->size = 0;		/* mark unused and not added */
517 	return rc;
518 }
519 
520 /**
521  * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
522  *                        memory
523  * @cd:         pointer to genwqe device
524  * @m:          mapping params
525  */
526 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
527 		       struct ddcb_requ *req)
528 {
529 	struct pci_dev *pci_dev = cd->pci_dev;
530 
531 	if (!dma_mapping_used(m)) {
532 		dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
533 			__func__, m);
534 		return -EINVAL;
535 	}
536 
537 	if (m->dma_list)
538 		genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
539 
540 	if (m->page_list) {
541 		free_user_pages(m->page_list, m->nr_pages, 1);
542 
543 		kfree(m->page_list);
544 		m->page_list = NULL;
545 		m->dma_list = NULL;
546 		m->nr_pages = 0;
547 	}
548 
549 	m->u_vaddr = NULL;
550 	m->size = 0;		/* mark as unused and not added */
551 	return 0;
552 }
553 
554 /**
555  * genwqe_card_type() - Get chip type SLU Configuration Register
556  * @cd:         pointer to the genwqe device descriptor
557  * Return: 0: Altera Stratix-IV 230
558  *         1: Altera Stratix-IV 530
559  *         2: Altera Stratix-V A4
560  *         3: Altera Stratix-V A7
561  */
562 u8 genwqe_card_type(struct genwqe_dev *cd)
563 {
564 	u64 card_type = cd->slu_unitcfg;
565 	return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
566 }
567 
568 /**
569  * genwqe_card_reset() - Reset the card
570  * @cd:         pointer to the genwqe device descriptor
571  */
572 int genwqe_card_reset(struct genwqe_dev *cd)
573 {
574 	u64 softrst;
575 	struct pci_dev *pci_dev = cd->pci_dev;
576 
577 	if (!genwqe_is_privileged(cd))
578 		return -ENODEV;
579 
580 	/* new SL */
581 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
582 	msleep(1000);
583 	__genwqe_readq(cd, IO_HSU_FIR_CLR);
584 	__genwqe_readq(cd, IO_APP_FIR_CLR);
585 	__genwqe_readq(cd, IO_SLU_FIR_CLR);
586 
587 	/*
588 	 * Read-modify-write to preserve the stealth bits
589 	 *
590 	 * For SL >= 039, Stealth WE bit allows removing
591 	 * the read-modify-wrote.
592 	 * r-m-w may require a mask 0x3C to avoid hitting hard
593 	 * reset again for error reset (should be 0, chicken).
594 	 */
595 	softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
596 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
597 
598 	/* give ERRORRESET some time to finish */
599 	msleep(50);
600 
601 	if (genwqe_need_err_masking(cd)) {
602 		dev_info(&pci_dev->dev,
603 			 "[%s] masking errors for old bitstreams\n", __func__);
604 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
605 	}
606 	return 0;
607 }
608 
609 int genwqe_read_softreset(struct genwqe_dev *cd)
610 {
611 	u64 bitstream;
612 
613 	if (!genwqe_is_privileged(cd))
614 		return -ENODEV;
615 
616 	bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
617 	cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
618 	return 0;
619 }
620 
621 /**
622  * genwqe_set_interrupt_capability() - Configure MSI capability structure
623  * @cd:         pointer to the device
624  * Return: 0 if no error
625  */
626 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
627 {
628 	int rc;
629 	struct pci_dev *pci_dev = cd->pci_dev;
630 
631 	rc = pci_enable_msi_block(pci_dev, count);
632 	if (rc == 0)
633 		cd->flags |= GENWQE_FLAG_MSI_ENABLED;
634 	return rc;
635 }
636 
637 /**
638  * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
639  * @cd:         pointer to the device
640  */
641 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
642 {
643 	struct pci_dev *pci_dev = cd->pci_dev;
644 
645 	if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
646 		pci_disable_msi(pci_dev);
647 		cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
648 	}
649 }
650 
651 /**
652  * set_reg_idx() - Fill array with data. Ignore illegal offsets.
653  * @cd:         card device
654  * @r:          debug register array
655  * @i:          index to desired entry
656  * @m:          maximum possible entries
657  * @addr:       addr which is read
658  * @index:      index in debug array
659  * @val:        read value
660  */
661 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
662 		       unsigned int *i, unsigned int m, u32 addr, u32 idx,
663 		       u64 val)
664 {
665 	if (WARN_ON_ONCE(*i >= m))
666 		return -EFAULT;
667 
668 	r[*i].addr = addr;
669 	r[*i].idx = idx;
670 	r[*i].val = val;
671 	++*i;
672 	return 0;
673 }
674 
675 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
676 		   unsigned int *i, unsigned int m, u32 addr, u64 val)
677 {
678 	return set_reg_idx(cd, r, i, m, addr, 0, val);
679 }
680 
681 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
682 			 unsigned int max_regs, int all)
683 {
684 	unsigned int i, j, idx = 0;
685 	u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
686 	u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
687 
688 	/* Global FIR */
689 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
690 	set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
691 
692 	/* UnitCfg for SLU */
693 	sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
694 	set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
695 
696 	/* UnitCfg for APP */
697 	appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
698 	set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
699 
700 	/* Check all chip Units */
701 	for (i = 0; i < GENWQE_MAX_UNITS; i++) {
702 
703 		/* Unit FIR */
704 		ufir_addr = (i << 24) | 0x008;
705 		ufir = __genwqe_readq(cd, ufir_addr);
706 		set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
707 
708 		/* Unit FEC */
709 		ufec_addr = (i << 24) | 0x018;
710 		ufec = __genwqe_readq(cd, ufec_addr);
711 		set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
712 
713 		for (j = 0; j < 64; j++) {
714 			/* wherever there is a primary 1, read the 2ndary */
715 			if (!all && (!(ufir & (1ull << j))))
716 				continue;
717 
718 			sfir_addr = (i << 24) | (0x100 + 8 * j);
719 			sfir = __genwqe_readq(cd, sfir_addr);
720 			set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
721 
722 			sfec_addr = (i << 24) | (0x300 + 8 * j);
723 			sfec = __genwqe_readq(cd, sfec_addr);
724 			set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
725 		}
726 	}
727 
728 	/* fill with invalid data until end */
729 	for (i = idx; i < max_regs; i++) {
730 		regs[i].addr = 0xffffffff;
731 		regs[i].val = 0xffffffffffffffffull;
732 	}
733 	return idx;
734 }
735 
736 /**
737  * genwqe_ffdc_buff_size() - Calculates the number of dump registers
738  */
739 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
740 {
741 	int entries = 0, ring, traps, traces, trace_entries;
742 	u32 eevptr_addr, l_addr, d_len, d_type;
743 	u64 eevptr, val, addr;
744 
745 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
746 	eevptr = __genwqe_readq(cd, eevptr_addr);
747 
748 	if ((eevptr != 0x0) && (eevptr != -1ull)) {
749 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
750 
751 		while (1) {
752 			val = __genwqe_readq(cd, l_addr);
753 
754 			if ((val == 0x0) || (val == -1ull))
755 				break;
756 
757 			/* 38:24 */
758 			d_len  = (val & 0x0000007fff000000ull) >> 24;
759 
760 			/* 39 */
761 			d_type = (val & 0x0000008000000000ull) >> 36;
762 
763 			if (d_type) {	/* repeat */
764 				entries += d_len;
765 			} else {	/* size in bytes! */
766 				entries += d_len >> 3;
767 			}
768 
769 			l_addr += 8;
770 		}
771 	}
772 
773 	for (ring = 0; ring < 8; ring++) {
774 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
775 		val = __genwqe_readq(cd, addr);
776 
777 		if ((val == 0x0ull) || (val == -1ull))
778 			continue;
779 
780 		traps = (val >> 24) & 0xff;
781 		traces = (val >> 16) & 0xff;
782 		trace_entries = val & 0xffff;
783 
784 		entries += traps + (traces * trace_entries);
785 	}
786 	return entries;
787 }
788 
789 /**
790  * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
791  */
792 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
793 			  struct genwqe_reg *regs, unsigned int max_regs)
794 {
795 	int i, traps, traces, trace, trace_entries, trace_entry, ring;
796 	unsigned int idx = 0;
797 	u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
798 	u64 eevptr, e, val, addr;
799 
800 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
801 	eevptr = __genwqe_readq(cd, eevptr_addr);
802 
803 	if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
804 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
805 		while (1) {
806 			e = __genwqe_readq(cd, l_addr);
807 			if ((e == 0x0) || (e == 0xffffffffffffffffull))
808 				break;
809 
810 			d_addr = (e & 0x0000000000ffffffull);	    /* 23:0 */
811 			d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
812 			d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
813 			d_addr |= GENWQE_UID_OFFS(uid);
814 
815 			if (d_type) {
816 				for (i = 0; i < (int)d_len; i++) {
817 					val = __genwqe_readq(cd, d_addr);
818 					set_reg_idx(cd, regs, &idx, max_regs,
819 						    d_addr, i, val);
820 				}
821 			} else {
822 				d_len >>= 3; /* Size in bytes! */
823 				for (i = 0; i < (int)d_len; i++, d_addr += 8) {
824 					val = __genwqe_readq(cd, d_addr);
825 					set_reg_idx(cd, regs, &idx, max_regs,
826 						    d_addr, 0, val);
827 				}
828 			}
829 			l_addr += 8;
830 		}
831 	}
832 
833 	/*
834 	 * To save time, there are only 6 traces poplulated on Uid=2,
835 	 * Ring=1. each with iters=512.
836 	 */
837 	for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
838 					      2...7 are ASI rings */
839 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
840 		val = __genwqe_readq(cd, addr);
841 
842 		if ((val == 0x0ull) || (val == -1ull))
843 			continue;
844 
845 		traps = (val >> 24) & 0xff;	/* Number of Traps	*/
846 		traces = (val >> 16) & 0xff;	/* Number of Traces	*/
847 		trace_entries = val & 0xffff;	/* Entries per trace	*/
848 
849 		/* Note: This is a combined loop that dumps both the traps */
850 		/* (for the trace == 0 case) as well as the traces 1 to    */
851 		/* 'traces'.						   */
852 		for (trace = 0; trace <= traces; trace++) {
853 			u32 diag_sel =
854 				GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
855 
856 			addr = (GENWQE_UID_OFFS(uid) |
857 				IO_EXTENDED_DIAG_SELECTOR);
858 			__genwqe_writeq(cd, addr, diag_sel);
859 
860 			for (trace_entry = 0;
861 			     trace_entry < (trace ? trace_entries : traps);
862 			     trace_entry++) {
863 				addr = (GENWQE_UID_OFFS(uid) |
864 					IO_EXTENDED_DIAG_READ_MBX);
865 				val = __genwqe_readq(cd, addr);
866 				set_reg_idx(cd, regs, &idx, max_regs, addr,
867 					    (diag_sel<<16) | trace_entry, val);
868 			}
869 		}
870 	}
871 	return 0;
872 }
873 
874 /**
875  * genwqe_write_vreg() - Write register in virtual window
876  *
877  * Note, these registers are only accessible to the PF through the
878  * VF-window. It is not intended for the VF to access.
879  */
880 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
881 {
882 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
883 	__genwqe_writeq(cd, reg, val);
884 	return 0;
885 }
886 
887 /**
888  * genwqe_read_vreg() - Read register in virtual window
889  *
890  * Note, these registers are only accessible to the PF through the
891  * VF-window. It is not intended for the VF to access.
892  */
893 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
894 {
895 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
896 	return __genwqe_readq(cd, reg);
897 }
898 
899 /**
900  * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
901  *
902  * Note: From a design perspective it turned out to be a bad idea to
903  * use codes here to specifiy the frequency/speed values. An old
904  * driver cannot understand new codes and is therefore always a
905  * problem. Better is to measure out the value or put the
906  * speed/frequency directly into a register which is always a valid
907  * value for old as well as for new software.
908  *
909  * Return: Card clock in MHz
910  */
911 int genwqe_base_clock_frequency(struct genwqe_dev *cd)
912 {
913 	u16 speed;		/*         MHz  MHz  MHz  MHz */
914 	static const int speed_grade[] = { 250, 200, 166, 175 };
915 
916 	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
917 	if (speed >= ARRAY_SIZE(speed_grade))
918 		return 0;	/* illegal value */
919 
920 	return speed_grade[speed];
921 }
922 
923 /**
924  * genwqe_stop_traps() - Stop traps
925  *
926  * Before reading out the analysis data, we need to stop the traps.
927  */
928 void genwqe_stop_traps(struct genwqe_dev *cd)
929 {
930 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
931 }
932 
933 /**
934  * genwqe_start_traps() - Start traps
935  *
936  * After having read the data, we can/must enable the traps again.
937  */
938 void genwqe_start_traps(struct genwqe_dev *cd)
939 {
940 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
941 
942 	if (genwqe_need_err_masking(cd))
943 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
944 }
945