1 /** 2 * IBM Accelerator Family 'GenWQE' 3 * 4 * (C) Copyright IBM Corp. 2013 5 * 6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com> 7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com> 8 * Author: Michael Jung <mijung@de.ibm.com> 9 * Author: Michael Ruettger <michael@ibmra.de> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License (version 2 only) 13 * as published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 */ 20 21 /* 22 * Device Driver Control Block (DDCB) queue support. Definition of 23 * interrupt handlers for queue support as well as triggering the 24 * health monitor code in case of problems. The current hardware uses 25 * an MSI interrupt which is shared between error handling and 26 * functional code. 27 */ 28 29 #include <linux/types.h> 30 #include <linux/module.h> 31 #include <linux/sched.h> 32 #include <linux/wait.h> 33 #include <linux/pci.h> 34 #include <linux/string.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/delay.h> 37 #include <linux/module.h> 38 #include <linux/interrupt.h> 39 #include <linux/crc-itu-t.h> 40 41 #include "card_ddcb.h" 42 43 /* 44 * N: next DDCB, this is where the next DDCB will be put. 45 * A: active DDCB, this is where the code will look for the next completion. 46 * x: DDCB is enqueued, we are waiting for its completion. 47 48 * Situation (1): Empty queue 49 * +---+---+---+---+---+---+---+---+ 50 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 51 * | | | | | | | | | 52 * +---+---+---+---+---+---+---+---+ 53 * A/N 54 * enqueued_ddcbs = A - N = 2 - 2 = 0 55 * 56 * Situation (2): Wrapped, N > A 57 * +---+---+---+---+---+---+---+---+ 58 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 59 * | | | x | x | | | | | 60 * +---+---+---+---+---+---+---+---+ 61 * A N 62 * enqueued_ddcbs = N - A = 4 - 2 = 2 63 * 64 * Situation (3): Queue wrapped, A > N 65 * +---+---+---+---+---+---+---+---+ 66 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 67 * | x | x | | | x | x | x | x | 68 * +---+---+---+---+---+---+---+---+ 69 * N A 70 * enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 2) = 6 71 * 72 * Situation (4a): Queue full N > A 73 * +---+---+---+---+---+---+---+---+ 74 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 75 * | x | x | x | x | x | x | x | | 76 * +---+---+---+---+---+---+---+---+ 77 * A N 78 * 79 * enqueued_ddcbs = N - A = 7 - 0 = 7 80 * 81 * Situation (4a): Queue full A > N 82 * +---+---+---+---+---+---+---+---+ 83 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 84 * | x | x | x | | x | x | x | x | 85 * +---+---+---+---+---+---+---+---+ 86 * N A 87 * enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 3) = 7 88 */ 89 90 static int queue_empty(struct ddcb_queue *queue) 91 { 92 return queue->ddcb_next == queue->ddcb_act; 93 } 94 95 static int queue_enqueued_ddcbs(struct ddcb_queue *queue) 96 { 97 if (queue->ddcb_next >= queue->ddcb_act) 98 return queue->ddcb_next - queue->ddcb_act; 99 100 return queue->ddcb_max - (queue->ddcb_act - queue->ddcb_next); 101 } 102 103 static int queue_free_ddcbs(struct ddcb_queue *queue) 104 { 105 int free_ddcbs = queue->ddcb_max - queue_enqueued_ddcbs(queue) - 1; 106 107 if (WARN_ON_ONCE(free_ddcbs < 0)) { /* must never ever happen! */ 108 return 0; 109 } 110 return free_ddcbs; 111 } 112 113 /* 114 * Use of the PRIV field in the DDCB for queue debugging: 115 * 116 * (1) Trying to get rid of a DDCB which saw a timeout: 117 * pddcb->priv[6] = 0xcc; # cleared 118 * 119 * (2) Append a DDCB via NEXT bit: 120 * pddcb->priv[7] = 0xaa; # appended 121 * 122 * (3) DDCB needed tapping: 123 * pddcb->priv[7] = 0xbb; # tapped 124 * 125 * (4) DDCB marked as correctly finished: 126 * pddcb->priv[6] = 0xff; # finished 127 */ 128 129 static inline void ddcb_mark_tapped(struct ddcb *pddcb) 130 { 131 pddcb->priv[7] = 0xbb; /* tapped */ 132 } 133 134 static inline void ddcb_mark_appended(struct ddcb *pddcb) 135 { 136 pddcb->priv[7] = 0xaa; /* appended */ 137 } 138 139 static inline void ddcb_mark_cleared(struct ddcb *pddcb) 140 { 141 pddcb->priv[6] = 0xcc; /* cleared */ 142 } 143 144 static inline void ddcb_mark_finished(struct ddcb *pddcb) 145 { 146 pddcb->priv[6] = 0xff; /* finished */ 147 } 148 149 static inline void ddcb_mark_unused(struct ddcb *pddcb) 150 { 151 pddcb->priv_64 = cpu_to_be64(0); /* not tapped */ 152 } 153 154 /** 155 * genwqe_crc16() - Generate 16-bit crc as required for DDCBs 156 * @buff: pointer to data buffer 157 * @len: length of data for calculation 158 * @init: initial crc (0xffff at start) 159 * 160 * Polynomial = x^16 + x^12 + x^5 + 1 (0x1021) 161 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init = 0xffff 162 * should result in a crc16 of 0x89c3 163 * 164 * Return: crc16 checksum in big endian format ! 165 */ 166 static inline u16 genwqe_crc16(const u8 *buff, size_t len, u16 init) 167 { 168 return crc_itu_t(init, buff, len); 169 } 170 171 static void print_ddcb_info(struct genwqe_dev *cd, struct ddcb_queue *queue) 172 { 173 int i; 174 struct ddcb *pddcb; 175 unsigned long flags; 176 struct pci_dev *pci_dev = cd->pci_dev; 177 178 spin_lock_irqsave(&cd->print_lock, flags); 179 180 dev_info(&pci_dev->dev, 181 "DDCB list for card #%d (ddcb_act=%d / ddcb_next=%d):\n", 182 cd->card_idx, queue->ddcb_act, queue->ddcb_next); 183 184 pddcb = queue->ddcb_vaddr; 185 for (i = 0; i < queue->ddcb_max; i++) { 186 dev_err(&pci_dev->dev, 187 " %c %-3d: RETC=%03x SEQ=%04x " 188 "HSI=%02X SHI=%02x PRIV=%06llx CMD=%03x\n", 189 i == queue->ddcb_act ? '>' : ' ', 190 i, 191 be16_to_cpu(pddcb->retc_16), 192 be16_to_cpu(pddcb->seqnum_16), 193 pddcb->hsi, 194 pddcb->shi, 195 be64_to_cpu(pddcb->priv_64), 196 pddcb->cmd); 197 pddcb++; 198 } 199 spin_unlock_irqrestore(&cd->print_lock, flags); 200 } 201 202 struct genwqe_ddcb_cmd *ddcb_requ_alloc(void) 203 { 204 struct ddcb_requ *req; 205 206 req = kzalloc(sizeof(*req), GFP_ATOMIC); 207 if (!req) 208 return NULL; 209 210 return &req->cmd; 211 } 212 213 void ddcb_requ_free(struct genwqe_ddcb_cmd *cmd) 214 { 215 struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd); 216 kfree(req); 217 } 218 219 static inline enum genwqe_requ_state ddcb_requ_get_state(struct ddcb_requ *req) 220 { 221 return req->req_state; 222 } 223 224 static inline void ddcb_requ_set_state(struct ddcb_requ *req, 225 enum genwqe_requ_state new_state) 226 { 227 req->req_state = new_state; 228 } 229 230 static inline int ddcb_requ_collect_debug_data(struct ddcb_requ *req) 231 { 232 return req->cmd.ddata_addr != 0x0; 233 } 234 235 /** 236 * ddcb_requ_finished() - Returns the hardware state of the associated DDCB 237 * @cd: pointer to genwqe device descriptor 238 * @req: DDCB work request 239 * 240 * Status of ddcb_requ mirrors this hardware state, but is copied in 241 * the ddcb_requ on interrupt/polling function. The lowlevel code 242 * should check the hardware state directly, the higher level code 243 * should check the copy. 244 * 245 * This function will also return true if the state of the queue is 246 * not GENWQE_CARD_USED. This enables us to purge all DDCBs in the 247 * shutdown case. 248 */ 249 static int ddcb_requ_finished(struct genwqe_dev *cd, struct ddcb_requ *req) 250 { 251 return (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED) || 252 (cd->card_state != GENWQE_CARD_USED); 253 } 254 255 /** 256 * enqueue_ddcb() - Enqueue a DDCB 257 * @cd: pointer to genwqe device descriptor 258 * @queue: queue this operation should be done on 259 * @ddcb_no: pointer to ddcb number being tapped 260 * 261 * Start execution of DDCB by tapping or append to queue via NEXT 262 * bit. This is done by an atomic 'compare and swap' instruction and 263 * checking SHI and HSI of the previous DDCB. 264 * 265 * This function must only be called with ddcb_lock held. 266 * 267 * Return: 1 if new DDCB is appended to previous 268 * 2 if DDCB queue is tapped via register/simulation 269 */ 270 #define RET_DDCB_APPENDED 1 271 #define RET_DDCB_TAPPED 2 272 273 static int enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_queue *queue, 274 struct ddcb *pddcb, int ddcb_no) 275 { 276 unsigned int try; 277 int prev_no; 278 struct ddcb *prev_ddcb; 279 u32 old, new, icrc_hsi_shi; 280 u64 num; 281 282 /* 283 * For performance checks a Dispatch Timestamp can be put into 284 * DDCB It is supposed to use the SLU's free running counter, 285 * but this requires PCIe cycles. 286 */ 287 ddcb_mark_unused(pddcb); 288 289 /* check previous DDCB if already fetched */ 290 prev_no = (ddcb_no == 0) ? queue->ddcb_max - 1 : ddcb_no - 1; 291 prev_ddcb = &queue->ddcb_vaddr[prev_no]; 292 293 /* 294 * It might have happened that the HSI.FETCHED bit is 295 * set. Retry in this case. Therefore I expect maximum 2 times 296 * trying. 297 */ 298 ddcb_mark_appended(pddcb); 299 for (try = 0; try < 2; try++) { 300 old = prev_ddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */ 301 302 /* try to append via NEXT bit if prev DDCB is not completed */ 303 if ((old & DDCB_COMPLETED_BE32) != 0x00000000) 304 break; 305 306 new = (old | DDCB_NEXT_BE32); 307 icrc_hsi_shi = cmpxchg(&prev_ddcb->icrc_hsi_shi_32, old, new); 308 309 if (icrc_hsi_shi == old) 310 return RET_DDCB_APPENDED; /* appended to queue */ 311 } 312 313 /* Queue must be re-started by updating QUEUE_OFFSET */ 314 ddcb_mark_tapped(pddcb); 315 num = (u64)ddcb_no << 8; 316 __genwqe_writeq(cd, queue->IO_QUEUE_OFFSET, num); /* start queue */ 317 318 return RET_DDCB_TAPPED; 319 } 320 321 /** 322 * copy_ddcb_results() - Copy output state from real DDCB to request 323 * 324 * Copy DDCB ASV to request struct. There is no endian 325 * conversion made, since data structure in ASV is still 326 * unknown here. 327 * 328 * This is needed by: 329 * - genwqe_purge_ddcb() 330 * - genwqe_check_ddcb_queue() 331 */ 332 static void copy_ddcb_results(struct ddcb_requ *req, int ddcb_no) 333 { 334 struct ddcb_queue *queue = req->queue; 335 struct ddcb *pddcb = &queue->ddcb_vaddr[req->num]; 336 337 memcpy(&req->cmd.asv[0], &pddcb->asv[0], DDCB_ASV_LENGTH); 338 339 /* copy status flags of the variant part */ 340 req->cmd.vcrc = be16_to_cpu(pddcb->vcrc_16); 341 req->cmd.deque_ts = be64_to_cpu(pddcb->deque_ts_64); 342 req->cmd.cmplt_ts = be64_to_cpu(pddcb->cmplt_ts_64); 343 344 req->cmd.attn = be16_to_cpu(pddcb->attn_16); 345 req->cmd.progress = be32_to_cpu(pddcb->progress_32); 346 req->cmd.retc = be16_to_cpu(pddcb->retc_16); 347 348 if (ddcb_requ_collect_debug_data(req)) { 349 int prev_no = (ddcb_no == 0) ? 350 queue->ddcb_max - 1 : ddcb_no - 1; 351 struct ddcb *prev_pddcb = &queue->ddcb_vaddr[prev_no]; 352 353 memcpy(&req->debug_data.ddcb_finished, pddcb, 354 sizeof(req->debug_data.ddcb_finished)); 355 memcpy(&req->debug_data.ddcb_prev, prev_pddcb, 356 sizeof(req->debug_data.ddcb_prev)); 357 } 358 } 359 360 /** 361 * genwqe_check_ddcb_queue() - Checks DDCB queue for completed work equests. 362 * @cd: pointer to genwqe device descriptor 363 * 364 * Return: Number of DDCBs which were finished 365 */ 366 static int genwqe_check_ddcb_queue(struct genwqe_dev *cd, 367 struct ddcb_queue *queue) 368 { 369 unsigned long flags; 370 int ddcbs_finished = 0; 371 struct pci_dev *pci_dev = cd->pci_dev; 372 373 spin_lock_irqsave(&queue->ddcb_lock, flags); 374 375 /* FIXME avoid soft locking CPU */ 376 while (!queue_empty(queue) && (ddcbs_finished < queue->ddcb_max)) { 377 378 struct ddcb *pddcb; 379 struct ddcb_requ *req; 380 u16 vcrc, vcrc_16, retc_16; 381 382 pddcb = &queue->ddcb_vaddr[queue->ddcb_act]; 383 384 if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) == 385 0x00000000) 386 goto go_home; /* not completed, continue waiting */ 387 388 /* Note: DDCB could be purged */ 389 390 req = queue->ddcb_req[queue->ddcb_act]; 391 if (req == NULL) { 392 /* this occurs if DDCB is purged, not an error */ 393 /* Move active DDCB further; Nothing to do anymore. */ 394 goto pick_next_one; 395 } 396 397 /* 398 * HSI=0x44 (fetched and completed), but RETC is 399 * 0x101, or even worse 0x000. 400 * 401 * In case of seeing the queue in inconsistent state 402 * we read the errcnts and the queue status to provide 403 * a trigger for our PCIe analyzer stop capturing. 404 */ 405 retc_16 = be16_to_cpu(pddcb->retc_16); 406 if ((pddcb->hsi == 0x44) && (retc_16 <= 0x101)) { 407 u64 errcnts, status; 408 u64 ddcb_offs = (u64)pddcb - (u64)queue->ddcb_vaddr; 409 410 errcnts = __genwqe_readq(cd, queue->IO_QUEUE_ERRCNTS); 411 status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS); 412 413 dev_err(&pci_dev->dev, 414 "[%s] SEQN=%04x HSI=%02x RETC=%03x " 415 " Q_ERRCNTS=%016llx Q_STATUS=%016llx\n" 416 " DDCB_DMA_ADDR=%016llx\n", 417 __func__, be16_to_cpu(pddcb->seqnum_16), 418 pddcb->hsi, retc_16, errcnts, status, 419 queue->ddcb_daddr + ddcb_offs); 420 } 421 422 copy_ddcb_results(req, queue->ddcb_act); 423 queue->ddcb_req[queue->ddcb_act] = NULL; /* take from queue */ 424 425 dev_dbg(&pci_dev->dev, "FINISHED DDCB#%d\n", req->num); 426 genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); 427 428 ddcb_mark_finished(pddcb); 429 430 /* calculate CRC_16 to see if VCRC is correct */ 431 vcrc = genwqe_crc16(pddcb->asv, 432 VCRC_LENGTH(req->cmd.asv_length), 433 0xffff); 434 vcrc_16 = be16_to_cpu(pddcb->vcrc_16); 435 if (vcrc != vcrc_16) { 436 printk_ratelimited(KERN_ERR 437 "%s %s: err: wrong VCRC pre=%02x vcrc_len=%d " 438 "bytes vcrc_data=%04x is not vcrc_card=%04x\n", 439 GENWQE_DEVNAME, dev_name(&pci_dev->dev), 440 pddcb->pre, VCRC_LENGTH(req->cmd.asv_length), 441 vcrc, vcrc_16); 442 } 443 444 ddcb_requ_set_state(req, GENWQE_REQU_FINISHED); 445 queue->ddcbs_completed++; 446 queue->ddcbs_in_flight--; 447 448 /* wake up process waiting for this DDCB */ 449 wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]); 450 451 pick_next_one: 452 queue->ddcb_act = (queue->ddcb_act + 1) % queue->ddcb_max; 453 ddcbs_finished++; 454 } 455 456 go_home: 457 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 458 return ddcbs_finished; 459 } 460 461 /** 462 * __genwqe_wait_ddcb(): Waits until DDCB is completed 463 * @cd: pointer to genwqe device descriptor 464 * @req: pointer to requsted DDCB parameters 465 * 466 * The Service Layer will update the RETC in DDCB when processing is 467 * pending or done. 468 * 469 * Return: > 0 remaining jiffies, DDCB completed 470 * -ETIMEDOUT when timeout 471 * -ERESTARTSYS when ^C 472 * -EINVAL when unknown error condition 473 * 474 * When an error is returned the called needs to ensure that 475 * purge_ddcb() is being called to get the &req removed from the 476 * queue. 477 */ 478 int __genwqe_wait_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req) 479 { 480 int rc; 481 unsigned int ddcb_no; 482 struct ddcb_queue *queue; 483 struct pci_dev *pci_dev = cd->pci_dev; 484 485 if (req == NULL) 486 return -EINVAL; 487 488 queue = req->queue; 489 if (queue == NULL) 490 return -EINVAL; 491 492 ddcb_no = req->num; 493 if (ddcb_no >= queue->ddcb_max) 494 return -EINVAL; 495 496 rc = wait_event_interruptible_timeout(queue->ddcb_waitqs[ddcb_no], 497 ddcb_requ_finished(cd, req), 498 genwqe_ddcb_software_timeout * HZ); 499 500 /* 501 * We need to distinguish 3 cases here: 502 * 1. rc == 0 timeout occured 503 * 2. rc == -ERESTARTSYS signal received 504 * 3. rc > 0 remaining jiffies condition is true 505 */ 506 if (rc == 0) { 507 struct ddcb_queue *queue = req->queue; 508 struct ddcb *pddcb; 509 510 /* 511 * Timeout may be caused by long task switching time. 512 * When timeout happens, check if the request has 513 * meanwhile completed. 514 */ 515 genwqe_check_ddcb_queue(cd, req->queue); 516 if (ddcb_requ_finished(cd, req)) 517 return rc; 518 519 dev_err(&pci_dev->dev, 520 "[%s] err: DDCB#%d timeout rc=%d state=%d req @ %p\n", 521 __func__, req->num, rc, ddcb_requ_get_state(req), 522 req); 523 dev_err(&pci_dev->dev, 524 "[%s] IO_QUEUE_STATUS=0x%016llx\n", __func__, 525 __genwqe_readq(cd, queue->IO_QUEUE_STATUS)); 526 527 pddcb = &queue->ddcb_vaddr[req->num]; 528 genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); 529 530 print_ddcb_info(cd, req->queue); 531 return -ETIMEDOUT; 532 533 } else if (rc == -ERESTARTSYS) { 534 return rc; 535 /* 536 * EINTR: Stops the application 537 * ERESTARTSYS: Restartable systemcall; called again 538 */ 539 540 } else if (rc < 0) { 541 dev_err(&pci_dev->dev, 542 "[%s] err: DDCB#%d unknown result (rc=%d) %d!\n", 543 __func__, req->num, rc, ddcb_requ_get_state(req)); 544 return -EINVAL; 545 } 546 547 /* Severe error occured. Driver is forced to stop operation */ 548 if (cd->card_state != GENWQE_CARD_USED) { 549 dev_err(&pci_dev->dev, 550 "[%s] err: DDCB#%d forced to stop (rc=%d)\n", 551 __func__, req->num, rc); 552 return -EIO; 553 } 554 return rc; 555 } 556 557 /** 558 * get_next_ddcb() - Get next available DDCB 559 * @cd: pointer to genwqe device descriptor 560 * 561 * DDCB's content is completely cleared but presets for PRE and 562 * SEQNUM. This function must only be called when ddcb_lock is held. 563 * 564 * Return: NULL if no empty DDCB available otherwise ptr to next DDCB. 565 */ 566 static struct ddcb *get_next_ddcb(struct genwqe_dev *cd, 567 struct ddcb_queue *queue, 568 int *num) 569 { 570 u64 *pu64; 571 struct ddcb *pddcb; 572 573 if (queue_free_ddcbs(queue) == 0) /* queue is full */ 574 return NULL; 575 576 /* find new ddcb */ 577 pddcb = &queue->ddcb_vaddr[queue->ddcb_next]; 578 579 /* if it is not completed, we are not allowed to use it */ 580 /* barrier(); */ 581 if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) == 0x00000000) 582 return NULL; 583 584 *num = queue->ddcb_next; /* internal DDCB number */ 585 queue->ddcb_next = (queue->ddcb_next + 1) % queue->ddcb_max; 586 587 /* clear important DDCB fields */ 588 pu64 = (u64 *)pddcb; 589 pu64[0] = 0ULL; /* offs 0x00 (ICRC,HSI,SHI,...) */ 590 pu64[1] = 0ULL; /* offs 0x01 (ACFUNC,CMD...) */ 591 592 /* destroy previous results in ASV */ 593 pu64[0x80/8] = 0ULL; /* offs 0x80 (ASV + 0) */ 594 pu64[0x88/8] = 0ULL; /* offs 0x88 (ASV + 0x08) */ 595 pu64[0x90/8] = 0ULL; /* offs 0x90 (ASV + 0x10) */ 596 pu64[0x98/8] = 0ULL; /* offs 0x98 (ASV + 0x18) */ 597 pu64[0xd0/8] = 0ULL; /* offs 0xd0 (RETC,ATTN...) */ 598 599 pddcb->pre = DDCB_PRESET_PRE; /* 128 */ 600 pddcb->seqnum_16 = cpu_to_be16(queue->ddcb_seq++); 601 return pddcb; 602 } 603 604 /** 605 * __genwqe_purge_ddcb() - Remove a DDCB from the workqueue 606 * @cd: genwqe device descriptor 607 * @req: DDCB request 608 * 609 * This will fail when the request was already FETCHED. In this case 610 * we need to wait until it is finished. Else the DDCB can be 611 * reused. This function also ensures that the request data structure 612 * is removed from ddcb_req[]. 613 * 614 * Do not forget to call this function when genwqe_wait_ddcb() fails, 615 * such that the request gets really removed from ddcb_req[]. 616 * 617 * Return: 0 success 618 */ 619 int __genwqe_purge_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req) 620 { 621 struct ddcb *pddcb = NULL; 622 unsigned int t; 623 unsigned long flags; 624 struct ddcb_queue *queue = req->queue; 625 struct pci_dev *pci_dev = cd->pci_dev; 626 u32 icrc_hsi_shi = 0x0000; 627 u64 queue_status; 628 u32 old, new; 629 630 /* unsigned long flags; */ 631 if (genwqe_ddcb_software_timeout <= 0) { 632 dev_err(&pci_dev->dev, 633 "[%s] err: software timeout is not set!\n", __func__); 634 return -EFAULT; 635 } 636 637 pddcb = &queue->ddcb_vaddr[req->num]; 638 639 for (t = 0; t < genwqe_ddcb_software_timeout * 10; t++) { 640 641 spin_lock_irqsave(&queue->ddcb_lock, flags); 642 643 /* Check if req was meanwhile finished */ 644 if (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED) 645 goto go_home; 646 647 /* try to set PURGE bit if FETCHED/COMPLETED are not set */ 648 old = pddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */ 649 if ((old & DDCB_FETCHED_BE32) == 0x00000000) { 650 651 new = (old | DDCB_PURGE_BE32); 652 icrc_hsi_shi = cmpxchg(&pddcb->icrc_hsi_shi_32, 653 old, new); 654 if (icrc_hsi_shi == old) 655 goto finish_ddcb; 656 } 657 658 /* normal finish with HSI bit */ 659 barrier(); 660 icrc_hsi_shi = pddcb->icrc_hsi_shi_32; 661 if (icrc_hsi_shi & DDCB_COMPLETED_BE32) 662 goto finish_ddcb; 663 664 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 665 666 /* 667 * Here the check_ddcb() function will most likely 668 * discover this DDCB to be finished some point in 669 * time. It will mark the req finished and free it up 670 * in the list. 671 */ 672 673 copy_ddcb_results(req, req->num); /* for the failing case */ 674 msleep(100); /* sleep for 1/10 second and try again */ 675 continue; 676 677 finish_ddcb: 678 copy_ddcb_results(req, req->num); 679 ddcb_requ_set_state(req, GENWQE_REQU_FINISHED); 680 queue->ddcbs_in_flight--; 681 queue->ddcb_req[req->num] = NULL; /* delete from array */ 682 ddcb_mark_cleared(pddcb); 683 684 /* Move active DDCB further; Nothing to do here anymore. */ 685 686 /* 687 * We need to ensure that there is at least one free 688 * DDCB in the queue. To do that, we must update 689 * ddcb_act only if the COMPLETED bit is set for the 690 * DDCB we are working on else we treat that DDCB even 691 * if we PURGED it as occupied (hardware is supposed 692 * to set the COMPLETED bit yet!). 693 */ 694 icrc_hsi_shi = pddcb->icrc_hsi_shi_32; 695 if ((icrc_hsi_shi & DDCB_COMPLETED_BE32) && 696 (queue->ddcb_act == req->num)) { 697 queue->ddcb_act = ((queue->ddcb_act + 1) % 698 queue->ddcb_max); 699 } 700 go_home: 701 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 702 return 0; 703 } 704 705 /* 706 * If the card is dead and the queue is forced to stop, we 707 * might see this in the queue status register. 708 */ 709 queue_status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS); 710 711 dev_dbg(&pci_dev->dev, "UN/FINISHED DDCB#%d\n", req->num); 712 genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); 713 714 dev_err(&pci_dev->dev, 715 "[%s] err: DDCB#%d not purged and not completed " 716 "after %d seconds QSTAT=%016llx!!\n", 717 __func__, req->num, genwqe_ddcb_software_timeout, 718 queue_status); 719 720 print_ddcb_info(cd, req->queue); 721 722 return -EFAULT; 723 } 724 725 int genwqe_init_debug_data(struct genwqe_dev *cd, struct genwqe_debug_data *d) 726 { 727 int len; 728 struct pci_dev *pci_dev = cd->pci_dev; 729 730 if (d == NULL) { 731 dev_err(&pci_dev->dev, 732 "[%s] err: invalid memory for debug data!\n", 733 __func__); 734 return -EFAULT; 735 } 736 737 len = sizeof(d->driver_version); 738 snprintf(d->driver_version, len, "%s", DRV_VERS_STRING); 739 d->slu_unitcfg = cd->slu_unitcfg; 740 d->app_unitcfg = cd->app_unitcfg; 741 return 0; 742 } 743 744 /** 745 * __genwqe_enqueue_ddcb() - Enqueue a DDCB 746 * @cd: pointer to genwqe device descriptor 747 * @req: pointer to DDCB execution request 748 * 749 * Return: 0 if enqueuing succeeded 750 * -EIO if card is unusable/PCIe problems 751 * -EBUSY if enqueuing failed 752 */ 753 int __genwqe_enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req) 754 { 755 struct ddcb *pddcb; 756 unsigned long flags; 757 struct ddcb_queue *queue; 758 struct pci_dev *pci_dev = cd->pci_dev; 759 u16 icrc; 760 761 if (cd->card_state != GENWQE_CARD_USED) { 762 printk_ratelimited(KERN_ERR 763 "%s %s: [%s] Card is unusable/PCIe problem Req#%d\n", 764 GENWQE_DEVNAME, dev_name(&pci_dev->dev), 765 __func__, req->num); 766 return -EIO; 767 } 768 769 queue = req->queue = &cd->queue; 770 771 /* FIXME circumvention to improve performance when no irq is 772 * there. 773 */ 774 if (genwqe_polling_enabled) 775 genwqe_check_ddcb_queue(cd, queue); 776 777 /* 778 * It must be ensured to process all DDCBs in successive 779 * order. Use a lock here in order to prevent nested DDCB 780 * enqueuing. 781 */ 782 spin_lock_irqsave(&queue->ddcb_lock, flags); 783 784 pddcb = get_next_ddcb(cd, queue, &req->num); /* get ptr and num */ 785 if (pddcb == NULL) { 786 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 787 queue->busy++; 788 return -EBUSY; 789 } 790 791 if (queue->ddcb_req[req->num] != NULL) { 792 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 793 794 dev_err(&pci_dev->dev, 795 "[%s] picked DDCB %d with req=%p still in use!!\n", 796 __func__, req->num, req); 797 return -EFAULT; 798 } 799 ddcb_requ_set_state(req, GENWQE_REQU_ENQUEUED); 800 queue->ddcb_req[req->num] = req; 801 802 pddcb->cmdopts_16 = cpu_to_be16(req->cmd.cmdopts); 803 pddcb->cmd = req->cmd.cmd; 804 pddcb->acfunc = req->cmd.acfunc; /* functional unit */ 805 806 /* 807 * We know that we can get retc 0x104 with CRC error, do not 808 * stop the queue in those cases for this command. XDIR = 1 809 * does not work for old SLU versions. 810 * 811 * Last bitstream with the old XDIR behavior had SLU_ID 812 * 0x34199. 813 */ 814 if ((cd->slu_unitcfg & 0xFFFF0ull) > 0x34199ull) 815 pddcb->xdir = 0x1; 816 else 817 pddcb->xdir = 0x0; 818 819 820 pddcb->psp = (((req->cmd.asiv_length / 8) << 4) | 821 ((req->cmd.asv_length / 8))); 822 pddcb->disp_ts_64 = cpu_to_be64(req->cmd.disp_ts); 823 824 /* 825 * If copying the whole DDCB_ASIV_LENGTH is impacting 826 * performance we need to change it to 827 * req->cmd.asiv_length. But simulation benefits from some 828 * non-architectured bits behind the architectured content. 829 * 830 * How much data is copied depends on the availability of the 831 * ATS field, which was introduced late. If the ATS field is 832 * supported ASIV is 8 bytes shorter than it used to be. Since 833 * the ATS field is copied too, the code should do exactly 834 * what it did before, but I wanted to make copying of the ATS 835 * field very explicit. 836 */ 837 if (genwqe_get_slu_id(cd) <= 0x2) { 838 memcpy(&pddcb->__asiv[0], /* destination */ 839 &req->cmd.__asiv[0], /* source */ 840 DDCB_ASIV_LENGTH); /* req->cmd.asiv_length */ 841 } else { 842 pddcb->n.ats_64 = req->cmd.ats; 843 memcpy(&pddcb->n.asiv[0], /* destination */ 844 &req->cmd.asiv[0], /* source */ 845 DDCB_ASIV_LENGTH_ATS); /* req->cmd.asiv_length */ 846 } 847 848 pddcb->icrc_hsi_shi_32 = cpu_to_be32(0x00000000); /* for crc */ 849 850 /* 851 * Calculate CRC_16 for corresponding range PSP(7:4). Include 852 * empty 4 bytes prior to the data. 853 */ 854 icrc = genwqe_crc16((const u8 *)pddcb, 855 ICRC_LENGTH(req->cmd.asiv_length), 0xffff); 856 pddcb->icrc_hsi_shi_32 = cpu_to_be32((u32)icrc << 16); 857 858 /* enable DDCB completion irq */ 859 if (!genwqe_polling_enabled) 860 pddcb->icrc_hsi_shi_32 |= DDCB_INTR_BE32; 861 862 dev_dbg(&pci_dev->dev, "INPUT DDCB#%d\n", req->num); 863 genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); 864 865 if (ddcb_requ_collect_debug_data(req)) { 866 /* use the kernel copy of debug data. copying back to 867 user buffer happens later */ 868 869 genwqe_init_debug_data(cd, &req->debug_data); 870 memcpy(&req->debug_data.ddcb_before, pddcb, 871 sizeof(req->debug_data.ddcb_before)); 872 } 873 874 enqueue_ddcb(cd, queue, pddcb, req->num); 875 queue->ddcbs_in_flight++; 876 877 if (queue->ddcbs_in_flight > queue->ddcbs_max_in_flight) 878 queue->ddcbs_max_in_flight = queue->ddcbs_in_flight; 879 880 ddcb_requ_set_state(req, GENWQE_REQU_TAPPED); 881 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 882 wake_up_interruptible(&cd->queue_waitq); 883 884 return 0; 885 } 886 887 /** 888 * __genwqe_execute_raw_ddcb() - Setup and execute DDCB 889 * @cd: pointer to genwqe device descriptor 890 * @req: user provided DDCB request 891 */ 892 int __genwqe_execute_raw_ddcb(struct genwqe_dev *cd, 893 struct genwqe_ddcb_cmd *cmd) 894 { 895 int rc = 0; 896 struct pci_dev *pci_dev = cd->pci_dev; 897 struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd); 898 899 if (cmd->asiv_length > DDCB_ASIV_LENGTH) { 900 dev_err(&pci_dev->dev, "[%s] err: wrong asiv_length of %d\n", 901 __func__, cmd->asiv_length); 902 return -EINVAL; 903 } 904 if (cmd->asv_length > DDCB_ASV_LENGTH) { 905 dev_err(&pci_dev->dev, "[%s] err: wrong asv_length of %d\n", 906 __func__, cmd->asiv_length); 907 return -EINVAL; 908 } 909 rc = __genwqe_enqueue_ddcb(cd, req); 910 if (rc != 0) 911 return rc; 912 913 rc = __genwqe_wait_ddcb(cd, req); 914 if (rc < 0) /* error or signal interrupt */ 915 goto err_exit; 916 917 if (ddcb_requ_collect_debug_data(req)) { 918 if (copy_to_user((void __user *)cmd->ddata_addr, 919 &req->debug_data, 920 sizeof(struct genwqe_debug_data))) 921 return -EFAULT; 922 } 923 924 /* 925 * Higher values than 0x102 indicate completion with faults, 926 * lower values than 0x102 indicate processing faults. Note 927 * that DDCB might have been purged. E.g. Cntl+C. 928 */ 929 if (cmd->retc != DDCB_RETC_COMPLETE) { 930 /* This might happen e.g. flash read, and needs to be 931 handled by the upper layer code. */ 932 rc = -EBADMSG; /* not processed/error retc */ 933 } 934 935 return rc; 936 937 err_exit: 938 __genwqe_purge_ddcb(cd, req); 939 940 if (ddcb_requ_collect_debug_data(req)) { 941 if (copy_to_user((void __user *)cmd->ddata_addr, 942 &req->debug_data, 943 sizeof(struct genwqe_debug_data))) 944 return -EFAULT; 945 } 946 return rc; 947 } 948 949 /** 950 * genwqe_next_ddcb_ready() - Figure out if the next DDCB is already finished 951 * 952 * We use this as condition for our wait-queue code. 953 */ 954 static int genwqe_next_ddcb_ready(struct genwqe_dev *cd) 955 { 956 unsigned long flags; 957 struct ddcb *pddcb; 958 struct ddcb_queue *queue = &cd->queue; 959 960 spin_lock_irqsave(&queue->ddcb_lock, flags); 961 962 if (queue_empty(queue)) { /* emtpy queue */ 963 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 964 return 0; 965 } 966 967 pddcb = &queue->ddcb_vaddr[queue->ddcb_act]; 968 if (pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) { /* ddcb ready */ 969 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 970 return 1; 971 } 972 973 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 974 return 0; 975 } 976 977 /** 978 * genwqe_ddcbs_in_flight() - Check how many DDCBs are in flight 979 * 980 * Keep track on the number of DDCBs which ware currently in the 981 * queue. This is needed for statistics as well as conditon if we want 982 * to wait or better do polling in case of no interrupts available. 983 */ 984 int genwqe_ddcbs_in_flight(struct genwqe_dev *cd) 985 { 986 unsigned long flags; 987 int ddcbs_in_flight = 0; 988 struct ddcb_queue *queue = &cd->queue; 989 990 spin_lock_irqsave(&queue->ddcb_lock, flags); 991 ddcbs_in_flight += queue->ddcbs_in_flight; 992 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 993 994 return ddcbs_in_flight; 995 } 996 997 static int setup_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue) 998 { 999 int rc, i; 1000 struct ddcb *pddcb; 1001 u64 val64; 1002 unsigned int queue_size; 1003 struct pci_dev *pci_dev = cd->pci_dev; 1004 1005 if (genwqe_ddcb_max < 2) 1006 return -EINVAL; 1007 1008 queue_size = roundup(genwqe_ddcb_max * sizeof(struct ddcb), PAGE_SIZE); 1009 1010 queue->ddcbs_in_flight = 0; /* statistics */ 1011 queue->ddcbs_max_in_flight = 0; 1012 queue->ddcbs_completed = 0; 1013 queue->busy = 0; 1014 1015 queue->ddcb_seq = 0x100; /* start sequence number */ 1016 queue->ddcb_max = genwqe_ddcb_max; /* module parameter */ 1017 queue->ddcb_vaddr = __genwqe_alloc_consistent(cd, queue_size, 1018 &queue->ddcb_daddr); 1019 if (queue->ddcb_vaddr == NULL) { 1020 dev_err(&pci_dev->dev, 1021 "[%s] **err: could not allocate DDCB **\n", __func__); 1022 return -ENOMEM; 1023 } 1024 memset(queue->ddcb_vaddr, 0, queue_size); 1025 1026 queue->ddcb_req = kzalloc(sizeof(struct ddcb_requ *) * 1027 queue->ddcb_max, GFP_KERNEL); 1028 if (!queue->ddcb_req) { 1029 rc = -ENOMEM; 1030 goto free_ddcbs; 1031 } 1032 1033 queue->ddcb_waitqs = kzalloc(sizeof(wait_queue_head_t) * 1034 queue->ddcb_max, GFP_KERNEL); 1035 if (!queue->ddcb_waitqs) { 1036 rc = -ENOMEM; 1037 goto free_requs; 1038 } 1039 1040 for (i = 0; i < queue->ddcb_max; i++) { 1041 pddcb = &queue->ddcb_vaddr[i]; /* DDCBs */ 1042 pddcb->icrc_hsi_shi_32 = DDCB_COMPLETED_BE32; 1043 pddcb->retc_16 = cpu_to_be16(0xfff); 1044 1045 queue->ddcb_req[i] = NULL; /* requests */ 1046 init_waitqueue_head(&queue->ddcb_waitqs[i]); /* waitqueues */ 1047 } 1048 1049 queue->ddcb_act = 0; 1050 queue->ddcb_next = 0; /* queue is empty */ 1051 1052 spin_lock_init(&queue->ddcb_lock); 1053 init_waitqueue_head(&queue->ddcb_waitq); 1054 1055 val64 = ((u64)(queue->ddcb_max - 1) << 8); /* lastptr */ 1056 __genwqe_writeq(cd, queue->IO_QUEUE_CONFIG, 0x07); /* iCRC/vCRC */ 1057 __genwqe_writeq(cd, queue->IO_QUEUE_SEGMENT, queue->ddcb_daddr); 1058 __genwqe_writeq(cd, queue->IO_QUEUE_INITSQN, queue->ddcb_seq); 1059 __genwqe_writeq(cd, queue->IO_QUEUE_WRAP, val64); 1060 return 0; 1061 1062 free_requs: 1063 kfree(queue->ddcb_req); 1064 queue->ddcb_req = NULL; 1065 free_ddcbs: 1066 __genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr, 1067 queue->ddcb_daddr); 1068 queue->ddcb_vaddr = NULL; 1069 queue->ddcb_daddr = 0ull; 1070 return -ENODEV; 1071 1072 } 1073 1074 static int ddcb_queue_initialized(struct ddcb_queue *queue) 1075 { 1076 return queue->ddcb_vaddr != NULL; 1077 } 1078 1079 static void free_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue) 1080 { 1081 unsigned int queue_size; 1082 1083 queue_size = roundup(queue->ddcb_max * sizeof(struct ddcb), PAGE_SIZE); 1084 1085 kfree(queue->ddcb_req); 1086 queue->ddcb_req = NULL; 1087 1088 if (queue->ddcb_vaddr) { 1089 __genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr, 1090 queue->ddcb_daddr); 1091 queue->ddcb_vaddr = NULL; 1092 queue->ddcb_daddr = 0ull; 1093 } 1094 } 1095 1096 static irqreturn_t genwqe_pf_isr(int irq, void *dev_id) 1097 { 1098 u64 gfir; 1099 struct genwqe_dev *cd = (struct genwqe_dev *)dev_id; 1100 struct pci_dev *pci_dev = cd->pci_dev; 1101 1102 /* 1103 * In case of fatal FIR error the queue is stopped, such that 1104 * we can safely check it without risking anything. 1105 */ 1106 cd->irqs_processed++; 1107 wake_up_interruptible(&cd->queue_waitq); 1108 1109 /* 1110 * Checking for errors before kicking the queue might be 1111 * safer, but slower for the good-case ... See above. 1112 */ 1113 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); 1114 if ((gfir & GFIR_ERR_TRIGGER) != 0x0) { 1115 1116 wake_up_interruptible(&cd->health_waitq); 1117 1118 /* 1119 * By default GFIRs causes recovery actions. This 1120 * count is just for debug when recovery is masked. 1121 */ 1122 printk_ratelimited(KERN_ERR 1123 "%s %s: [%s] GFIR=%016llx\n", 1124 GENWQE_DEVNAME, dev_name(&pci_dev->dev), 1125 __func__, gfir); 1126 } 1127 1128 return IRQ_HANDLED; 1129 } 1130 1131 static irqreturn_t genwqe_vf_isr(int irq, void *dev_id) 1132 { 1133 struct genwqe_dev *cd = (struct genwqe_dev *)dev_id; 1134 1135 cd->irqs_processed++; 1136 wake_up_interruptible(&cd->queue_waitq); 1137 1138 return IRQ_HANDLED; 1139 } 1140 1141 /** 1142 * genwqe_card_thread() - Work thread for the DDCB queue 1143 * 1144 * The idea is to check if there are DDCBs in processing. If there are 1145 * some finished DDCBs, we process them and wakeup the 1146 * requestors. Otherwise we give other processes time using 1147 * cond_resched(). 1148 */ 1149 static int genwqe_card_thread(void *data) 1150 { 1151 int should_stop = 0, rc = 0; 1152 struct genwqe_dev *cd = (struct genwqe_dev *)data; 1153 1154 while (!kthread_should_stop()) { 1155 1156 genwqe_check_ddcb_queue(cd, &cd->queue); 1157 1158 if (genwqe_polling_enabled) { 1159 rc = wait_event_interruptible_timeout( 1160 cd->queue_waitq, 1161 genwqe_ddcbs_in_flight(cd) || 1162 (should_stop = kthread_should_stop()), 1); 1163 } else { 1164 rc = wait_event_interruptible_timeout( 1165 cd->queue_waitq, 1166 genwqe_next_ddcb_ready(cd) || 1167 (should_stop = kthread_should_stop()), HZ); 1168 } 1169 if (should_stop) 1170 break; 1171 1172 /* 1173 * Avoid soft lockups on heavy loads; we do not want 1174 * to disable our interrupts. 1175 */ 1176 cond_resched(); 1177 } 1178 return 0; 1179 } 1180 1181 /** 1182 * genwqe_setup_service_layer() - Setup DDCB queue 1183 * @cd: pointer to genwqe device descriptor 1184 * 1185 * Allocate DDCBs. Configure Service Layer Controller (SLC). 1186 * 1187 * Return: 0 success 1188 */ 1189 int genwqe_setup_service_layer(struct genwqe_dev *cd) 1190 { 1191 int rc; 1192 struct ddcb_queue *queue; 1193 struct pci_dev *pci_dev = cd->pci_dev; 1194 1195 if (genwqe_is_privileged(cd)) { 1196 rc = genwqe_card_reset(cd); 1197 if (rc < 0) { 1198 dev_err(&pci_dev->dev, 1199 "[%s] err: reset failed.\n", __func__); 1200 return rc; 1201 } 1202 genwqe_read_softreset(cd); 1203 } 1204 1205 queue = &cd->queue; 1206 queue->IO_QUEUE_CONFIG = IO_SLC_QUEUE_CONFIG; 1207 queue->IO_QUEUE_STATUS = IO_SLC_QUEUE_STATUS; 1208 queue->IO_QUEUE_SEGMENT = IO_SLC_QUEUE_SEGMENT; 1209 queue->IO_QUEUE_INITSQN = IO_SLC_QUEUE_INITSQN; 1210 queue->IO_QUEUE_OFFSET = IO_SLC_QUEUE_OFFSET; 1211 queue->IO_QUEUE_WRAP = IO_SLC_QUEUE_WRAP; 1212 queue->IO_QUEUE_WTIME = IO_SLC_QUEUE_WTIME; 1213 queue->IO_QUEUE_ERRCNTS = IO_SLC_QUEUE_ERRCNTS; 1214 queue->IO_QUEUE_LRW = IO_SLC_QUEUE_LRW; 1215 1216 rc = setup_ddcb_queue(cd, queue); 1217 if (rc != 0) { 1218 rc = -ENODEV; 1219 goto err_out; 1220 } 1221 1222 init_waitqueue_head(&cd->queue_waitq); 1223 cd->card_thread = kthread_run(genwqe_card_thread, cd, 1224 GENWQE_DEVNAME "%d_thread", 1225 cd->card_idx); 1226 if (IS_ERR(cd->card_thread)) { 1227 rc = PTR_ERR(cd->card_thread); 1228 cd->card_thread = NULL; 1229 goto stop_free_queue; 1230 } 1231 1232 rc = genwqe_set_interrupt_capability(cd, GENWQE_MSI_IRQS); 1233 if (rc > 0) 1234 rc = genwqe_set_interrupt_capability(cd, rc); 1235 if (rc != 0) { 1236 rc = -ENODEV; 1237 goto stop_kthread; 1238 } 1239 1240 /* 1241 * We must have all wait-queues initialized when we enable the 1242 * interrupts. Otherwise we might crash if we get an early 1243 * irq. 1244 */ 1245 init_waitqueue_head(&cd->health_waitq); 1246 1247 if (genwqe_is_privileged(cd)) { 1248 rc = request_irq(pci_dev->irq, genwqe_pf_isr, IRQF_SHARED, 1249 GENWQE_DEVNAME, cd); 1250 } else { 1251 rc = request_irq(pci_dev->irq, genwqe_vf_isr, IRQF_SHARED, 1252 GENWQE_DEVNAME, cd); 1253 } 1254 if (rc < 0) { 1255 dev_err(&pci_dev->dev, "irq %d not free.\n", pci_dev->irq); 1256 goto stop_irq_cap; 1257 } 1258 1259 cd->card_state = GENWQE_CARD_USED; 1260 return 0; 1261 1262 stop_irq_cap: 1263 genwqe_reset_interrupt_capability(cd); 1264 stop_kthread: 1265 kthread_stop(cd->card_thread); 1266 cd->card_thread = NULL; 1267 stop_free_queue: 1268 free_ddcb_queue(cd, queue); 1269 err_out: 1270 return rc; 1271 } 1272 1273 /** 1274 * queue_wake_up_all() - Handles fatal error case 1275 * 1276 * The PCI device got unusable and we have to stop all pending 1277 * requests as fast as we can. The code after this must purge the 1278 * DDCBs in question and ensure that all mappings are freed. 1279 */ 1280 static int queue_wake_up_all(struct genwqe_dev *cd) 1281 { 1282 unsigned int i; 1283 unsigned long flags; 1284 struct ddcb_queue *queue = &cd->queue; 1285 1286 spin_lock_irqsave(&queue->ddcb_lock, flags); 1287 1288 for (i = 0; i < queue->ddcb_max; i++) 1289 wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]); 1290 1291 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 1292 1293 return 0; 1294 } 1295 1296 /** 1297 * genwqe_finish_queue() - Remove any genwqe devices and user-interfaces 1298 * 1299 * Relies on the pre-condition that there are no users of the card 1300 * device anymore e.g. with open file-descriptors. 1301 * 1302 * This function must be robust enough to be called twice. 1303 */ 1304 int genwqe_finish_queue(struct genwqe_dev *cd) 1305 { 1306 int i, rc, in_flight; 1307 int waitmax = genwqe_ddcb_software_timeout; 1308 struct pci_dev *pci_dev = cd->pci_dev; 1309 struct ddcb_queue *queue = &cd->queue; 1310 1311 if (!ddcb_queue_initialized(queue)) 1312 return 0; 1313 1314 /* Do not wipe out the error state. */ 1315 if (cd->card_state == GENWQE_CARD_USED) 1316 cd->card_state = GENWQE_CARD_UNUSED; 1317 1318 /* Wake up all requests in the DDCB queue such that they 1319 should be removed nicely. */ 1320 queue_wake_up_all(cd); 1321 1322 /* We must wait to get rid of the DDCBs in flight */ 1323 for (i = 0; i < waitmax; i++) { 1324 in_flight = genwqe_ddcbs_in_flight(cd); 1325 1326 if (in_flight == 0) 1327 break; 1328 1329 dev_dbg(&pci_dev->dev, 1330 " DEBUG [%d/%d] waiting for queue to get empty: " 1331 "%d requests!\n", i, waitmax, in_flight); 1332 1333 /* 1334 * Severe severe error situation: The card itself has 1335 * 16 DDCB queues, each queue has e.g. 32 entries, 1336 * each DDBC has a hardware timeout of currently 250 1337 * msec but the PFs have a hardware timeout of 8 sec 1338 * ... so I take something large. 1339 */ 1340 msleep(1000); 1341 } 1342 if (i == waitmax) { 1343 dev_err(&pci_dev->dev, " [%s] err: queue is not empty!!\n", 1344 __func__); 1345 rc = -EIO; 1346 } 1347 return rc; 1348 } 1349 1350 /** 1351 * genwqe_release_service_layer() - Shutdown DDCB queue 1352 * @cd: genwqe device descriptor 1353 * 1354 * This function must be robust enough to be called twice. 1355 */ 1356 int genwqe_release_service_layer(struct genwqe_dev *cd) 1357 { 1358 struct pci_dev *pci_dev = cd->pci_dev; 1359 1360 if (!ddcb_queue_initialized(&cd->queue)) 1361 return 1; 1362 1363 free_irq(pci_dev->irq, cd); 1364 genwqe_reset_interrupt_capability(cd); 1365 1366 if (cd->card_thread != NULL) { 1367 kthread_stop(cd->card_thread); 1368 cd->card_thread = NULL; 1369 } 1370 1371 free_ddcb_queue(cd, &cd->queue); 1372 return 0; 1373 } 1374