xref: /openbmc/linux/drivers/misc/genwqe/card_utils.c (revision 0ef9d78b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * IBM Accelerator Family 'GenWQE'
4  *
5  * (C) Copyright IBM Corp. 2013
6  *
7  * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
8  * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
9  * Author: Michael Jung <mijung@gmx.net>
10  * Author: Michael Ruettger <michael@ibmra.de>
11  */
12 
13 /*
14  * Miscelanous functionality used in the other GenWQE driver parts.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/page-flags.h>
21 #include <linux/scatterlist.h>
22 #include <linux/hugetlb.h>
23 #include <linux/iommu.h>
24 #include <linux/pci.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/ctype.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/delay.h>
30 #include <linux/pgtable.h>
31 
32 #include "genwqe_driver.h"
33 #include "card_base.h"
34 #include "card_ddcb.h"
35 
36 /**
37  * __genwqe_writeq() - Write 64-bit register
38  * @cd:	        genwqe device descriptor
39  * @byte_offs:  byte offset within BAR
40  * @val:        64-bit value
41  *
42  * Return: 0 if success; < 0 if error
43  */
44 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
45 {
46 	struct pci_dev *pci_dev = cd->pci_dev;
47 
48 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
49 		return -EIO;
50 
51 	if (cd->mmio == NULL)
52 		return -EIO;
53 
54 	if (pci_channel_offline(pci_dev))
55 		return -EIO;
56 
57 	__raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
58 	return 0;
59 }
60 
61 /**
62  * __genwqe_readq() - Read 64-bit register
63  * @cd:         genwqe device descriptor
64  * @byte_offs:  offset within BAR
65  *
66  * Return: value from register
67  */
68 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
69 {
70 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
71 		return 0xffffffffffffffffull;
72 
73 	if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
74 	    (byte_offs == IO_SLC_CFGREG_GFIR))
75 		return 0x000000000000ffffull;
76 
77 	if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
78 	    (byte_offs == IO_SLC_CFGREG_GFIR))
79 		return 0x00000000ffff0000ull;
80 
81 	if (cd->mmio == NULL)
82 		return 0xffffffffffffffffull;
83 
84 	return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
85 }
86 
87 /**
88  * __genwqe_writel() - Write 32-bit register
89  * @cd:	        genwqe device descriptor
90  * @byte_offs:  byte offset within BAR
91  * @val:        32-bit value
92  *
93  * Return: 0 if success; < 0 if error
94  */
95 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
96 {
97 	struct pci_dev *pci_dev = cd->pci_dev;
98 
99 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
100 		return -EIO;
101 
102 	if (cd->mmio == NULL)
103 		return -EIO;
104 
105 	if (pci_channel_offline(pci_dev))
106 		return -EIO;
107 
108 	__raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
109 	return 0;
110 }
111 
112 /**
113  * __genwqe_readl() - Read 32-bit register
114  * @cd:         genwqe device descriptor
115  * @byte_offs:  offset within BAR
116  *
117  * Return: Value from register
118  */
119 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
120 {
121 	if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
122 		return 0xffffffff;
123 
124 	if (cd->mmio == NULL)
125 		return 0xffffffff;
126 
127 	return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
128 }
129 
130 /**
131  * genwqe_read_app_id() - Extract app_id
132  * @cd:	        genwqe device descriptor
133  * @app_name:   carrier used to pass-back name
134  * @len:        length of data for name
135  *
136  * app_unitcfg need to be filled with valid data first
137  */
138 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
139 {
140 	int i, j;
141 	u32 app_id = (u32)cd->app_unitcfg;
142 
143 	memset(app_name, 0, len);
144 	for (i = 0, j = 0; j < min(len, 4); j++) {
145 		char ch = (char)((app_id >> (24 - j*8)) & 0xff);
146 
147 		if (ch == ' ')
148 			continue;
149 		app_name[i++] = isprint(ch) ? ch : 'X';
150 	}
151 	return i;
152 }
153 
154 #define CRC32_POLYNOMIAL	0x20044009
155 static u32 crc32_tab[256];	/* crc32 lookup table */
156 
157 /**
158  * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
159  *
160  * Existing kernel functions seem to use a different polynom,
161  * therefore we could not use them here.
162  *
163  * Genwqe's Polynomial = 0x20044009
164  */
165 void genwqe_init_crc32(void)
166 {
167 	int i, j;
168 	u32 crc;
169 
170 	for (i = 0;  i < 256;  i++) {
171 		crc = i << 24;
172 		for (j = 0;  j < 8;  j++) {
173 			if (crc & 0x80000000)
174 				crc = (crc << 1) ^ CRC32_POLYNOMIAL;
175 			else
176 				crc = (crc << 1);
177 		}
178 		crc32_tab[i] = crc;
179 	}
180 }
181 
182 /**
183  * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
184  * @buff:       pointer to data buffer
185  * @len:        length of data for calculation
186  * @init:       initial crc (0xffffffff at start)
187  *
188  * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
189  *
190  * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
191  * result in a crc32 of 0xf33cb7d3.
192  *
193  * The existing kernel crc functions did not cover this polynom yet.
194  *
195  * Return: crc32 checksum.
196  */
197 u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
198 {
199 	int i;
200 	u32 crc;
201 
202 	crc = init;
203 	while (len--) {
204 		i = ((crc >> 24) ^ *buff++) & 0xFF;
205 		crc = (crc << 8) ^ crc32_tab[i];
206 	}
207 	return crc;
208 }
209 
210 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
211 			       dma_addr_t *dma_handle)
212 {
213 	if (get_order(size) > MAX_ORDER)
214 		return NULL;
215 
216 	return dma_alloc_coherent(&cd->pci_dev->dev, size, dma_handle,
217 				  GFP_KERNEL);
218 }
219 
220 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
221 			     void *vaddr, dma_addr_t dma_handle)
222 {
223 	if (vaddr == NULL)
224 		return;
225 
226 	dma_free_coherent(&cd->pci_dev->dev, size, vaddr, dma_handle);
227 }
228 
229 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
230 			      int num_pages)
231 {
232 	int i;
233 	struct pci_dev *pci_dev = cd->pci_dev;
234 
235 	for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
236 		dma_unmap_page(&pci_dev->dev, dma_list[i], PAGE_SIZE,
237 			       DMA_BIDIRECTIONAL);
238 		dma_list[i] = 0x0;
239 	}
240 }
241 
242 static int genwqe_map_pages(struct genwqe_dev *cd,
243 			   struct page **page_list, int num_pages,
244 			   dma_addr_t *dma_list)
245 {
246 	int i;
247 	struct pci_dev *pci_dev = cd->pci_dev;
248 
249 	/* establish DMA mapping for requested pages */
250 	for (i = 0; i < num_pages; i++) {
251 		dma_addr_t daddr;
252 
253 		dma_list[i] = 0x0;
254 		daddr = dma_map_page(&pci_dev->dev, page_list[i],
255 				     0,	 /* map_offs */
256 				     PAGE_SIZE,
257 				     DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
258 
259 		if (dma_mapping_error(&pci_dev->dev, daddr)) {
260 			dev_err(&pci_dev->dev,
261 				"[%s] err: no dma addr daddr=%016llx!\n",
262 				__func__, (long long)daddr);
263 			goto err;
264 		}
265 
266 		dma_list[i] = daddr;
267 	}
268 	return 0;
269 
270  err:
271 	genwqe_unmap_pages(cd, dma_list, num_pages);
272 	return -EIO;
273 }
274 
275 static int genwqe_sgl_size(int num_pages)
276 {
277 	int len, num_tlb = num_pages / 7;
278 
279 	len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
280 	return roundup(len, PAGE_SIZE);
281 }
282 
283 /*
284  * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
285  *
286  * Allocates memory for sgl and overlapping pages. Pages which might
287  * overlap other user-space memory blocks are being cached for DMAs,
288  * such that we do not run into syncronization issues. Data is copied
289  * from user-space into the cached pages.
290  */
291 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
292 			  void __user *user_addr, size_t user_size, int write)
293 {
294 	int ret = -ENOMEM;
295 	struct pci_dev *pci_dev = cd->pci_dev;
296 
297 	sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
298 	sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
299 	sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
300 	sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
301 
302 	dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
303 		__func__, user_addr, user_size, sgl->nr_pages,
304 		sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
305 
306 	sgl->user_addr = user_addr;
307 	sgl->user_size = user_size;
308 	sgl->write = write;
309 	sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
310 
311 	if (get_order(sgl->sgl_size) > MAX_ORDER) {
312 		dev_err(&pci_dev->dev,
313 			"[%s] err: too much memory requested!\n", __func__);
314 		return ret;
315 	}
316 
317 	sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
318 					     &sgl->sgl_dma_addr);
319 	if (sgl->sgl == NULL) {
320 		dev_err(&pci_dev->dev,
321 			"[%s] err: no memory available!\n", __func__);
322 		return ret;
323 	}
324 
325 	/* Only use buffering on incomplete pages */
326 	if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
327 		sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
328 						       &sgl->fpage_dma_addr);
329 		if (sgl->fpage == NULL)
330 			goto err_out;
331 
332 		/* Sync with user memory */
333 		if (copy_from_user(sgl->fpage + sgl->fpage_offs,
334 				   user_addr, sgl->fpage_size)) {
335 			ret = -EFAULT;
336 			goto err_out;
337 		}
338 	}
339 	if (sgl->lpage_size != 0) {
340 		sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
341 						       &sgl->lpage_dma_addr);
342 		if (sgl->lpage == NULL)
343 			goto err_out1;
344 
345 		/* Sync with user memory */
346 		if (copy_from_user(sgl->lpage, user_addr + user_size -
347 				   sgl->lpage_size, sgl->lpage_size)) {
348 			ret = -EFAULT;
349 			goto err_out2;
350 		}
351 	}
352 	return 0;
353 
354  err_out2:
355 	__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
356 				 sgl->lpage_dma_addr);
357 	sgl->lpage = NULL;
358 	sgl->lpage_dma_addr = 0;
359  err_out1:
360 	__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
361 				 sgl->fpage_dma_addr);
362 	sgl->fpage = NULL;
363 	sgl->fpage_dma_addr = 0;
364  err_out:
365 	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
366 				 sgl->sgl_dma_addr);
367 	sgl->sgl = NULL;
368 	sgl->sgl_dma_addr = 0;
369 	sgl->sgl_size = 0;
370 
371 	return ret;
372 }
373 
374 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
375 		     dma_addr_t *dma_list)
376 {
377 	int i = 0, j = 0, p;
378 	unsigned long dma_offs, map_offs;
379 	dma_addr_t prev_daddr = 0;
380 	struct sg_entry *s, *last_s = NULL;
381 	size_t size = sgl->user_size;
382 
383 	dma_offs = 128;		/* next block if needed/dma_offset */
384 	map_offs = sgl->fpage_offs; /* offset in first page */
385 
386 	s = &sgl->sgl[0];	/* first set of 8 entries */
387 	p = 0;			/* page */
388 	while (p < sgl->nr_pages) {
389 		dma_addr_t daddr;
390 		unsigned int size_to_map;
391 
392 		/* always write the chaining entry, cleanup is done later */
393 		j = 0;
394 		s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
395 		s[j].len	 = cpu_to_be32(128);
396 		s[j].flags	 = cpu_to_be32(SG_CHAINED);
397 		j++;
398 
399 		while (j < 8) {
400 			/* DMA mapping for requested page, offs, size */
401 			size_to_map = min(size, PAGE_SIZE - map_offs);
402 
403 			if ((p == 0) && (sgl->fpage != NULL)) {
404 				daddr = sgl->fpage_dma_addr + map_offs;
405 
406 			} else if ((p == sgl->nr_pages - 1) &&
407 				   (sgl->lpage != NULL)) {
408 				daddr = sgl->lpage_dma_addr;
409 			} else {
410 				daddr = dma_list[p] + map_offs;
411 			}
412 
413 			size -= size_to_map;
414 			map_offs = 0;
415 
416 			if (prev_daddr == daddr) {
417 				u32 prev_len = be32_to_cpu(last_s->len);
418 
419 				/* pr_info("daddr combining: "
420 					"%016llx/%08x -> %016llx\n",
421 					prev_daddr, prev_len, daddr); */
422 
423 				last_s->len = cpu_to_be32(prev_len +
424 							  size_to_map);
425 
426 				p++; /* process next page */
427 				if (p == sgl->nr_pages)
428 					goto fixup;  /* nothing to do */
429 
430 				prev_daddr = daddr + size_to_map;
431 				continue;
432 			}
433 
434 			/* start new entry */
435 			s[j].target_addr = cpu_to_be64(daddr);
436 			s[j].len	 = cpu_to_be32(size_to_map);
437 			s[j].flags	 = cpu_to_be32(SG_DATA);
438 			prev_daddr = daddr + size_to_map;
439 			last_s = &s[j];
440 			j++;
441 
442 			p++;	/* process next page */
443 			if (p == sgl->nr_pages)
444 				goto fixup;  /* nothing to do */
445 		}
446 		dma_offs += 128;
447 		s += 8;		/* continue 8 elements further */
448 	}
449  fixup:
450 	if (j == 1) {		/* combining happened on last entry! */
451 		s -= 8;		/* full shift needed on previous sgl block */
452 		j =  7;		/* shift all elements */
453 	}
454 
455 	for (i = 0; i < j; i++)	/* move elements 1 up */
456 		s[i] = s[i + 1];
457 
458 	s[i].target_addr = cpu_to_be64(0);
459 	s[i].len	 = cpu_to_be32(0);
460 	s[i].flags	 = cpu_to_be32(SG_END_LIST);
461 	return 0;
462 }
463 
464 /**
465  * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
466  * @cd:	        genwqe device descriptor
467  * @sgl:        scatter gather list describing user-space memory
468  *
469  * After the DMA transfer has been completed we free the memory for
470  * the sgl and the cached pages. Data is being transferred from cached
471  * pages into user-space buffers.
472  */
473 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
474 {
475 	int rc = 0;
476 	size_t offset;
477 	unsigned long res;
478 	struct pci_dev *pci_dev = cd->pci_dev;
479 
480 	if (sgl->fpage) {
481 		if (sgl->write) {
482 			res = copy_to_user(sgl->user_addr,
483 				sgl->fpage + sgl->fpage_offs, sgl->fpage_size);
484 			if (res) {
485 				dev_err(&pci_dev->dev,
486 					"[%s] err: copying fpage! (res=%lu)\n",
487 					__func__, res);
488 				rc = -EFAULT;
489 			}
490 		}
491 		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
492 					 sgl->fpage_dma_addr);
493 		sgl->fpage = NULL;
494 		sgl->fpage_dma_addr = 0;
495 	}
496 	if (sgl->lpage) {
497 		if (sgl->write) {
498 			offset = sgl->user_size - sgl->lpage_size;
499 			res = copy_to_user(sgl->user_addr + offset, sgl->lpage,
500 					   sgl->lpage_size);
501 			if (res) {
502 				dev_err(&pci_dev->dev,
503 					"[%s] err: copying lpage! (res=%lu)\n",
504 					__func__, res);
505 				rc = -EFAULT;
506 			}
507 		}
508 		__genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
509 					 sgl->lpage_dma_addr);
510 		sgl->lpage = NULL;
511 		sgl->lpage_dma_addr = 0;
512 	}
513 	__genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
514 				 sgl->sgl_dma_addr);
515 
516 	sgl->sgl = NULL;
517 	sgl->sgl_dma_addr = 0x0;
518 	sgl->sgl_size = 0;
519 	return rc;
520 }
521 
522 /**
523  * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
524  * @cd:         pointer to genwqe device
525  * @m:          mapping params
526  * @uaddr:      user virtual address
527  * @size:       size of memory to be mapped
528  *
529  * We need to think about how we could speed this up. Of course it is
530  * not a good idea to do this over and over again, like we are
531  * currently doing it. Nevertheless, I am curious where on the path
532  * the performance is spend. Most probably within the memory
533  * allocation functions, but maybe also in the DMA mapping code.
534  *
535  * Restrictions: The maximum size of the possible mapping currently depends
536  *               on the amount of memory we can get using kzalloc() for the
537  *               page_list and pci_alloc_consistent for the sg_list.
538  *               The sg_list is currently itself not scattered, which could
539  *               be fixed with some effort. The page_list must be split into
540  *               PAGE_SIZE chunks too. All that will make the complicated
541  *               code more complicated.
542  *
543  * Return: 0 if success
544  */
545 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
546 		     unsigned long size)
547 {
548 	int rc = -EINVAL;
549 	unsigned long data, offs;
550 	struct pci_dev *pci_dev = cd->pci_dev;
551 
552 	if ((uaddr == NULL) || (size == 0)) {
553 		m->size = 0;	/* mark unused and not added */
554 		return -EINVAL;
555 	}
556 	m->u_vaddr = uaddr;
557 	m->size    = size;
558 
559 	/* determine space needed for page_list. */
560 	data = (unsigned long)uaddr;
561 	offs = offset_in_page(data);
562 	if (size > ULONG_MAX - PAGE_SIZE - offs) {
563 		m->size = 0;	/* mark unused and not added */
564 		return -EINVAL;
565 	}
566 	m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
567 
568 	m->page_list = kcalloc(m->nr_pages,
569 			       sizeof(struct page *) + sizeof(dma_addr_t),
570 			       GFP_KERNEL);
571 	if (!m->page_list) {
572 		dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
573 		m->nr_pages = 0;
574 		m->u_vaddr = NULL;
575 		m->size = 0;	/* mark unused and not added */
576 		return -ENOMEM;
577 	}
578 	m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
579 
580 	/* pin user pages in memory */
581 	rc = pin_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
582 				 m->nr_pages,
583 				 m->write ? FOLL_WRITE : 0,	/* readable/writable */
584 				 m->page_list);	/* ptrs to pages */
585 	if (rc < 0)
586 		goto fail_pin_user_pages;
587 
588 	/* assumption: pin_user_pages can be killed by signals. */
589 	if (rc < m->nr_pages) {
590 		unpin_user_pages_dirty_lock(m->page_list, rc, m->write);
591 		rc = -EFAULT;
592 		goto fail_pin_user_pages;
593 	}
594 
595 	rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
596 	if (rc != 0)
597 		goto fail_free_user_pages;
598 
599 	return 0;
600 
601  fail_free_user_pages:
602 	unpin_user_pages_dirty_lock(m->page_list, m->nr_pages, m->write);
603 
604  fail_pin_user_pages:
605 	kfree(m->page_list);
606 	m->page_list = NULL;
607 	m->dma_list = NULL;
608 	m->nr_pages = 0;
609 	m->u_vaddr = NULL;
610 	m->size = 0;		/* mark unused and not added */
611 	return rc;
612 }
613 
614 /**
615  * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
616  *                        memory
617  * @cd:         pointer to genwqe device
618  * @m:          mapping params
619  */
620 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m)
621 {
622 	struct pci_dev *pci_dev = cd->pci_dev;
623 
624 	if (!dma_mapping_used(m)) {
625 		dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
626 			__func__, m);
627 		return -EINVAL;
628 	}
629 
630 	if (m->dma_list)
631 		genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
632 
633 	if (m->page_list) {
634 		unpin_user_pages_dirty_lock(m->page_list, m->nr_pages,
635 					    m->write);
636 		kfree(m->page_list);
637 		m->page_list = NULL;
638 		m->dma_list = NULL;
639 		m->nr_pages = 0;
640 	}
641 
642 	m->u_vaddr = NULL;
643 	m->size = 0;		/* mark as unused and not added */
644 	return 0;
645 }
646 
647 /**
648  * genwqe_card_type() - Get chip type SLU Configuration Register
649  * @cd:         pointer to the genwqe device descriptor
650  * Return: 0: Altera Stratix-IV 230
651  *         1: Altera Stratix-IV 530
652  *         2: Altera Stratix-V A4
653  *         3: Altera Stratix-V A7
654  */
655 u8 genwqe_card_type(struct genwqe_dev *cd)
656 {
657 	u64 card_type = cd->slu_unitcfg;
658 
659 	return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
660 }
661 
662 /**
663  * genwqe_card_reset() - Reset the card
664  * @cd:         pointer to the genwqe device descriptor
665  */
666 int genwqe_card_reset(struct genwqe_dev *cd)
667 {
668 	u64 softrst;
669 	struct pci_dev *pci_dev = cd->pci_dev;
670 
671 	if (!genwqe_is_privileged(cd))
672 		return -ENODEV;
673 
674 	/* new SL */
675 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
676 	msleep(1000);
677 	__genwqe_readq(cd, IO_HSU_FIR_CLR);
678 	__genwqe_readq(cd, IO_APP_FIR_CLR);
679 	__genwqe_readq(cd, IO_SLU_FIR_CLR);
680 
681 	/*
682 	 * Read-modify-write to preserve the stealth bits
683 	 *
684 	 * For SL >= 039, Stealth WE bit allows removing
685 	 * the read-modify-wrote.
686 	 * r-m-w may require a mask 0x3C to avoid hitting hard
687 	 * reset again for error reset (should be 0, chicken).
688 	 */
689 	softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
690 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
691 
692 	/* give ERRORRESET some time to finish */
693 	msleep(50);
694 
695 	if (genwqe_need_err_masking(cd)) {
696 		dev_info(&pci_dev->dev,
697 			 "[%s] masking errors for old bitstreams\n", __func__);
698 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
699 	}
700 	return 0;
701 }
702 
703 int genwqe_read_softreset(struct genwqe_dev *cd)
704 {
705 	u64 bitstream;
706 
707 	if (!genwqe_is_privileged(cd))
708 		return -ENODEV;
709 
710 	bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
711 	cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
712 	return 0;
713 }
714 
715 /**
716  * genwqe_set_interrupt_capability() - Configure MSI capability structure
717  * @cd:         pointer to the device
718  * @count:      number of vectors to allocate
719  * Return: 0 if no error
720  */
721 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
722 {
723 	int rc;
724 
725 	rc = pci_alloc_irq_vectors(cd->pci_dev, 1, count, PCI_IRQ_MSI);
726 	if (rc < 0)
727 		return rc;
728 	return 0;
729 }
730 
731 /**
732  * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
733  * @cd:         pointer to the device
734  */
735 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
736 {
737 	pci_free_irq_vectors(cd->pci_dev);
738 }
739 
740 /**
741  * set_reg_idx() - Fill array with data. Ignore illegal offsets.
742  * @cd:         card device
743  * @r:          debug register array
744  * @i:          index to desired entry
745  * @m:          maximum possible entries
746  * @addr:       addr which is read
747  * @idx:        index in debug array
748  * @val:        read value
749  */
750 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
751 		       unsigned int *i, unsigned int m, u32 addr, u32 idx,
752 		       u64 val)
753 {
754 	if (WARN_ON_ONCE(*i >= m))
755 		return -EFAULT;
756 
757 	r[*i].addr = addr;
758 	r[*i].idx = idx;
759 	r[*i].val = val;
760 	++*i;
761 	return 0;
762 }
763 
764 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
765 		   unsigned int *i, unsigned int m, u32 addr, u64 val)
766 {
767 	return set_reg_idx(cd, r, i, m, addr, 0, val);
768 }
769 
770 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
771 			 unsigned int max_regs, int all)
772 {
773 	unsigned int i, j, idx = 0;
774 	u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
775 	u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
776 
777 	/* Global FIR */
778 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
779 	set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
780 
781 	/* UnitCfg for SLU */
782 	sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
783 	set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
784 
785 	/* UnitCfg for APP */
786 	appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
787 	set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
788 
789 	/* Check all chip Units */
790 	for (i = 0; i < GENWQE_MAX_UNITS; i++) {
791 
792 		/* Unit FIR */
793 		ufir_addr = (i << 24) | 0x008;
794 		ufir = __genwqe_readq(cd, ufir_addr);
795 		set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
796 
797 		/* Unit FEC */
798 		ufec_addr = (i << 24) | 0x018;
799 		ufec = __genwqe_readq(cd, ufec_addr);
800 		set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
801 
802 		for (j = 0; j < 64; j++) {
803 			/* wherever there is a primary 1, read the 2ndary */
804 			if (!all && (!(ufir & (1ull << j))))
805 				continue;
806 
807 			sfir_addr = (i << 24) | (0x100 + 8 * j);
808 			sfir = __genwqe_readq(cd, sfir_addr);
809 			set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
810 
811 			sfec_addr = (i << 24) | (0x300 + 8 * j);
812 			sfec = __genwqe_readq(cd, sfec_addr);
813 			set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
814 		}
815 	}
816 
817 	/* fill with invalid data until end */
818 	for (i = idx; i < max_regs; i++) {
819 		regs[i].addr = 0xffffffff;
820 		regs[i].val = 0xffffffffffffffffull;
821 	}
822 	return idx;
823 }
824 
825 /**
826  * genwqe_ffdc_buff_size() - Calculates the number of dump registers
827  * @cd:	        genwqe device descriptor
828  * @uid:	unit ID
829  */
830 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
831 {
832 	int entries = 0, ring, traps, traces, trace_entries;
833 	u32 eevptr_addr, l_addr, d_len, d_type;
834 	u64 eevptr, val, addr;
835 
836 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
837 	eevptr = __genwqe_readq(cd, eevptr_addr);
838 
839 	if ((eevptr != 0x0) && (eevptr != -1ull)) {
840 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
841 
842 		while (1) {
843 			val = __genwqe_readq(cd, l_addr);
844 
845 			if ((val == 0x0) || (val == -1ull))
846 				break;
847 
848 			/* 38:24 */
849 			d_len  = (val & 0x0000007fff000000ull) >> 24;
850 
851 			/* 39 */
852 			d_type = (val & 0x0000008000000000ull) >> 36;
853 
854 			if (d_type) {	/* repeat */
855 				entries += d_len;
856 			} else {	/* size in bytes! */
857 				entries += d_len >> 3;
858 			}
859 
860 			l_addr += 8;
861 		}
862 	}
863 
864 	for (ring = 0; ring < 8; ring++) {
865 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
866 		val = __genwqe_readq(cd, addr);
867 
868 		if ((val == 0x0ull) || (val == -1ull))
869 			continue;
870 
871 		traps = (val >> 24) & 0xff;
872 		traces = (val >> 16) & 0xff;
873 		trace_entries = val & 0xffff;
874 
875 		entries += traps + (traces * trace_entries);
876 	}
877 	return entries;
878 }
879 
880 /**
881  * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
882  * @cd:	        genwqe device descriptor
883  * @uid:	unit ID
884  * @regs:       register information
885  * @max_regs:   number of register entries
886  */
887 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
888 			  struct genwqe_reg *regs, unsigned int max_regs)
889 {
890 	int i, traps, traces, trace, trace_entries, trace_entry, ring;
891 	unsigned int idx = 0;
892 	u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
893 	u64 eevptr, e, val, addr;
894 
895 	eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
896 	eevptr = __genwqe_readq(cd, eevptr_addr);
897 
898 	if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
899 		l_addr = GENWQE_UID_OFFS(uid) | eevptr;
900 		while (1) {
901 			e = __genwqe_readq(cd, l_addr);
902 			if ((e == 0x0) || (e == 0xffffffffffffffffull))
903 				break;
904 
905 			d_addr = (e & 0x0000000000ffffffull);	    /* 23:0 */
906 			d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
907 			d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
908 			d_addr |= GENWQE_UID_OFFS(uid);
909 
910 			if (d_type) {
911 				for (i = 0; i < (int)d_len; i++) {
912 					val = __genwqe_readq(cd, d_addr);
913 					set_reg_idx(cd, regs, &idx, max_regs,
914 						    d_addr, i, val);
915 				}
916 			} else {
917 				d_len >>= 3; /* Size in bytes! */
918 				for (i = 0; i < (int)d_len; i++, d_addr += 8) {
919 					val = __genwqe_readq(cd, d_addr);
920 					set_reg_idx(cd, regs, &idx, max_regs,
921 						    d_addr, 0, val);
922 				}
923 			}
924 			l_addr += 8;
925 		}
926 	}
927 
928 	/*
929 	 * To save time, there are only 6 traces poplulated on Uid=2,
930 	 * Ring=1. each with iters=512.
931 	 */
932 	for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
933 					      2...7 are ASI rings */
934 		addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
935 		val = __genwqe_readq(cd, addr);
936 
937 		if ((val == 0x0ull) || (val == -1ull))
938 			continue;
939 
940 		traps = (val >> 24) & 0xff;	/* Number of Traps	*/
941 		traces = (val >> 16) & 0xff;	/* Number of Traces	*/
942 		trace_entries = val & 0xffff;	/* Entries per trace	*/
943 
944 		/* Note: This is a combined loop that dumps both the traps */
945 		/* (for the trace == 0 case) as well as the traces 1 to    */
946 		/* 'traces'.						   */
947 		for (trace = 0; trace <= traces; trace++) {
948 			u32 diag_sel =
949 				GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
950 
951 			addr = (GENWQE_UID_OFFS(uid) |
952 				IO_EXTENDED_DIAG_SELECTOR);
953 			__genwqe_writeq(cd, addr, diag_sel);
954 
955 			for (trace_entry = 0;
956 			     trace_entry < (trace ? trace_entries : traps);
957 			     trace_entry++) {
958 				addr = (GENWQE_UID_OFFS(uid) |
959 					IO_EXTENDED_DIAG_READ_MBX);
960 				val = __genwqe_readq(cd, addr);
961 				set_reg_idx(cd, regs, &idx, max_regs, addr,
962 					    (diag_sel<<16) | trace_entry, val);
963 			}
964 		}
965 	}
966 	return 0;
967 }
968 
969 /**
970  * genwqe_write_vreg() - Write register in virtual window
971  * @cd:	        genwqe device descriptor
972  * @reg:	register (byte) offset within BAR
973  * @val:	value to write
974  * @func:	PCI virtual function
975  *
976  * Note, these registers are only accessible to the PF through the
977  * VF-window. It is not intended for the VF to access.
978  */
979 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
980 {
981 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
982 	__genwqe_writeq(cd, reg, val);
983 	return 0;
984 }
985 
986 /**
987  * genwqe_read_vreg() - Read register in virtual window
988  * @cd:	        genwqe device descriptor
989  * @reg:	register (byte) offset within BAR
990  * @func:	PCI virtual function
991  *
992  * Note, these registers are only accessible to the PF through the
993  * VF-window. It is not intended for the VF to access.
994  */
995 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
996 {
997 	__genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
998 	return __genwqe_readq(cd, reg);
999 }
1000 
1001 /**
1002  * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1003  * @cd:	        genwqe device descriptor
1004  *
1005  * Note: From a design perspective it turned out to be a bad idea to
1006  * use codes here to specifiy the frequency/speed values. An old
1007  * driver cannot understand new codes and is therefore always a
1008  * problem. Better is to measure out the value or put the
1009  * speed/frequency directly into a register which is always a valid
1010  * value for old as well as for new software.
1011  *
1012  * Return: Card clock in MHz
1013  */
1014 int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1015 {
1016 	u16 speed;		/*         MHz  MHz  MHz  MHz */
1017 	static const int speed_grade[] = { 250, 200, 166, 175 };
1018 
1019 	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1020 	if (speed >= ARRAY_SIZE(speed_grade))
1021 		return 0;	/* illegal value */
1022 
1023 	return speed_grade[speed];
1024 }
1025 
1026 /**
1027  * genwqe_stop_traps() - Stop traps
1028  * @cd:	        genwqe device descriptor
1029  *
1030  * Before reading out the analysis data, we need to stop the traps.
1031  */
1032 void genwqe_stop_traps(struct genwqe_dev *cd)
1033 {
1034 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1035 }
1036 
1037 /**
1038  * genwqe_start_traps() - Start traps
1039  * @cd:	        genwqe device descriptor
1040  *
1041  * After having read the data, we can/must enable the traps again.
1042  */
1043 void genwqe_start_traps(struct genwqe_dev *cd)
1044 {
1045 	__genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1046 
1047 	if (genwqe_need_err_masking(cd))
1048 		__genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1049 }
1050