xref: /openbmc/linux/drivers/misc/genwqe/card_ddcb.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /**
2  * IBM Accelerator Family 'GenWQE'
3  *
4  * (C) Copyright IBM Corp. 2013
5  *
6  * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7  * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8  * Author: Michael Jung <mijung@gmx.net>
9  * Author: Michael Ruettger <michael@ibmra.de>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License (version 2 only)
13  * as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  */
20 
21 /*
22  * Device Driver Control Block (DDCB) queue support. Definition of
23  * interrupt handlers for queue support as well as triggering the
24  * health monitor code in case of problems. The current hardware uses
25  * an MSI interrupt which is shared between error handling and
26  * functional code.
27  */
28 
29 #include <linux/types.h>
30 #include <linux/sched.h>
31 #include <linux/wait.h>
32 #include <linux/pci.h>
33 #include <linux/string.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/interrupt.h>
38 #include <linux/crc-itu-t.h>
39 
40 #include "card_base.h"
41 #include "card_ddcb.h"
42 
43 /*
44  * N: next DDCB, this is where the next DDCB will be put.
45  * A: active DDCB, this is where the code will look for the next completion.
46  * x: DDCB is enqueued, we are waiting for its completion.
47 
48  * Situation (1): Empty queue
49  *  +---+---+---+---+---+---+---+---+
50  *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
51  *  |   |   |   |   |   |   |   |   |
52  *  +---+---+---+---+---+---+---+---+
53  *           A/N
54  *  enqueued_ddcbs = A - N = 2 - 2 = 0
55  *
56  * Situation (2): Wrapped, N > A
57  *  +---+---+---+---+---+---+---+---+
58  *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
59  *  |   |   | x | x |   |   |   |   |
60  *  +---+---+---+---+---+---+---+---+
61  *            A       N
62  *  enqueued_ddcbs = N - A = 4 - 2 = 2
63  *
64  * Situation (3): Queue wrapped, A > N
65  *  +---+---+---+---+---+---+---+---+
66  *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
67  *  | x | x |   |   | x | x | x | x |
68  *  +---+---+---+---+---+---+---+---+
69  *            N       A
70  *  enqueued_ddcbs = queue_max  - (A - N) = 8 - (4 - 2) = 6
71  *
72  * Situation (4a): Queue full N > A
73  *  +---+---+---+---+---+---+---+---+
74  *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
75  *  | x | x | x | x | x | x | x |   |
76  *  +---+---+---+---+---+---+---+---+
77  *    A                           N
78  *
79  *  enqueued_ddcbs = N - A = 7 - 0 = 7
80  *
81  * Situation (4a): Queue full A > N
82  *  +---+---+---+---+---+---+---+---+
83  *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
84  *  | x | x | x |   | x | x | x | x |
85  *  +---+---+---+---+---+---+---+---+
86  *                N   A
87  *  enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 3) = 7
88  */
89 
90 static int queue_empty(struct ddcb_queue *queue)
91 {
92 	return queue->ddcb_next == queue->ddcb_act;
93 }
94 
95 static int queue_enqueued_ddcbs(struct ddcb_queue *queue)
96 {
97 	if (queue->ddcb_next >= queue->ddcb_act)
98 		return queue->ddcb_next - queue->ddcb_act;
99 
100 	return queue->ddcb_max - (queue->ddcb_act - queue->ddcb_next);
101 }
102 
103 static int queue_free_ddcbs(struct ddcb_queue *queue)
104 {
105 	int free_ddcbs = queue->ddcb_max - queue_enqueued_ddcbs(queue) - 1;
106 
107 	if (WARN_ON_ONCE(free_ddcbs < 0)) { /* must never ever happen! */
108 		return 0;
109 	}
110 	return free_ddcbs;
111 }
112 
113 /*
114  * Use of the PRIV field in the DDCB for queue debugging:
115  *
116  * (1) Trying to get rid of a DDCB which saw a timeout:
117  *     pddcb->priv[6] = 0xcc;   # cleared
118  *
119  * (2) Append a DDCB via NEXT bit:
120  *     pddcb->priv[7] = 0xaa;	# appended
121  *
122  * (3) DDCB needed tapping:
123  *     pddcb->priv[7] = 0xbb;   # tapped
124  *
125  * (4) DDCB marked as correctly finished:
126  *     pddcb->priv[6] = 0xff;	# finished
127  */
128 
129 static inline void ddcb_mark_tapped(struct ddcb *pddcb)
130 {
131 	pddcb->priv[7] = 0xbb;  /* tapped */
132 }
133 
134 static inline void ddcb_mark_appended(struct ddcb *pddcb)
135 {
136 	pddcb->priv[7] = 0xaa;	/* appended */
137 }
138 
139 static inline void ddcb_mark_cleared(struct ddcb *pddcb)
140 {
141 	pddcb->priv[6] = 0xcc; /* cleared */
142 }
143 
144 static inline void ddcb_mark_finished(struct ddcb *pddcb)
145 {
146 	pddcb->priv[6] = 0xff;	/* finished */
147 }
148 
149 static inline void ddcb_mark_unused(struct ddcb *pddcb)
150 {
151 	pddcb->priv_64 = cpu_to_be64(0); /* not tapped */
152 }
153 
154 /**
155  * genwqe_crc16() - Generate 16-bit crc as required for DDCBs
156  * @buff:       pointer to data buffer
157  * @len:        length of data for calculation
158  * @init:       initial crc (0xffff at start)
159  *
160  * Polynomial = x^16 + x^12 + x^5 + 1   (0x1021)
161  * Example: 4 bytes 0x01 0x02 0x03 0x04 with init = 0xffff
162  *          should result in a crc16 of 0x89c3
163  *
164  * Return: crc16 checksum in big endian format !
165  */
166 static inline u16 genwqe_crc16(const u8 *buff, size_t len, u16 init)
167 {
168 	return crc_itu_t(init, buff, len);
169 }
170 
171 static void print_ddcb_info(struct genwqe_dev *cd, struct ddcb_queue *queue)
172 {
173 	int i;
174 	struct ddcb *pddcb;
175 	unsigned long flags;
176 	struct pci_dev *pci_dev = cd->pci_dev;
177 
178 	spin_lock_irqsave(&cd->print_lock, flags);
179 
180 	dev_info(&pci_dev->dev,
181 		 "DDCB list for card #%d (ddcb_act=%d / ddcb_next=%d):\n",
182 		 cd->card_idx, queue->ddcb_act, queue->ddcb_next);
183 
184 	pddcb = queue->ddcb_vaddr;
185 	for (i = 0; i < queue->ddcb_max; i++) {
186 		dev_err(&pci_dev->dev,
187 			"  %c %-3d: RETC=%03x SEQ=%04x HSI=%02X SHI=%02x PRIV=%06llx CMD=%03x\n",
188 			i == queue->ddcb_act ? '>' : ' ',
189 			i,
190 			be16_to_cpu(pddcb->retc_16),
191 			be16_to_cpu(pddcb->seqnum_16),
192 			pddcb->hsi,
193 			pddcb->shi,
194 			be64_to_cpu(pddcb->priv_64),
195 			pddcb->cmd);
196 		pddcb++;
197 	}
198 	spin_unlock_irqrestore(&cd->print_lock, flags);
199 }
200 
201 struct genwqe_ddcb_cmd *ddcb_requ_alloc(void)
202 {
203 	struct ddcb_requ *req;
204 
205 	req = kzalloc(sizeof(*req), GFP_KERNEL);
206 	if (!req)
207 		return NULL;
208 
209 	return &req->cmd;
210 }
211 
212 void ddcb_requ_free(struct genwqe_ddcb_cmd *cmd)
213 {
214 	struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd);
215 
216 	kfree(req);
217 }
218 
219 static inline enum genwqe_requ_state ddcb_requ_get_state(struct ddcb_requ *req)
220 {
221 	return req->req_state;
222 }
223 
224 static inline void ddcb_requ_set_state(struct ddcb_requ *req,
225 				       enum genwqe_requ_state new_state)
226 {
227 	req->req_state = new_state;
228 }
229 
230 static inline int ddcb_requ_collect_debug_data(struct ddcb_requ *req)
231 {
232 	return req->cmd.ddata_addr != 0x0;
233 }
234 
235 /**
236  * ddcb_requ_finished() - Returns the hardware state of the associated DDCB
237  * @cd:          pointer to genwqe device descriptor
238  * @req:         DDCB work request
239  *
240  * Status of ddcb_requ mirrors this hardware state, but is copied in
241  * the ddcb_requ on interrupt/polling function. The lowlevel code
242  * should check the hardware state directly, the higher level code
243  * should check the copy.
244  *
245  * This function will also return true if the state of the queue is
246  * not GENWQE_CARD_USED. This enables us to purge all DDCBs in the
247  * shutdown case.
248  */
249 static int ddcb_requ_finished(struct genwqe_dev *cd, struct ddcb_requ *req)
250 {
251 	return (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED) ||
252 		(cd->card_state != GENWQE_CARD_USED);
253 }
254 
255 /**
256  * enqueue_ddcb() - Enqueue a DDCB
257  * @cd:         pointer to genwqe device descriptor
258  * @queue:	queue this operation should be done on
259  * @ddcb_no:    pointer to ddcb number being tapped
260  *
261  * Start execution of DDCB by tapping or append to queue via NEXT
262  * bit. This is done by an atomic 'compare and swap' instruction and
263  * checking SHI and HSI of the previous DDCB.
264  *
265  * This function must only be called with ddcb_lock held.
266  *
267  * Return: 1 if new DDCB is appended to previous
268  *         2 if DDCB queue is tapped via register/simulation
269  */
270 #define RET_DDCB_APPENDED 1
271 #define RET_DDCB_TAPPED   2
272 
273 static int enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_queue *queue,
274 			struct ddcb *pddcb, int ddcb_no)
275 {
276 	unsigned int try;
277 	int prev_no;
278 	struct ddcb *prev_ddcb;
279 	__be32 old, new, icrc_hsi_shi;
280 	u64 num;
281 
282 	/*
283 	 * For performance checks a Dispatch Timestamp can be put into
284 	 * DDCB It is supposed to use the SLU's free running counter,
285 	 * but this requires PCIe cycles.
286 	 */
287 	ddcb_mark_unused(pddcb);
288 
289 	/* check previous DDCB if already fetched */
290 	prev_no = (ddcb_no == 0) ? queue->ddcb_max - 1 : ddcb_no - 1;
291 	prev_ddcb = &queue->ddcb_vaddr[prev_no];
292 
293 	/*
294 	 * It might have happened that the HSI.FETCHED bit is
295 	 * set. Retry in this case. Therefore I expect maximum 2 times
296 	 * trying.
297 	 */
298 	ddcb_mark_appended(pddcb);
299 	for (try = 0; try < 2; try++) {
300 		old = prev_ddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */
301 
302 		/* try to append via NEXT bit if prev DDCB is not completed */
303 		if ((old & DDCB_COMPLETED_BE32) != 0x00000000)
304 			break;
305 
306 		new = (old | DDCB_NEXT_BE32);
307 
308 		wmb();		/* need to ensure write ordering */
309 		icrc_hsi_shi = cmpxchg(&prev_ddcb->icrc_hsi_shi_32, old, new);
310 
311 		if (icrc_hsi_shi == old)
312 			return RET_DDCB_APPENDED; /* appended to queue */
313 	}
314 
315 	/* Queue must be re-started by updating QUEUE_OFFSET */
316 	ddcb_mark_tapped(pddcb);
317 	num = (u64)ddcb_no << 8;
318 
319 	wmb();			/* need to ensure write ordering */
320 	__genwqe_writeq(cd, queue->IO_QUEUE_OFFSET, num); /* start queue */
321 
322 	return RET_DDCB_TAPPED;
323 }
324 
325 /**
326  * copy_ddcb_results() - Copy output state from real DDCB to request
327  *
328  * Copy DDCB ASV to request struct. There is no endian
329  * conversion made, since data structure in ASV is still
330  * unknown here.
331  *
332  * This is needed by:
333  *   - genwqe_purge_ddcb()
334  *   - genwqe_check_ddcb_queue()
335  */
336 static void copy_ddcb_results(struct ddcb_requ *req, int ddcb_no)
337 {
338 	struct ddcb_queue *queue = req->queue;
339 	struct ddcb *pddcb = &queue->ddcb_vaddr[req->num];
340 
341 	memcpy(&req->cmd.asv[0], &pddcb->asv[0], DDCB_ASV_LENGTH);
342 
343 	/* copy status flags of the variant part */
344 	req->cmd.vcrc     = be16_to_cpu(pddcb->vcrc_16);
345 	req->cmd.deque_ts = be64_to_cpu(pddcb->deque_ts_64);
346 	req->cmd.cmplt_ts = be64_to_cpu(pddcb->cmplt_ts_64);
347 
348 	req->cmd.attn     = be16_to_cpu(pddcb->attn_16);
349 	req->cmd.progress = be32_to_cpu(pddcb->progress_32);
350 	req->cmd.retc     = be16_to_cpu(pddcb->retc_16);
351 
352 	if (ddcb_requ_collect_debug_data(req)) {
353 		int prev_no = (ddcb_no == 0) ?
354 			queue->ddcb_max - 1 : ddcb_no - 1;
355 		struct ddcb *prev_pddcb = &queue->ddcb_vaddr[prev_no];
356 
357 		memcpy(&req->debug_data.ddcb_finished, pddcb,
358 		       sizeof(req->debug_data.ddcb_finished));
359 		memcpy(&req->debug_data.ddcb_prev, prev_pddcb,
360 		       sizeof(req->debug_data.ddcb_prev));
361 	}
362 }
363 
364 /**
365  * genwqe_check_ddcb_queue() - Checks DDCB queue for completed work equests.
366  * @cd:         pointer to genwqe device descriptor
367  *
368  * Return: Number of DDCBs which were finished
369  */
370 static int genwqe_check_ddcb_queue(struct genwqe_dev *cd,
371 				   struct ddcb_queue *queue)
372 {
373 	unsigned long flags;
374 	int ddcbs_finished = 0;
375 	struct pci_dev *pci_dev = cd->pci_dev;
376 
377 	spin_lock_irqsave(&queue->ddcb_lock, flags);
378 
379 	/* FIXME avoid soft locking CPU */
380 	while (!queue_empty(queue) && (ddcbs_finished < queue->ddcb_max)) {
381 
382 		struct ddcb *pddcb;
383 		struct ddcb_requ *req;
384 		u16 vcrc, vcrc_16, retc_16;
385 
386 		pddcb = &queue->ddcb_vaddr[queue->ddcb_act];
387 
388 		if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) ==
389 		    0x00000000)
390 			goto go_home; /* not completed, continue waiting */
391 
392 		wmb();  /*  Add sync to decouple prev. read operations */
393 
394 		/* Note: DDCB could be purged */
395 		req = queue->ddcb_req[queue->ddcb_act];
396 		if (req == NULL) {
397 			/* this occurs if DDCB is purged, not an error */
398 			/* Move active DDCB further; Nothing to do anymore. */
399 			goto pick_next_one;
400 		}
401 
402 		/*
403 		 * HSI=0x44 (fetched and completed), but RETC is
404 		 * 0x101, or even worse 0x000.
405 		 *
406 		 * In case of seeing the queue in inconsistent state
407 		 * we read the errcnts and the queue status to provide
408 		 * a trigger for our PCIe analyzer stop capturing.
409 		 */
410 		retc_16 = be16_to_cpu(pddcb->retc_16);
411 		if ((pddcb->hsi == 0x44) && (retc_16 <= 0x101)) {
412 			u64 errcnts, status;
413 			u64 ddcb_offs = (u64)pddcb - (u64)queue->ddcb_vaddr;
414 
415 			errcnts = __genwqe_readq(cd, queue->IO_QUEUE_ERRCNTS);
416 			status  = __genwqe_readq(cd, queue->IO_QUEUE_STATUS);
417 
418 			dev_err(&pci_dev->dev,
419 				"[%s] SEQN=%04x HSI=%02x RETC=%03x Q_ERRCNTS=%016llx Q_STATUS=%016llx DDCB_DMA_ADDR=%016llx\n",
420 				__func__, be16_to_cpu(pddcb->seqnum_16),
421 				pddcb->hsi, retc_16, errcnts, status,
422 				queue->ddcb_daddr + ddcb_offs);
423 		}
424 
425 		copy_ddcb_results(req, queue->ddcb_act);
426 		queue->ddcb_req[queue->ddcb_act] = NULL; /* take from queue */
427 
428 		dev_dbg(&pci_dev->dev, "FINISHED DDCB#%d\n", req->num);
429 		genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
430 
431 		ddcb_mark_finished(pddcb);
432 
433 		/* calculate CRC_16 to see if VCRC is correct */
434 		vcrc = genwqe_crc16(pddcb->asv,
435 				   VCRC_LENGTH(req->cmd.asv_length),
436 				   0xffff);
437 		vcrc_16 = be16_to_cpu(pddcb->vcrc_16);
438 		if (vcrc != vcrc_16) {
439 			printk_ratelimited(KERN_ERR
440 				"%s %s: err: wrong VCRC pre=%02x vcrc_len=%d bytes vcrc_data=%04x is not vcrc_card=%04x\n",
441 				GENWQE_DEVNAME, dev_name(&pci_dev->dev),
442 				pddcb->pre, VCRC_LENGTH(req->cmd.asv_length),
443 				vcrc, vcrc_16);
444 		}
445 
446 		ddcb_requ_set_state(req, GENWQE_REQU_FINISHED);
447 		queue->ddcbs_completed++;
448 		queue->ddcbs_in_flight--;
449 
450 		/* wake up process waiting for this DDCB, and
451                    processes on the busy queue */
452 		wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]);
453 		wake_up_interruptible(&queue->busy_waitq);
454 
455 pick_next_one:
456 		queue->ddcb_act = (queue->ddcb_act + 1) % queue->ddcb_max;
457 		ddcbs_finished++;
458 	}
459 
460  go_home:
461 	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
462 	return ddcbs_finished;
463 }
464 
465 /**
466  * __genwqe_wait_ddcb(): Waits until DDCB is completed
467  * @cd:         pointer to genwqe device descriptor
468  * @req:        pointer to requsted DDCB parameters
469  *
470  * The Service Layer will update the RETC in DDCB when processing is
471  * pending or done.
472  *
473  * Return: > 0 remaining jiffies, DDCB completed
474  *           -ETIMEDOUT	when timeout
475  *           -ERESTARTSYS when ^C
476  *           -EINVAL when unknown error condition
477  *
478  * When an error is returned the called needs to ensure that
479  * purge_ddcb() is being called to get the &req removed from the
480  * queue.
481  */
482 int __genwqe_wait_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req)
483 {
484 	int rc;
485 	unsigned int ddcb_no;
486 	struct ddcb_queue *queue;
487 	struct pci_dev *pci_dev = cd->pci_dev;
488 
489 	if (req == NULL)
490 		return -EINVAL;
491 
492 	queue = req->queue;
493 	if (queue == NULL)
494 		return -EINVAL;
495 
496 	ddcb_no = req->num;
497 	if (ddcb_no >= queue->ddcb_max)
498 		return -EINVAL;
499 
500 	rc = wait_event_interruptible_timeout(queue->ddcb_waitqs[ddcb_no],
501 				ddcb_requ_finished(cd, req),
502 				GENWQE_DDCB_SOFTWARE_TIMEOUT * HZ);
503 
504 	/*
505 	 * We need to distinguish 3 cases here:
506 	 *   1. rc == 0              timeout occured
507 	 *   2. rc == -ERESTARTSYS   signal received
508 	 *   3. rc > 0               remaining jiffies condition is true
509 	 */
510 	if (rc == 0) {
511 		struct ddcb_queue *queue = req->queue;
512 		struct ddcb *pddcb;
513 
514 		/*
515 		 * Timeout may be caused by long task switching time.
516 		 * When timeout happens, check if the request has
517 		 * meanwhile completed.
518 		 */
519 		genwqe_check_ddcb_queue(cd, req->queue);
520 		if (ddcb_requ_finished(cd, req))
521 			return rc;
522 
523 		dev_err(&pci_dev->dev,
524 			"[%s] err: DDCB#%d timeout rc=%d state=%d req @ %p\n",
525 			__func__, req->num, rc,	ddcb_requ_get_state(req),
526 			req);
527 		dev_err(&pci_dev->dev,
528 			"[%s]      IO_QUEUE_STATUS=0x%016llx\n", __func__,
529 			__genwqe_readq(cd, queue->IO_QUEUE_STATUS));
530 
531 		pddcb = &queue->ddcb_vaddr[req->num];
532 		genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
533 
534 		print_ddcb_info(cd, req->queue);
535 		return -ETIMEDOUT;
536 
537 	} else if (rc == -ERESTARTSYS) {
538 		return rc;
539 		/*
540 		 * EINTR:       Stops the application
541 		 * ERESTARTSYS: Restartable systemcall; called again
542 		 */
543 
544 	} else if (rc < 0) {
545 		dev_err(&pci_dev->dev,
546 			"[%s] err: DDCB#%d unknown result (rc=%d) %d!\n",
547 			__func__, req->num, rc, ddcb_requ_get_state(req));
548 		return -EINVAL;
549 	}
550 
551 	/* Severe error occured. Driver is forced to stop operation */
552 	if (cd->card_state != GENWQE_CARD_USED) {
553 		dev_err(&pci_dev->dev,
554 			"[%s] err: DDCB#%d forced to stop (rc=%d)\n",
555 			__func__, req->num, rc);
556 		return -EIO;
557 	}
558 	return rc;
559 }
560 
561 /**
562  * get_next_ddcb() - Get next available DDCB
563  * @cd:         pointer to genwqe device descriptor
564  *
565  * DDCB's content is completely cleared but presets for PRE and
566  * SEQNUM. This function must only be called when ddcb_lock is held.
567  *
568  * Return: NULL if no empty DDCB available otherwise ptr to next DDCB.
569  */
570 static struct ddcb *get_next_ddcb(struct genwqe_dev *cd,
571 				  struct ddcb_queue *queue,
572 				  int *num)
573 {
574 	u64 *pu64;
575 	struct ddcb *pddcb;
576 
577 	if (queue_free_ddcbs(queue) == 0) /* queue is  full */
578 		return NULL;
579 
580 	/* find new ddcb */
581 	pddcb = &queue->ddcb_vaddr[queue->ddcb_next];
582 
583 	/* if it is not completed, we are not allowed to use it */
584 	/* barrier(); */
585 	if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) == 0x00000000)
586 		return NULL;
587 
588 	*num = queue->ddcb_next;	/* internal DDCB number */
589 	queue->ddcb_next = (queue->ddcb_next + 1) % queue->ddcb_max;
590 
591 	/* clear important DDCB fields */
592 	pu64 = (u64 *)pddcb;
593 	pu64[0] = 0ULL;		/* offs 0x00 (ICRC,HSI,SHI,...) */
594 	pu64[1] = 0ULL;		/* offs 0x01 (ACFUNC,CMD...) */
595 
596 	/* destroy previous results in ASV */
597 	pu64[0x80/8] = 0ULL;	/* offs 0x80 (ASV + 0) */
598 	pu64[0x88/8] = 0ULL;	/* offs 0x88 (ASV + 0x08) */
599 	pu64[0x90/8] = 0ULL;	/* offs 0x90 (ASV + 0x10) */
600 	pu64[0x98/8] = 0ULL;	/* offs 0x98 (ASV + 0x18) */
601 	pu64[0xd0/8] = 0ULL;	/* offs 0xd0 (RETC,ATTN...) */
602 
603 	pddcb->pre = DDCB_PRESET_PRE; /* 128 */
604 	pddcb->seqnum_16 = cpu_to_be16(queue->ddcb_seq++);
605 	return pddcb;
606 }
607 
608 /**
609  * __genwqe_purge_ddcb() - Remove a DDCB from the workqueue
610  * @cd:         genwqe device descriptor
611  * @req:        DDCB request
612  *
613  * This will fail when the request was already FETCHED. In this case
614  * we need to wait until it is finished. Else the DDCB can be
615  * reused. This function also ensures that the request data structure
616  * is removed from ddcb_req[].
617  *
618  * Do not forget to call this function when genwqe_wait_ddcb() fails,
619  * such that the request gets really removed from ddcb_req[].
620  *
621  * Return: 0 success
622  */
623 int __genwqe_purge_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req)
624 {
625 	struct ddcb *pddcb = NULL;
626 	unsigned int t;
627 	unsigned long flags;
628 	struct ddcb_queue *queue = req->queue;
629 	struct pci_dev *pci_dev = cd->pci_dev;
630 	u64 queue_status;
631 	__be32 icrc_hsi_shi = 0x0000;
632 	__be32 old, new;
633 
634 	/* unsigned long flags; */
635 	if (GENWQE_DDCB_SOFTWARE_TIMEOUT <= 0) {
636 		dev_err(&pci_dev->dev,
637 			"[%s] err: software timeout is not set!\n", __func__);
638 		return -EFAULT;
639 	}
640 
641 	pddcb = &queue->ddcb_vaddr[req->num];
642 
643 	for (t = 0; t < GENWQE_DDCB_SOFTWARE_TIMEOUT * 10; t++) {
644 
645 		spin_lock_irqsave(&queue->ddcb_lock, flags);
646 
647 		/* Check if req was meanwhile finished */
648 		if (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED)
649 			goto go_home;
650 
651 		/* try to set PURGE bit if FETCHED/COMPLETED are not set */
652 		old = pddcb->icrc_hsi_shi_32;	/* read SHI/HSI in BE32 */
653 		if ((old & DDCB_FETCHED_BE32) == 0x00000000) {
654 
655 			new = (old | DDCB_PURGE_BE32);
656 			icrc_hsi_shi = cmpxchg(&pddcb->icrc_hsi_shi_32,
657 					       old, new);
658 			if (icrc_hsi_shi == old)
659 				goto finish_ddcb;
660 		}
661 
662 		/* normal finish with HSI bit */
663 		barrier();
664 		icrc_hsi_shi = pddcb->icrc_hsi_shi_32;
665 		if (icrc_hsi_shi & DDCB_COMPLETED_BE32)
666 			goto finish_ddcb;
667 
668 		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
669 
670 		/*
671 		 * Here the check_ddcb() function will most likely
672 		 * discover this DDCB to be finished some point in
673 		 * time. It will mark the req finished and free it up
674 		 * in the list.
675 		 */
676 
677 		copy_ddcb_results(req, req->num); /* for the failing case */
678 		msleep(100); /* sleep for 1/10 second and try again */
679 		continue;
680 
681 finish_ddcb:
682 		copy_ddcb_results(req, req->num);
683 		ddcb_requ_set_state(req, GENWQE_REQU_FINISHED);
684 		queue->ddcbs_in_flight--;
685 		queue->ddcb_req[req->num] = NULL; /* delete from array */
686 		ddcb_mark_cleared(pddcb);
687 
688 		/* Move active DDCB further; Nothing to do here anymore. */
689 
690 		/*
691 		 * We need to ensure that there is at least one free
692 		 * DDCB in the queue. To do that, we must update
693 		 * ddcb_act only if the COMPLETED bit is set for the
694 		 * DDCB we are working on else we treat that DDCB even
695 		 * if we PURGED it as occupied (hardware is supposed
696 		 * to set the COMPLETED bit yet!).
697 		 */
698 		icrc_hsi_shi = pddcb->icrc_hsi_shi_32;
699 		if ((icrc_hsi_shi & DDCB_COMPLETED_BE32) &&
700 		    (queue->ddcb_act == req->num)) {
701 			queue->ddcb_act = ((queue->ddcb_act + 1) %
702 					   queue->ddcb_max);
703 		}
704 go_home:
705 		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
706 		return 0;
707 	}
708 
709 	/*
710 	 * If the card is dead and the queue is forced to stop, we
711 	 * might see this in the queue status register.
712 	 */
713 	queue_status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS);
714 
715 	dev_dbg(&pci_dev->dev, "UN/FINISHED DDCB#%d\n", req->num);
716 	genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
717 
718 	dev_err(&pci_dev->dev,
719 		"[%s] err: DDCB#%d not purged and not completed after %d seconds QSTAT=%016llx!!\n",
720 		__func__, req->num, GENWQE_DDCB_SOFTWARE_TIMEOUT,
721 		queue_status);
722 
723 	print_ddcb_info(cd, req->queue);
724 
725 	return -EFAULT;
726 }
727 
728 int genwqe_init_debug_data(struct genwqe_dev *cd, struct genwqe_debug_data *d)
729 {
730 	int len;
731 	struct pci_dev *pci_dev = cd->pci_dev;
732 
733 	if (d == NULL) {
734 		dev_err(&pci_dev->dev,
735 			"[%s] err: invalid memory for debug data!\n",
736 			__func__);
737 		return -EFAULT;
738 	}
739 
740 	len  = sizeof(d->driver_version);
741 	snprintf(d->driver_version, len, "%s", DRV_VERSION);
742 	d->slu_unitcfg = cd->slu_unitcfg;
743 	d->app_unitcfg = cd->app_unitcfg;
744 	return 0;
745 }
746 
747 /**
748  * __genwqe_enqueue_ddcb() - Enqueue a DDCB
749  * @cd:         pointer to genwqe device descriptor
750  * @req:        pointer to DDCB execution request
751  * @f_flags:    file mode: blocking, non-blocking
752  *
753  * Return: 0 if enqueuing succeeded
754  *         -EIO if card is unusable/PCIe problems
755  *         -EBUSY if enqueuing failed
756  */
757 int __genwqe_enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req,
758 			  unsigned int f_flags)
759 {
760 	struct ddcb *pddcb;
761 	unsigned long flags;
762 	struct ddcb_queue *queue;
763 	struct pci_dev *pci_dev = cd->pci_dev;
764 	u16 icrc;
765 
766  retry:
767 	if (cd->card_state != GENWQE_CARD_USED) {
768 		printk_ratelimited(KERN_ERR
769 			"%s %s: [%s] Card is unusable/PCIe problem Req#%d\n",
770 			GENWQE_DEVNAME, dev_name(&pci_dev->dev),
771 			__func__, req->num);
772 		return -EIO;
773 	}
774 
775 	queue = req->queue = &cd->queue;
776 
777 	/* FIXME circumvention to improve performance when no irq is
778 	 * there.
779 	 */
780 	if (GENWQE_POLLING_ENABLED)
781 		genwqe_check_ddcb_queue(cd, queue);
782 
783 	/*
784 	 * It must be ensured to process all DDCBs in successive
785 	 * order. Use a lock here in order to prevent nested DDCB
786 	 * enqueuing.
787 	 */
788 	spin_lock_irqsave(&queue->ddcb_lock, flags);
789 
790 	pddcb = get_next_ddcb(cd, queue, &req->num);	/* get ptr and num */
791 	if (pddcb == NULL) {
792 		int rc;
793 
794 		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
795 
796 		if (f_flags & O_NONBLOCK) {
797 			queue->return_on_busy++;
798 			return -EBUSY;
799 		}
800 
801 		queue->wait_on_busy++;
802 		rc = wait_event_interruptible(queue->busy_waitq,
803 					      queue_free_ddcbs(queue) != 0);
804 		dev_dbg(&pci_dev->dev, "[%s] waiting for free DDCB: rc=%d\n",
805 			__func__, rc);
806 		if (rc == -ERESTARTSYS)
807 			return rc;  /* interrupted by a signal */
808 
809 		goto retry;
810 	}
811 
812 	if (queue->ddcb_req[req->num] != NULL) {
813 		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
814 
815 		dev_err(&pci_dev->dev,
816 			"[%s] picked DDCB %d with req=%p still in use!!\n",
817 			__func__, req->num, req);
818 		return -EFAULT;
819 	}
820 	ddcb_requ_set_state(req, GENWQE_REQU_ENQUEUED);
821 	queue->ddcb_req[req->num] = req;
822 
823 	pddcb->cmdopts_16 = cpu_to_be16(req->cmd.cmdopts);
824 	pddcb->cmd = req->cmd.cmd;
825 	pddcb->acfunc = req->cmd.acfunc;	/* functional unit */
826 
827 	/*
828 	 * We know that we can get retc 0x104 with CRC error, do not
829 	 * stop the queue in those cases for this command. XDIR = 1
830 	 * does not work for old SLU versions.
831 	 *
832 	 * Last bitstream with the old XDIR behavior had SLU_ID
833 	 * 0x34199.
834 	 */
835 	if ((cd->slu_unitcfg & 0xFFFF0ull) > 0x34199ull)
836 		pddcb->xdir = 0x1;
837 	else
838 		pddcb->xdir = 0x0;
839 
840 
841 	pddcb->psp = (((req->cmd.asiv_length / 8) << 4) |
842 		      ((req->cmd.asv_length  / 8)));
843 	pddcb->disp_ts_64 = cpu_to_be64(req->cmd.disp_ts);
844 
845 	/*
846 	 * If copying the whole DDCB_ASIV_LENGTH is impacting
847 	 * performance we need to change it to
848 	 * req->cmd.asiv_length. But simulation benefits from some
849 	 * non-architectured bits behind the architectured content.
850 	 *
851 	 * How much data is copied depends on the availability of the
852 	 * ATS field, which was introduced late. If the ATS field is
853 	 * supported ASIV is 8 bytes shorter than it used to be. Since
854 	 * the ATS field is copied too, the code should do exactly
855 	 * what it did before, but I wanted to make copying of the ATS
856 	 * field very explicit.
857 	 */
858 	if (genwqe_get_slu_id(cd) <= 0x2) {
859 		memcpy(&pddcb->__asiv[0],	/* destination */
860 		       &req->cmd.__asiv[0],	/* source */
861 		       DDCB_ASIV_LENGTH);	/* req->cmd.asiv_length */
862 	} else {
863 		pddcb->n.ats_64 = cpu_to_be64(req->cmd.ats);
864 		memcpy(&pddcb->n.asiv[0],	/* destination */
865 			&req->cmd.asiv[0],	/* source */
866 			DDCB_ASIV_LENGTH_ATS);	/* req->cmd.asiv_length */
867 	}
868 
869 	pddcb->icrc_hsi_shi_32 = cpu_to_be32(0x00000000); /* for crc */
870 
871 	/*
872 	 * Calculate CRC_16 for corresponding range PSP(7:4). Include
873 	 * empty 4 bytes prior to the data.
874 	 */
875 	icrc = genwqe_crc16((const u8 *)pddcb,
876 			   ICRC_LENGTH(req->cmd.asiv_length), 0xffff);
877 	pddcb->icrc_hsi_shi_32 = cpu_to_be32((u32)icrc << 16);
878 
879 	/* enable DDCB completion irq */
880 	if (!GENWQE_POLLING_ENABLED)
881 		pddcb->icrc_hsi_shi_32 |= DDCB_INTR_BE32;
882 
883 	dev_dbg(&pci_dev->dev, "INPUT DDCB#%d\n", req->num);
884 	genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
885 
886 	if (ddcb_requ_collect_debug_data(req)) {
887 		/* use the kernel copy of debug data. copying back to
888 		   user buffer happens later */
889 
890 		genwqe_init_debug_data(cd, &req->debug_data);
891 		memcpy(&req->debug_data.ddcb_before, pddcb,
892 		       sizeof(req->debug_data.ddcb_before));
893 	}
894 
895 	enqueue_ddcb(cd, queue, pddcb, req->num);
896 	queue->ddcbs_in_flight++;
897 
898 	if (queue->ddcbs_in_flight > queue->ddcbs_max_in_flight)
899 		queue->ddcbs_max_in_flight = queue->ddcbs_in_flight;
900 
901 	ddcb_requ_set_state(req, GENWQE_REQU_TAPPED);
902 	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
903 	wake_up_interruptible(&cd->queue_waitq);
904 
905 	return 0;
906 }
907 
908 /**
909  * __genwqe_execute_raw_ddcb() - Setup and execute DDCB
910  * @cd:         pointer to genwqe device descriptor
911  * @req:        user provided DDCB request
912  * @f_flags:    file mode: blocking, non-blocking
913  */
914 int __genwqe_execute_raw_ddcb(struct genwqe_dev *cd,
915 			      struct genwqe_ddcb_cmd *cmd,
916 			      unsigned int f_flags)
917 {
918 	int rc = 0;
919 	struct pci_dev *pci_dev = cd->pci_dev;
920 	struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd);
921 
922 	if (cmd->asiv_length > DDCB_ASIV_LENGTH) {
923 		dev_err(&pci_dev->dev, "[%s] err: wrong asiv_length of %d\n",
924 			__func__, cmd->asiv_length);
925 		return -EINVAL;
926 	}
927 	if (cmd->asv_length > DDCB_ASV_LENGTH) {
928 		dev_err(&pci_dev->dev, "[%s] err: wrong asv_length of %d\n",
929 			__func__, cmd->asiv_length);
930 		return -EINVAL;
931 	}
932 	rc = __genwqe_enqueue_ddcb(cd, req, f_flags);
933 	if (rc != 0)
934 		return rc;
935 
936 	rc = __genwqe_wait_ddcb(cd, req);
937 	if (rc < 0)		/* error or signal interrupt */
938 		goto err_exit;
939 
940 	if (ddcb_requ_collect_debug_data(req)) {
941 		if (copy_to_user((struct genwqe_debug_data __user *)
942 				 (unsigned long)cmd->ddata_addr,
943 				 &req->debug_data,
944 				 sizeof(struct genwqe_debug_data)))
945 			return -EFAULT;
946 	}
947 
948 	/*
949 	 * Higher values than 0x102 indicate completion with faults,
950 	 * lower values than 0x102 indicate processing faults. Note
951 	 * that DDCB might have been purged. E.g. Cntl+C.
952 	 */
953 	if (cmd->retc != DDCB_RETC_COMPLETE) {
954 		/* This might happen e.g. flash read, and needs to be
955 		   handled by the upper layer code. */
956 		rc = -EBADMSG;	/* not processed/error retc */
957 	}
958 
959 	return rc;
960 
961  err_exit:
962 	__genwqe_purge_ddcb(cd, req);
963 
964 	if (ddcb_requ_collect_debug_data(req)) {
965 		if (copy_to_user((struct genwqe_debug_data __user *)
966 				 (unsigned long)cmd->ddata_addr,
967 				 &req->debug_data,
968 				 sizeof(struct genwqe_debug_data)))
969 			return -EFAULT;
970 	}
971 	return rc;
972 }
973 
974 /**
975  * genwqe_next_ddcb_ready() - Figure out if the next DDCB is already finished
976  *
977  * We use this as condition for our wait-queue code.
978  */
979 static int genwqe_next_ddcb_ready(struct genwqe_dev *cd)
980 {
981 	unsigned long flags;
982 	struct ddcb *pddcb;
983 	struct ddcb_queue *queue = &cd->queue;
984 
985 	spin_lock_irqsave(&queue->ddcb_lock, flags);
986 
987 	if (queue_empty(queue)) { /* emtpy queue */
988 		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
989 		return 0;
990 	}
991 
992 	pddcb = &queue->ddcb_vaddr[queue->ddcb_act];
993 	if (pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) { /* ddcb ready */
994 		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
995 		return 1;
996 	}
997 
998 	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
999 	return 0;
1000 }
1001 
1002 /**
1003  * genwqe_ddcbs_in_flight() - Check how many DDCBs are in flight
1004  *
1005  * Keep track on the number of DDCBs which ware currently in the
1006  * queue. This is needed for statistics as well as conditon if we want
1007  * to wait or better do polling in case of no interrupts available.
1008  */
1009 int genwqe_ddcbs_in_flight(struct genwqe_dev *cd)
1010 {
1011 	unsigned long flags;
1012 	int ddcbs_in_flight = 0;
1013 	struct ddcb_queue *queue = &cd->queue;
1014 
1015 	spin_lock_irqsave(&queue->ddcb_lock, flags);
1016 	ddcbs_in_flight += queue->ddcbs_in_flight;
1017 	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
1018 
1019 	return ddcbs_in_flight;
1020 }
1021 
1022 static int setup_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue)
1023 {
1024 	int rc, i;
1025 	struct ddcb *pddcb;
1026 	u64 val64;
1027 	unsigned int queue_size;
1028 	struct pci_dev *pci_dev = cd->pci_dev;
1029 
1030 	if (GENWQE_DDCB_MAX < 2)
1031 		return -EINVAL;
1032 
1033 	queue_size = roundup(GENWQE_DDCB_MAX * sizeof(struct ddcb), PAGE_SIZE);
1034 
1035 	queue->ddcbs_in_flight = 0;  /* statistics */
1036 	queue->ddcbs_max_in_flight = 0;
1037 	queue->ddcbs_completed = 0;
1038 	queue->return_on_busy = 0;
1039 	queue->wait_on_busy = 0;
1040 
1041 	queue->ddcb_seq	  = 0x100; /* start sequence number */
1042 	queue->ddcb_max	  = GENWQE_DDCB_MAX;
1043 	queue->ddcb_vaddr = __genwqe_alloc_consistent(cd, queue_size,
1044 						&queue->ddcb_daddr);
1045 	if (queue->ddcb_vaddr == NULL) {
1046 		dev_err(&pci_dev->dev,
1047 			"[%s] **err: could not allocate DDCB **\n", __func__);
1048 		return -ENOMEM;
1049 	}
1050 	queue->ddcb_req = kcalloc(queue->ddcb_max, sizeof(struct ddcb_requ *),
1051 				  GFP_KERNEL);
1052 	if (!queue->ddcb_req) {
1053 		rc = -ENOMEM;
1054 		goto free_ddcbs;
1055 	}
1056 
1057 	queue->ddcb_waitqs = kcalloc(queue->ddcb_max,
1058 				     sizeof(wait_queue_head_t),
1059 				     GFP_KERNEL);
1060 	if (!queue->ddcb_waitqs) {
1061 		rc = -ENOMEM;
1062 		goto free_requs;
1063 	}
1064 
1065 	for (i = 0; i < queue->ddcb_max; i++) {
1066 		pddcb = &queue->ddcb_vaddr[i];		     /* DDCBs */
1067 		pddcb->icrc_hsi_shi_32 = DDCB_COMPLETED_BE32;
1068 		pddcb->retc_16 = cpu_to_be16(0xfff);
1069 
1070 		queue->ddcb_req[i] = NULL;		     /* requests */
1071 		init_waitqueue_head(&queue->ddcb_waitqs[i]); /* waitqueues */
1072 	}
1073 
1074 	queue->ddcb_act  = 0;
1075 	queue->ddcb_next = 0;	/* queue is empty */
1076 
1077 	spin_lock_init(&queue->ddcb_lock);
1078 	init_waitqueue_head(&queue->busy_waitq);
1079 
1080 	val64 = ((u64)(queue->ddcb_max - 1) <<  8); /* lastptr */
1081 	__genwqe_writeq(cd, queue->IO_QUEUE_CONFIG,  0x07);  /* iCRC/vCRC */
1082 	__genwqe_writeq(cd, queue->IO_QUEUE_SEGMENT, queue->ddcb_daddr);
1083 	__genwqe_writeq(cd, queue->IO_QUEUE_INITSQN, queue->ddcb_seq);
1084 	__genwqe_writeq(cd, queue->IO_QUEUE_WRAP,    val64);
1085 	return 0;
1086 
1087  free_requs:
1088 	kfree(queue->ddcb_req);
1089 	queue->ddcb_req = NULL;
1090  free_ddcbs:
1091 	__genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr,
1092 				queue->ddcb_daddr);
1093 	queue->ddcb_vaddr = NULL;
1094 	queue->ddcb_daddr = 0ull;
1095 	return -ENODEV;
1096 
1097 }
1098 
1099 static int ddcb_queue_initialized(struct ddcb_queue *queue)
1100 {
1101 	return queue->ddcb_vaddr != NULL;
1102 }
1103 
1104 static void free_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue)
1105 {
1106 	unsigned int queue_size;
1107 
1108 	queue_size = roundup(queue->ddcb_max * sizeof(struct ddcb), PAGE_SIZE);
1109 
1110 	kfree(queue->ddcb_req);
1111 	queue->ddcb_req = NULL;
1112 
1113 	if (queue->ddcb_vaddr) {
1114 		__genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr,
1115 					queue->ddcb_daddr);
1116 		queue->ddcb_vaddr = NULL;
1117 		queue->ddcb_daddr = 0ull;
1118 	}
1119 }
1120 
1121 static irqreturn_t genwqe_pf_isr(int irq, void *dev_id)
1122 {
1123 	u64 gfir;
1124 	struct genwqe_dev *cd = (struct genwqe_dev *)dev_id;
1125 	struct pci_dev *pci_dev = cd->pci_dev;
1126 
1127 	/*
1128 	 * In case of fatal FIR error the queue is stopped, such that
1129 	 * we can safely check it without risking anything.
1130 	 */
1131 	cd->irqs_processed++;
1132 	wake_up_interruptible(&cd->queue_waitq);
1133 
1134 	/*
1135 	 * Checking for errors before kicking the queue might be
1136 	 * safer, but slower for the good-case ... See above.
1137 	 */
1138 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
1139 	if (((gfir & GFIR_ERR_TRIGGER) != 0x0) &&
1140 	    !pci_channel_offline(pci_dev)) {
1141 
1142 		if (cd->use_platform_recovery) {
1143 			/*
1144 			 * Since we use raw accessors, EEH errors won't be
1145 			 * detected by the platform until we do a non-raw
1146 			 * MMIO or config space read
1147 			 */
1148 			readq(cd->mmio + IO_SLC_CFGREG_GFIR);
1149 
1150 			/* Don't do anything if the PCI channel is frozen */
1151 			if (pci_channel_offline(pci_dev))
1152 				goto exit;
1153 		}
1154 
1155 		wake_up_interruptible(&cd->health_waitq);
1156 
1157 		/*
1158 		 * By default GFIRs causes recovery actions. This
1159 		 * count is just for debug when recovery is masked.
1160 		 */
1161 		dev_err_ratelimited(&pci_dev->dev,
1162 				    "[%s] GFIR=%016llx\n",
1163 				    __func__, gfir);
1164 	}
1165 
1166  exit:
1167 	return IRQ_HANDLED;
1168 }
1169 
1170 static irqreturn_t genwqe_vf_isr(int irq, void *dev_id)
1171 {
1172 	struct genwqe_dev *cd = (struct genwqe_dev *)dev_id;
1173 
1174 	cd->irqs_processed++;
1175 	wake_up_interruptible(&cd->queue_waitq);
1176 
1177 	return IRQ_HANDLED;
1178 }
1179 
1180 /**
1181  * genwqe_card_thread() - Work thread for the DDCB queue
1182  *
1183  * The idea is to check if there are DDCBs in processing. If there are
1184  * some finished DDCBs, we process them and wakeup the
1185  * requestors. Otherwise we give other processes time using
1186  * cond_resched().
1187  */
1188 static int genwqe_card_thread(void *data)
1189 {
1190 	int should_stop = 0, rc = 0;
1191 	struct genwqe_dev *cd = (struct genwqe_dev *)data;
1192 
1193 	while (!kthread_should_stop()) {
1194 
1195 		genwqe_check_ddcb_queue(cd, &cd->queue);
1196 
1197 		if (GENWQE_POLLING_ENABLED) {
1198 			rc = wait_event_interruptible_timeout(
1199 				cd->queue_waitq,
1200 				genwqe_ddcbs_in_flight(cd) ||
1201 				(should_stop = kthread_should_stop()), 1);
1202 		} else {
1203 			rc = wait_event_interruptible_timeout(
1204 				cd->queue_waitq,
1205 				genwqe_next_ddcb_ready(cd) ||
1206 				(should_stop = kthread_should_stop()), HZ);
1207 		}
1208 		if (should_stop)
1209 			break;
1210 
1211 		/*
1212 		 * Avoid soft lockups on heavy loads; we do not want
1213 		 * to disable our interrupts.
1214 		 */
1215 		cond_resched();
1216 	}
1217 	return 0;
1218 }
1219 
1220 /**
1221  * genwqe_setup_service_layer() - Setup DDCB queue
1222  * @cd:         pointer to genwqe device descriptor
1223  *
1224  * Allocate DDCBs. Configure Service Layer Controller (SLC).
1225  *
1226  * Return: 0 success
1227  */
1228 int genwqe_setup_service_layer(struct genwqe_dev *cd)
1229 {
1230 	int rc;
1231 	struct ddcb_queue *queue;
1232 	struct pci_dev *pci_dev = cd->pci_dev;
1233 
1234 	if (genwqe_is_privileged(cd)) {
1235 		rc = genwqe_card_reset(cd);
1236 		if (rc < 0) {
1237 			dev_err(&pci_dev->dev,
1238 				"[%s] err: reset failed.\n", __func__);
1239 			return rc;
1240 		}
1241 		genwqe_read_softreset(cd);
1242 	}
1243 
1244 	queue = &cd->queue;
1245 	queue->IO_QUEUE_CONFIG  = IO_SLC_QUEUE_CONFIG;
1246 	queue->IO_QUEUE_STATUS  = IO_SLC_QUEUE_STATUS;
1247 	queue->IO_QUEUE_SEGMENT = IO_SLC_QUEUE_SEGMENT;
1248 	queue->IO_QUEUE_INITSQN = IO_SLC_QUEUE_INITSQN;
1249 	queue->IO_QUEUE_OFFSET  = IO_SLC_QUEUE_OFFSET;
1250 	queue->IO_QUEUE_WRAP    = IO_SLC_QUEUE_WRAP;
1251 	queue->IO_QUEUE_WTIME   = IO_SLC_QUEUE_WTIME;
1252 	queue->IO_QUEUE_ERRCNTS = IO_SLC_QUEUE_ERRCNTS;
1253 	queue->IO_QUEUE_LRW     = IO_SLC_QUEUE_LRW;
1254 
1255 	rc = setup_ddcb_queue(cd, queue);
1256 	if (rc != 0) {
1257 		rc = -ENODEV;
1258 		goto err_out;
1259 	}
1260 
1261 	init_waitqueue_head(&cd->queue_waitq);
1262 	cd->card_thread = kthread_run(genwqe_card_thread, cd,
1263 				      GENWQE_DEVNAME "%d_thread",
1264 				      cd->card_idx);
1265 	if (IS_ERR(cd->card_thread)) {
1266 		rc = PTR_ERR(cd->card_thread);
1267 		cd->card_thread = NULL;
1268 		goto stop_free_queue;
1269 	}
1270 
1271 	rc = genwqe_set_interrupt_capability(cd, GENWQE_MSI_IRQS);
1272 	if (rc)
1273 		goto stop_kthread;
1274 
1275 	/*
1276 	 * We must have all wait-queues initialized when we enable the
1277 	 * interrupts. Otherwise we might crash if we get an early
1278 	 * irq.
1279 	 */
1280 	init_waitqueue_head(&cd->health_waitq);
1281 
1282 	if (genwqe_is_privileged(cd)) {
1283 		rc = request_irq(pci_dev->irq, genwqe_pf_isr, IRQF_SHARED,
1284 				 GENWQE_DEVNAME, cd);
1285 	} else {
1286 		rc = request_irq(pci_dev->irq, genwqe_vf_isr, IRQF_SHARED,
1287 				 GENWQE_DEVNAME, cd);
1288 	}
1289 	if (rc < 0) {
1290 		dev_err(&pci_dev->dev, "irq %d not free.\n", pci_dev->irq);
1291 		goto stop_irq_cap;
1292 	}
1293 
1294 	cd->card_state = GENWQE_CARD_USED;
1295 	return 0;
1296 
1297  stop_irq_cap:
1298 	genwqe_reset_interrupt_capability(cd);
1299  stop_kthread:
1300 	kthread_stop(cd->card_thread);
1301 	cd->card_thread = NULL;
1302  stop_free_queue:
1303 	free_ddcb_queue(cd, queue);
1304  err_out:
1305 	return rc;
1306 }
1307 
1308 /**
1309  * queue_wake_up_all() - Handles fatal error case
1310  *
1311  * The PCI device got unusable and we have to stop all pending
1312  * requests as fast as we can. The code after this must purge the
1313  * DDCBs in question and ensure that all mappings are freed.
1314  */
1315 static int queue_wake_up_all(struct genwqe_dev *cd)
1316 {
1317 	unsigned int i;
1318 	unsigned long flags;
1319 	struct ddcb_queue *queue = &cd->queue;
1320 
1321 	spin_lock_irqsave(&queue->ddcb_lock, flags);
1322 
1323 	for (i = 0; i < queue->ddcb_max; i++)
1324 		wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]);
1325 
1326 	wake_up_interruptible(&queue->busy_waitq);
1327 	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  * genwqe_finish_queue() - Remove any genwqe devices and user-interfaces
1334  *
1335  * Relies on the pre-condition that there are no users of the card
1336  * device anymore e.g. with open file-descriptors.
1337  *
1338  * This function must be robust enough to be called twice.
1339  */
1340 int genwqe_finish_queue(struct genwqe_dev *cd)
1341 {
1342 	int i, rc = 0, in_flight;
1343 	int waitmax = GENWQE_DDCB_SOFTWARE_TIMEOUT;
1344 	struct pci_dev *pci_dev = cd->pci_dev;
1345 	struct ddcb_queue *queue = &cd->queue;
1346 
1347 	if (!ddcb_queue_initialized(queue))
1348 		return 0;
1349 
1350 	/* Do not wipe out the error state. */
1351 	if (cd->card_state == GENWQE_CARD_USED)
1352 		cd->card_state = GENWQE_CARD_UNUSED;
1353 
1354 	/* Wake up all requests in the DDCB queue such that they
1355 	   should be removed nicely. */
1356 	queue_wake_up_all(cd);
1357 
1358 	/* We must wait to get rid of the DDCBs in flight */
1359 	for (i = 0; i < waitmax; i++) {
1360 		in_flight = genwqe_ddcbs_in_flight(cd);
1361 
1362 		if (in_flight == 0)
1363 			break;
1364 
1365 		dev_dbg(&pci_dev->dev,
1366 			"  DEBUG [%d/%d] waiting for queue to get empty: %d requests!\n",
1367 			i, waitmax, in_flight);
1368 
1369 		/*
1370 		 * Severe severe error situation: The card itself has
1371 		 * 16 DDCB queues, each queue has e.g. 32 entries,
1372 		 * each DDBC has a hardware timeout of currently 250
1373 		 * msec but the PFs have a hardware timeout of 8 sec
1374 		 * ... so I take something large.
1375 		 */
1376 		msleep(1000);
1377 	}
1378 	if (i == waitmax) {
1379 		dev_err(&pci_dev->dev, "  [%s] err: queue is not empty!!\n",
1380 			__func__);
1381 		rc = -EIO;
1382 	}
1383 	return rc;
1384 }
1385 
1386 /**
1387  * genwqe_release_service_layer() - Shutdown DDCB queue
1388  * @cd:       genwqe device descriptor
1389  *
1390  * This function must be robust enough to be called twice.
1391  */
1392 int genwqe_release_service_layer(struct genwqe_dev *cd)
1393 {
1394 	struct pci_dev *pci_dev = cd->pci_dev;
1395 
1396 	if (!ddcb_queue_initialized(&cd->queue))
1397 		return 1;
1398 
1399 	free_irq(pci_dev->irq, cd);
1400 	genwqe_reset_interrupt_capability(cd);
1401 
1402 	if (cd->card_thread != NULL) {
1403 		kthread_stop(cd->card_thread);
1404 		cd->card_thread = NULL;
1405 	}
1406 
1407 	free_ddcb_queue(cd, &cd->queue);
1408 	return 0;
1409 }
1410