1 /** 2 * IBM Accelerator Family 'GenWQE' 3 * 4 * (C) Copyright IBM Corp. 2013 5 * 6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com> 7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com> 8 * Author: Michael Jung <mijung@gmx.net> 9 * Author: Michael Ruettger <michael@ibmra.de> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License (version 2 only) 13 * as published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 */ 20 21 /* 22 * Device Driver Control Block (DDCB) queue support. Definition of 23 * interrupt handlers for queue support as well as triggering the 24 * health monitor code in case of problems. The current hardware uses 25 * an MSI interrupt which is shared between error handling and 26 * functional code. 27 */ 28 29 #include <linux/types.h> 30 #include <linux/sched.h> 31 #include <linux/wait.h> 32 #include <linux/pci.h> 33 #include <linux/string.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/interrupt.h> 38 #include <linux/crc-itu-t.h> 39 40 #include "card_base.h" 41 #include "card_ddcb.h" 42 43 /* 44 * N: next DDCB, this is where the next DDCB will be put. 45 * A: active DDCB, this is where the code will look for the next completion. 46 * x: DDCB is enqueued, we are waiting for its completion. 47 48 * Situation (1): Empty queue 49 * +---+---+---+---+---+---+---+---+ 50 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 51 * | | | | | | | | | 52 * +---+---+---+---+---+---+---+---+ 53 * A/N 54 * enqueued_ddcbs = A - N = 2 - 2 = 0 55 * 56 * Situation (2): Wrapped, N > A 57 * +---+---+---+---+---+---+---+---+ 58 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 59 * | | | x | x | | | | | 60 * +---+---+---+---+---+---+---+---+ 61 * A N 62 * enqueued_ddcbs = N - A = 4 - 2 = 2 63 * 64 * Situation (3): Queue wrapped, A > N 65 * +---+---+---+---+---+---+---+---+ 66 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 67 * | x | x | | | x | x | x | x | 68 * +---+---+---+---+---+---+---+---+ 69 * N A 70 * enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 2) = 6 71 * 72 * Situation (4a): Queue full N > A 73 * +---+---+---+---+---+---+---+---+ 74 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 75 * | x | x | x | x | x | x | x | | 76 * +---+---+---+---+---+---+---+---+ 77 * A N 78 * 79 * enqueued_ddcbs = N - A = 7 - 0 = 7 80 * 81 * Situation (4a): Queue full A > N 82 * +---+---+---+---+---+---+---+---+ 83 * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 84 * | x | x | x | | x | x | x | x | 85 * +---+---+---+---+---+---+---+---+ 86 * N A 87 * enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 3) = 7 88 */ 89 90 static int queue_empty(struct ddcb_queue *queue) 91 { 92 return queue->ddcb_next == queue->ddcb_act; 93 } 94 95 static int queue_enqueued_ddcbs(struct ddcb_queue *queue) 96 { 97 if (queue->ddcb_next >= queue->ddcb_act) 98 return queue->ddcb_next - queue->ddcb_act; 99 100 return queue->ddcb_max - (queue->ddcb_act - queue->ddcb_next); 101 } 102 103 static int queue_free_ddcbs(struct ddcb_queue *queue) 104 { 105 int free_ddcbs = queue->ddcb_max - queue_enqueued_ddcbs(queue) - 1; 106 107 if (WARN_ON_ONCE(free_ddcbs < 0)) { /* must never ever happen! */ 108 return 0; 109 } 110 return free_ddcbs; 111 } 112 113 /* 114 * Use of the PRIV field in the DDCB for queue debugging: 115 * 116 * (1) Trying to get rid of a DDCB which saw a timeout: 117 * pddcb->priv[6] = 0xcc; # cleared 118 * 119 * (2) Append a DDCB via NEXT bit: 120 * pddcb->priv[7] = 0xaa; # appended 121 * 122 * (3) DDCB needed tapping: 123 * pddcb->priv[7] = 0xbb; # tapped 124 * 125 * (4) DDCB marked as correctly finished: 126 * pddcb->priv[6] = 0xff; # finished 127 */ 128 129 static inline void ddcb_mark_tapped(struct ddcb *pddcb) 130 { 131 pddcb->priv[7] = 0xbb; /* tapped */ 132 } 133 134 static inline void ddcb_mark_appended(struct ddcb *pddcb) 135 { 136 pddcb->priv[7] = 0xaa; /* appended */ 137 } 138 139 static inline void ddcb_mark_cleared(struct ddcb *pddcb) 140 { 141 pddcb->priv[6] = 0xcc; /* cleared */ 142 } 143 144 static inline void ddcb_mark_finished(struct ddcb *pddcb) 145 { 146 pddcb->priv[6] = 0xff; /* finished */ 147 } 148 149 static inline void ddcb_mark_unused(struct ddcb *pddcb) 150 { 151 pddcb->priv_64 = cpu_to_be64(0); /* not tapped */ 152 } 153 154 /** 155 * genwqe_crc16() - Generate 16-bit crc as required for DDCBs 156 * @buff: pointer to data buffer 157 * @len: length of data for calculation 158 * @init: initial crc (0xffff at start) 159 * 160 * Polynomial = x^16 + x^12 + x^5 + 1 (0x1021) 161 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init = 0xffff 162 * should result in a crc16 of 0x89c3 163 * 164 * Return: crc16 checksum in big endian format ! 165 */ 166 static inline u16 genwqe_crc16(const u8 *buff, size_t len, u16 init) 167 { 168 return crc_itu_t(init, buff, len); 169 } 170 171 static void print_ddcb_info(struct genwqe_dev *cd, struct ddcb_queue *queue) 172 { 173 int i; 174 struct ddcb *pddcb; 175 unsigned long flags; 176 struct pci_dev *pci_dev = cd->pci_dev; 177 178 spin_lock_irqsave(&cd->print_lock, flags); 179 180 dev_info(&pci_dev->dev, 181 "DDCB list for card #%d (ddcb_act=%d / ddcb_next=%d):\n", 182 cd->card_idx, queue->ddcb_act, queue->ddcb_next); 183 184 pddcb = queue->ddcb_vaddr; 185 for (i = 0; i < queue->ddcb_max; i++) { 186 dev_err(&pci_dev->dev, 187 " %c %-3d: RETC=%03x SEQ=%04x HSI=%02X SHI=%02x PRIV=%06llx CMD=%03x\n", 188 i == queue->ddcb_act ? '>' : ' ', 189 i, 190 be16_to_cpu(pddcb->retc_16), 191 be16_to_cpu(pddcb->seqnum_16), 192 pddcb->hsi, 193 pddcb->shi, 194 be64_to_cpu(pddcb->priv_64), 195 pddcb->cmd); 196 pddcb++; 197 } 198 spin_unlock_irqrestore(&cd->print_lock, flags); 199 } 200 201 struct genwqe_ddcb_cmd *ddcb_requ_alloc(void) 202 { 203 struct ddcb_requ *req; 204 205 req = kzalloc(sizeof(*req), GFP_KERNEL); 206 if (!req) 207 return NULL; 208 209 return &req->cmd; 210 } 211 212 void ddcb_requ_free(struct genwqe_ddcb_cmd *cmd) 213 { 214 struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd); 215 216 kfree(req); 217 } 218 219 static inline enum genwqe_requ_state ddcb_requ_get_state(struct ddcb_requ *req) 220 { 221 return req->req_state; 222 } 223 224 static inline void ddcb_requ_set_state(struct ddcb_requ *req, 225 enum genwqe_requ_state new_state) 226 { 227 req->req_state = new_state; 228 } 229 230 static inline int ddcb_requ_collect_debug_data(struct ddcb_requ *req) 231 { 232 return req->cmd.ddata_addr != 0x0; 233 } 234 235 /** 236 * ddcb_requ_finished() - Returns the hardware state of the associated DDCB 237 * @cd: pointer to genwqe device descriptor 238 * @req: DDCB work request 239 * 240 * Status of ddcb_requ mirrors this hardware state, but is copied in 241 * the ddcb_requ on interrupt/polling function. The lowlevel code 242 * should check the hardware state directly, the higher level code 243 * should check the copy. 244 * 245 * This function will also return true if the state of the queue is 246 * not GENWQE_CARD_USED. This enables us to purge all DDCBs in the 247 * shutdown case. 248 */ 249 static int ddcb_requ_finished(struct genwqe_dev *cd, struct ddcb_requ *req) 250 { 251 return (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED) || 252 (cd->card_state != GENWQE_CARD_USED); 253 } 254 255 /** 256 * enqueue_ddcb() - Enqueue a DDCB 257 * @cd: pointer to genwqe device descriptor 258 * @queue: queue this operation should be done on 259 * @ddcb_no: pointer to ddcb number being tapped 260 * 261 * Start execution of DDCB by tapping or append to queue via NEXT 262 * bit. This is done by an atomic 'compare and swap' instruction and 263 * checking SHI and HSI of the previous DDCB. 264 * 265 * This function must only be called with ddcb_lock held. 266 * 267 * Return: 1 if new DDCB is appended to previous 268 * 2 if DDCB queue is tapped via register/simulation 269 */ 270 #define RET_DDCB_APPENDED 1 271 #define RET_DDCB_TAPPED 2 272 273 static int enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_queue *queue, 274 struct ddcb *pddcb, int ddcb_no) 275 { 276 unsigned int try; 277 int prev_no; 278 struct ddcb *prev_ddcb; 279 __be32 old, new, icrc_hsi_shi; 280 u64 num; 281 282 /* 283 * For performance checks a Dispatch Timestamp can be put into 284 * DDCB It is supposed to use the SLU's free running counter, 285 * but this requires PCIe cycles. 286 */ 287 ddcb_mark_unused(pddcb); 288 289 /* check previous DDCB if already fetched */ 290 prev_no = (ddcb_no == 0) ? queue->ddcb_max - 1 : ddcb_no - 1; 291 prev_ddcb = &queue->ddcb_vaddr[prev_no]; 292 293 /* 294 * It might have happened that the HSI.FETCHED bit is 295 * set. Retry in this case. Therefore I expect maximum 2 times 296 * trying. 297 */ 298 ddcb_mark_appended(pddcb); 299 for (try = 0; try < 2; try++) { 300 old = prev_ddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */ 301 302 /* try to append via NEXT bit if prev DDCB is not completed */ 303 if ((old & DDCB_COMPLETED_BE32) != 0x00000000) 304 break; 305 306 new = (old | DDCB_NEXT_BE32); 307 308 wmb(); /* need to ensure write ordering */ 309 icrc_hsi_shi = cmpxchg(&prev_ddcb->icrc_hsi_shi_32, old, new); 310 311 if (icrc_hsi_shi == old) 312 return RET_DDCB_APPENDED; /* appended to queue */ 313 } 314 315 /* Queue must be re-started by updating QUEUE_OFFSET */ 316 ddcb_mark_tapped(pddcb); 317 num = (u64)ddcb_no << 8; 318 319 wmb(); /* need to ensure write ordering */ 320 __genwqe_writeq(cd, queue->IO_QUEUE_OFFSET, num); /* start queue */ 321 322 return RET_DDCB_TAPPED; 323 } 324 325 /** 326 * copy_ddcb_results() - Copy output state from real DDCB to request 327 * 328 * Copy DDCB ASV to request struct. There is no endian 329 * conversion made, since data structure in ASV is still 330 * unknown here. 331 * 332 * This is needed by: 333 * - genwqe_purge_ddcb() 334 * - genwqe_check_ddcb_queue() 335 */ 336 static void copy_ddcb_results(struct ddcb_requ *req, int ddcb_no) 337 { 338 struct ddcb_queue *queue = req->queue; 339 struct ddcb *pddcb = &queue->ddcb_vaddr[req->num]; 340 341 memcpy(&req->cmd.asv[0], &pddcb->asv[0], DDCB_ASV_LENGTH); 342 343 /* copy status flags of the variant part */ 344 req->cmd.vcrc = be16_to_cpu(pddcb->vcrc_16); 345 req->cmd.deque_ts = be64_to_cpu(pddcb->deque_ts_64); 346 req->cmd.cmplt_ts = be64_to_cpu(pddcb->cmplt_ts_64); 347 348 req->cmd.attn = be16_to_cpu(pddcb->attn_16); 349 req->cmd.progress = be32_to_cpu(pddcb->progress_32); 350 req->cmd.retc = be16_to_cpu(pddcb->retc_16); 351 352 if (ddcb_requ_collect_debug_data(req)) { 353 int prev_no = (ddcb_no == 0) ? 354 queue->ddcb_max - 1 : ddcb_no - 1; 355 struct ddcb *prev_pddcb = &queue->ddcb_vaddr[prev_no]; 356 357 memcpy(&req->debug_data.ddcb_finished, pddcb, 358 sizeof(req->debug_data.ddcb_finished)); 359 memcpy(&req->debug_data.ddcb_prev, prev_pddcb, 360 sizeof(req->debug_data.ddcb_prev)); 361 } 362 } 363 364 /** 365 * genwqe_check_ddcb_queue() - Checks DDCB queue for completed work equests. 366 * @cd: pointer to genwqe device descriptor 367 * 368 * Return: Number of DDCBs which were finished 369 */ 370 static int genwqe_check_ddcb_queue(struct genwqe_dev *cd, 371 struct ddcb_queue *queue) 372 { 373 unsigned long flags; 374 int ddcbs_finished = 0; 375 struct pci_dev *pci_dev = cd->pci_dev; 376 377 spin_lock_irqsave(&queue->ddcb_lock, flags); 378 379 /* FIXME avoid soft locking CPU */ 380 while (!queue_empty(queue) && (ddcbs_finished < queue->ddcb_max)) { 381 382 struct ddcb *pddcb; 383 struct ddcb_requ *req; 384 u16 vcrc, vcrc_16, retc_16; 385 386 pddcb = &queue->ddcb_vaddr[queue->ddcb_act]; 387 388 if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) == 389 0x00000000) 390 goto go_home; /* not completed, continue waiting */ 391 392 wmb(); /* Add sync to decouple prev. read operations */ 393 394 /* Note: DDCB could be purged */ 395 req = queue->ddcb_req[queue->ddcb_act]; 396 if (req == NULL) { 397 /* this occurs if DDCB is purged, not an error */ 398 /* Move active DDCB further; Nothing to do anymore. */ 399 goto pick_next_one; 400 } 401 402 /* 403 * HSI=0x44 (fetched and completed), but RETC is 404 * 0x101, or even worse 0x000. 405 * 406 * In case of seeing the queue in inconsistent state 407 * we read the errcnts and the queue status to provide 408 * a trigger for our PCIe analyzer stop capturing. 409 */ 410 retc_16 = be16_to_cpu(pddcb->retc_16); 411 if ((pddcb->hsi == 0x44) && (retc_16 <= 0x101)) { 412 u64 errcnts, status; 413 u64 ddcb_offs = (u64)pddcb - (u64)queue->ddcb_vaddr; 414 415 errcnts = __genwqe_readq(cd, queue->IO_QUEUE_ERRCNTS); 416 status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS); 417 418 dev_err(&pci_dev->dev, 419 "[%s] SEQN=%04x HSI=%02x RETC=%03x Q_ERRCNTS=%016llx Q_STATUS=%016llx DDCB_DMA_ADDR=%016llx\n", 420 __func__, be16_to_cpu(pddcb->seqnum_16), 421 pddcb->hsi, retc_16, errcnts, status, 422 queue->ddcb_daddr + ddcb_offs); 423 } 424 425 copy_ddcb_results(req, queue->ddcb_act); 426 queue->ddcb_req[queue->ddcb_act] = NULL; /* take from queue */ 427 428 dev_dbg(&pci_dev->dev, "FINISHED DDCB#%d\n", req->num); 429 genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); 430 431 ddcb_mark_finished(pddcb); 432 433 /* calculate CRC_16 to see if VCRC is correct */ 434 vcrc = genwqe_crc16(pddcb->asv, 435 VCRC_LENGTH(req->cmd.asv_length), 436 0xffff); 437 vcrc_16 = be16_to_cpu(pddcb->vcrc_16); 438 if (vcrc != vcrc_16) { 439 printk_ratelimited(KERN_ERR 440 "%s %s: err: wrong VCRC pre=%02x vcrc_len=%d bytes vcrc_data=%04x is not vcrc_card=%04x\n", 441 GENWQE_DEVNAME, dev_name(&pci_dev->dev), 442 pddcb->pre, VCRC_LENGTH(req->cmd.asv_length), 443 vcrc, vcrc_16); 444 } 445 446 ddcb_requ_set_state(req, GENWQE_REQU_FINISHED); 447 queue->ddcbs_completed++; 448 queue->ddcbs_in_flight--; 449 450 /* wake up process waiting for this DDCB, and 451 processes on the busy queue */ 452 wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]); 453 wake_up_interruptible(&queue->busy_waitq); 454 455 pick_next_one: 456 queue->ddcb_act = (queue->ddcb_act + 1) % queue->ddcb_max; 457 ddcbs_finished++; 458 } 459 460 go_home: 461 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 462 return ddcbs_finished; 463 } 464 465 /** 466 * __genwqe_wait_ddcb(): Waits until DDCB is completed 467 * @cd: pointer to genwqe device descriptor 468 * @req: pointer to requsted DDCB parameters 469 * 470 * The Service Layer will update the RETC in DDCB when processing is 471 * pending or done. 472 * 473 * Return: > 0 remaining jiffies, DDCB completed 474 * -ETIMEDOUT when timeout 475 * -ERESTARTSYS when ^C 476 * -EINVAL when unknown error condition 477 * 478 * When an error is returned the called needs to ensure that 479 * purge_ddcb() is being called to get the &req removed from the 480 * queue. 481 */ 482 int __genwqe_wait_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req) 483 { 484 int rc; 485 unsigned int ddcb_no; 486 struct ddcb_queue *queue; 487 struct pci_dev *pci_dev = cd->pci_dev; 488 489 if (req == NULL) 490 return -EINVAL; 491 492 queue = req->queue; 493 if (queue == NULL) 494 return -EINVAL; 495 496 ddcb_no = req->num; 497 if (ddcb_no >= queue->ddcb_max) 498 return -EINVAL; 499 500 rc = wait_event_interruptible_timeout(queue->ddcb_waitqs[ddcb_no], 501 ddcb_requ_finished(cd, req), 502 GENWQE_DDCB_SOFTWARE_TIMEOUT * HZ); 503 504 /* 505 * We need to distinguish 3 cases here: 506 * 1. rc == 0 timeout occured 507 * 2. rc == -ERESTARTSYS signal received 508 * 3. rc > 0 remaining jiffies condition is true 509 */ 510 if (rc == 0) { 511 struct ddcb_queue *queue = req->queue; 512 struct ddcb *pddcb; 513 514 /* 515 * Timeout may be caused by long task switching time. 516 * When timeout happens, check if the request has 517 * meanwhile completed. 518 */ 519 genwqe_check_ddcb_queue(cd, req->queue); 520 if (ddcb_requ_finished(cd, req)) 521 return rc; 522 523 dev_err(&pci_dev->dev, 524 "[%s] err: DDCB#%d timeout rc=%d state=%d req @ %p\n", 525 __func__, req->num, rc, ddcb_requ_get_state(req), 526 req); 527 dev_err(&pci_dev->dev, 528 "[%s] IO_QUEUE_STATUS=0x%016llx\n", __func__, 529 __genwqe_readq(cd, queue->IO_QUEUE_STATUS)); 530 531 pddcb = &queue->ddcb_vaddr[req->num]; 532 genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); 533 534 print_ddcb_info(cd, req->queue); 535 return -ETIMEDOUT; 536 537 } else if (rc == -ERESTARTSYS) { 538 return rc; 539 /* 540 * EINTR: Stops the application 541 * ERESTARTSYS: Restartable systemcall; called again 542 */ 543 544 } else if (rc < 0) { 545 dev_err(&pci_dev->dev, 546 "[%s] err: DDCB#%d unknown result (rc=%d) %d!\n", 547 __func__, req->num, rc, ddcb_requ_get_state(req)); 548 return -EINVAL; 549 } 550 551 /* Severe error occured. Driver is forced to stop operation */ 552 if (cd->card_state != GENWQE_CARD_USED) { 553 dev_err(&pci_dev->dev, 554 "[%s] err: DDCB#%d forced to stop (rc=%d)\n", 555 __func__, req->num, rc); 556 return -EIO; 557 } 558 return rc; 559 } 560 561 /** 562 * get_next_ddcb() - Get next available DDCB 563 * @cd: pointer to genwqe device descriptor 564 * 565 * DDCB's content is completely cleared but presets for PRE and 566 * SEQNUM. This function must only be called when ddcb_lock is held. 567 * 568 * Return: NULL if no empty DDCB available otherwise ptr to next DDCB. 569 */ 570 static struct ddcb *get_next_ddcb(struct genwqe_dev *cd, 571 struct ddcb_queue *queue, 572 int *num) 573 { 574 u64 *pu64; 575 struct ddcb *pddcb; 576 577 if (queue_free_ddcbs(queue) == 0) /* queue is full */ 578 return NULL; 579 580 /* find new ddcb */ 581 pddcb = &queue->ddcb_vaddr[queue->ddcb_next]; 582 583 /* if it is not completed, we are not allowed to use it */ 584 /* barrier(); */ 585 if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) == 0x00000000) 586 return NULL; 587 588 *num = queue->ddcb_next; /* internal DDCB number */ 589 queue->ddcb_next = (queue->ddcb_next + 1) % queue->ddcb_max; 590 591 /* clear important DDCB fields */ 592 pu64 = (u64 *)pddcb; 593 pu64[0] = 0ULL; /* offs 0x00 (ICRC,HSI,SHI,...) */ 594 pu64[1] = 0ULL; /* offs 0x01 (ACFUNC,CMD...) */ 595 596 /* destroy previous results in ASV */ 597 pu64[0x80/8] = 0ULL; /* offs 0x80 (ASV + 0) */ 598 pu64[0x88/8] = 0ULL; /* offs 0x88 (ASV + 0x08) */ 599 pu64[0x90/8] = 0ULL; /* offs 0x90 (ASV + 0x10) */ 600 pu64[0x98/8] = 0ULL; /* offs 0x98 (ASV + 0x18) */ 601 pu64[0xd0/8] = 0ULL; /* offs 0xd0 (RETC,ATTN...) */ 602 603 pddcb->pre = DDCB_PRESET_PRE; /* 128 */ 604 pddcb->seqnum_16 = cpu_to_be16(queue->ddcb_seq++); 605 return pddcb; 606 } 607 608 /** 609 * __genwqe_purge_ddcb() - Remove a DDCB from the workqueue 610 * @cd: genwqe device descriptor 611 * @req: DDCB request 612 * 613 * This will fail when the request was already FETCHED. In this case 614 * we need to wait until it is finished. Else the DDCB can be 615 * reused. This function also ensures that the request data structure 616 * is removed from ddcb_req[]. 617 * 618 * Do not forget to call this function when genwqe_wait_ddcb() fails, 619 * such that the request gets really removed from ddcb_req[]. 620 * 621 * Return: 0 success 622 */ 623 int __genwqe_purge_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req) 624 { 625 struct ddcb *pddcb = NULL; 626 unsigned int t; 627 unsigned long flags; 628 struct ddcb_queue *queue = req->queue; 629 struct pci_dev *pci_dev = cd->pci_dev; 630 u64 queue_status; 631 __be32 icrc_hsi_shi = 0x0000; 632 __be32 old, new; 633 634 /* unsigned long flags; */ 635 if (GENWQE_DDCB_SOFTWARE_TIMEOUT <= 0) { 636 dev_err(&pci_dev->dev, 637 "[%s] err: software timeout is not set!\n", __func__); 638 return -EFAULT; 639 } 640 641 pddcb = &queue->ddcb_vaddr[req->num]; 642 643 for (t = 0; t < GENWQE_DDCB_SOFTWARE_TIMEOUT * 10; t++) { 644 645 spin_lock_irqsave(&queue->ddcb_lock, flags); 646 647 /* Check if req was meanwhile finished */ 648 if (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED) 649 goto go_home; 650 651 /* try to set PURGE bit if FETCHED/COMPLETED are not set */ 652 old = pddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */ 653 if ((old & DDCB_FETCHED_BE32) == 0x00000000) { 654 655 new = (old | DDCB_PURGE_BE32); 656 icrc_hsi_shi = cmpxchg(&pddcb->icrc_hsi_shi_32, 657 old, new); 658 if (icrc_hsi_shi == old) 659 goto finish_ddcb; 660 } 661 662 /* normal finish with HSI bit */ 663 barrier(); 664 icrc_hsi_shi = pddcb->icrc_hsi_shi_32; 665 if (icrc_hsi_shi & DDCB_COMPLETED_BE32) 666 goto finish_ddcb; 667 668 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 669 670 /* 671 * Here the check_ddcb() function will most likely 672 * discover this DDCB to be finished some point in 673 * time. It will mark the req finished and free it up 674 * in the list. 675 */ 676 677 copy_ddcb_results(req, req->num); /* for the failing case */ 678 msleep(100); /* sleep for 1/10 second and try again */ 679 continue; 680 681 finish_ddcb: 682 copy_ddcb_results(req, req->num); 683 ddcb_requ_set_state(req, GENWQE_REQU_FINISHED); 684 queue->ddcbs_in_flight--; 685 queue->ddcb_req[req->num] = NULL; /* delete from array */ 686 ddcb_mark_cleared(pddcb); 687 688 /* Move active DDCB further; Nothing to do here anymore. */ 689 690 /* 691 * We need to ensure that there is at least one free 692 * DDCB in the queue. To do that, we must update 693 * ddcb_act only if the COMPLETED bit is set for the 694 * DDCB we are working on else we treat that DDCB even 695 * if we PURGED it as occupied (hardware is supposed 696 * to set the COMPLETED bit yet!). 697 */ 698 icrc_hsi_shi = pddcb->icrc_hsi_shi_32; 699 if ((icrc_hsi_shi & DDCB_COMPLETED_BE32) && 700 (queue->ddcb_act == req->num)) { 701 queue->ddcb_act = ((queue->ddcb_act + 1) % 702 queue->ddcb_max); 703 } 704 go_home: 705 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 706 return 0; 707 } 708 709 /* 710 * If the card is dead and the queue is forced to stop, we 711 * might see this in the queue status register. 712 */ 713 queue_status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS); 714 715 dev_dbg(&pci_dev->dev, "UN/FINISHED DDCB#%d\n", req->num); 716 genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); 717 718 dev_err(&pci_dev->dev, 719 "[%s] err: DDCB#%d not purged and not completed after %d seconds QSTAT=%016llx!!\n", 720 __func__, req->num, GENWQE_DDCB_SOFTWARE_TIMEOUT, 721 queue_status); 722 723 print_ddcb_info(cd, req->queue); 724 725 return -EFAULT; 726 } 727 728 int genwqe_init_debug_data(struct genwqe_dev *cd, struct genwqe_debug_data *d) 729 { 730 int len; 731 struct pci_dev *pci_dev = cd->pci_dev; 732 733 if (d == NULL) { 734 dev_err(&pci_dev->dev, 735 "[%s] err: invalid memory for debug data!\n", 736 __func__); 737 return -EFAULT; 738 } 739 740 len = sizeof(d->driver_version); 741 snprintf(d->driver_version, len, "%s", DRV_VERSION); 742 d->slu_unitcfg = cd->slu_unitcfg; 743 d->app_unitcfg = cd->app_unitcfg; 744 return 0; 745 } 746 747 /** 748 * __genwqe_enqueue_ddcb() - Enqueue a DDCB 749 * @cd: pointer to genwqe device descriptor 750 * @req: pointer to DDCB execution request 751 * @f_flags: file mode: blocking, non-blocking 752 * 753 * Return: 0 if enqueuing succeeded 754 * -EIO if card is unusable/PCIe problems 755 * -EBUSY if enqueuing failed 756 */ 757 int __genwqe_enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req, 758 unsigned int f_flags) 759 { 760 struct ddcb *pddcb; 761 unsigned long flags; 762 struct ddcb_queue *queue; 763 struct pci_dev *pci_dev = cd->pci_dev; 764 u16 icrc; 765 766 retry: 767 if (cd->card_state != GENWQE_CARD_USED) { 768 printk_ratelimited(KERN_ERR 769 "%s %s: [%s] Card is unusable/PCIe problem Req#%d\n", 770 GENWQE_DEVNAME, dev_name(&pci_dev->dev), 771 __func__, req->num); 772 return -EIO; 773 } 774 775 queue = req->queue = &cd->queue; 776 777 /* FIXME circumvention to improve performance when no irq is 778 * there. 779 */ 780 if (GENWQE_POLLING_ENABLED) 781 genwqe_check_ddcb_queue(cd, queue); 782 783 /* 784 * It must be ensured to process all DDCBs in successive 785 * order. Use a lock here in order to prevent nested DDCB 786 * enqueuing. 787 */ 788 spin_lock_irqsave(&queue->ddcb_lock, flags); 789 790 pddcb = get_next_ddcb(cd, queue, &req->num); /* get ptr and num */ 791 if (pddcb == NULL) { 792 int rc; 793 794 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 795 796 if (f_flags & O_NONBLOCK) { 797 queue->return_on_busy++; 798 return -EBUSY; 799 } 800 801 queue->wait_on_busy++; 802 rc = wait_event_interruptible(queue->busy_waitq, 803 queue_free_ddcbs(queue) != 0); 804 dev_dbg(&pci_dev->dev, "[%s] waiting for free DDCB: rc=%d\n", 805 __func__, rc); 806 if (rc == -ERESTARTSYS) 807 return rc; /* interrupted by a signal */ 808 809 goto retry; 810 } 811 812 if (queue->ddcb_req[req->num] != NULL) { 813 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 814 815 dev_err(&pci_dev->dev, 816 "[%s] picked DDCB %d with req=%p still in use!!\n", 817 __func__, req->num, req); 818 return -EFAULT; 819 } 820 ddcb_requ_set_state(req, GENWQE_REQU_ENQUEUED); 821 queue->ddcb_req[req->num] = req; 822 823 pddcb->cmdopts_16 = cpu_to_be16(req->cmd.cmdopts); 824 pddcb->cmd = req->cmd.cmd; 825 pddcb->acfunc = req->cmd.acfunc; /* functional unit */ 826 827 /* 828 * We know that we can get retc 0x104 with CRC error, do not 829 * stop the queue in those cases for this command. XDIR = 1 830 * does not work for old SLU versions. 831 * 832 * Last bitstream with the old XDIR behavior had SLU_ID 833 * 0x34199. 834 */ 835 if ((cd->slu_unitcfg & 0xFFFF0ull) > 0x34199ull) 836 pddcb->xdir = 0x1; 837 else 838 pddcb->xdir = 0x0; 839 840 841 pddcb->psp = (((req->cmd.asiv_length / 8) << 4) | 842 ((req->cmd.asv_length / 8))); 843 pddcb->disp_ts_64 = cpu_to_be64(req->cmd.disp_ts); 844 845 /* 846 * If copying the whole DDCB_ASIV_LENGTH is impacting 847 * performance we need to change it to 848 * req->cmd.asiv_length. But simulation benefits from some 849 * non-architectured bits behind the architectured content. 850 * 851 * How much data is copied depends on the availability of the 852 * ATS field, which was introduced late. If the ATS field is 853 * supported ASIV is 8 bytes shorter than it used to be. Since 854 * the ATS field is copied too, the code should do exactly 855 * what it did before, but I wanted to make copying of the ATS 856 * field very explicit. 857 */ 858 if (genwqe_get_slu_id(cd) <= 0x2) { 859 memcpy(&pddcb->__asiv[0], /* destination */ 860 &req->cmd.__asiv[0], /* source */ 861 DDCB_ASIV_LENGTH); /* req->cmd.asiv_length */ 862 } else { 863 pddcb->n.ats_64 = cpu_to_be64(req->cmd.ats); 864 memcpy(&pddcb->n.asiv[0], /* destination */ 865 &req->cmd.asiv[0], /* source */ 866 DDCB_ASIV_LENGTH_ATS); /* req->cmd.asiv_length */ 867 } 868 869 pddcb->icrc_hsi_shi_32 = cpu_to_be32(0x00000000); /* for crc */ 870 871 /* 872 * Calculate CRC_16 for corresponding range PSP(7:4). Include 873 * empty 4 bytes prior to the data. 874 */ 875 icrc = genwqe_crc16((const u8 *)pddcb, 876 ICRC_LENGTH(req->cmd.asiv_length), 0xffff); 877 pddcb->icrc_hsi_shi_32 = cpu_to_be32((u32)icrc << 16); 878 879 /* enable DDCB completion irq */ 880 if (!GENWQE_POLLING_ENABLED) 881 pddcb->icrc_hsi_shi_32 |= DDCB_INTR_BE32; 882 883 dev_dbg(&pci_dev->dev, "INPUT DDCB#%d\n", req->num); 884 genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); 885 886 if (ddcb_requ_collect_debug_data(req)) { 887 /* use the kernel copy of debug data. copying back to 888 user buffer happens later */ 889 890 genwqe_init_debug_data(cd, &req->debug_data); 891 memcpy(&req->debug_data.ddcb_before, pddcb, 892 sizeof(req->debug_data.ddcb_before)); 893 } 894 895 enqueue_ddcb(cd, queue, pddcb, req->num); 896 queue->ddcbs_in_flight++; 897 898 if (queue->ddcbs_in_flight > queue->ddcbs_max_in_flight) 899 queue->ddcbs_max_in_flight = queue->ddcbs_in_flight; 900 901 ddcb_requ_set_state(req, GENWQE_REQU_TAPPED); 902 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 903 wake_up_interruptible(&cd->queue_waitq); 904 905 return 0; 906 } 907 908 /** 909 * __genwqe_execute_raw_ddcb() - Setup and execute DDCB 910 * @cd: pointer to genwqe device descriptor 911 * @req: user provided DDCB request 912 * @f_flags: file mode: blocking, non-blocking 913 */ 914 int __genwqe_execute_raw_ddcb(struct genwqe_dev *cd, 915 struct genwqe_ddcb_cmd *cmd, 916 unsigned int f_flags) 917 { 918 int rc = 0; 919 struct pci_dev *pci_dev = cd->pci_dev; 920 struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd); 921 922 if (cmd->asiv_length > DDCB_ASIV_LENGTH) { 923 dev_err(&pci_dev->dev, "[%s] err: wrong asiv_length of %d\n", 924 __func__, cmd->asiv_length); 925 return -EINVAL; 926 } 927 if (cmd->asv_length > DDCB_ASV_LENGTH) { 928 dev_err(&pci_dev->dev, "[%s] err: wrong asv_length of %d\n", 929 __func__, cmd->asiv_length); 930 return -EINVAL; 931 } 932 rc = __genwqe_enqueue_ddcb(cd, req, f_flags); 933 if (rc != 0) 934 return rc; 935 936 rc = __genwqe_wait_ddcb(cd, req); 937 if (rc < 0) /* error or signal interrupt */ 938 goto err_exit; 939 940 if (ddcb_requ_collect_debug_data(req)) { 941 if (copy_to_user((struct genwqe_debug_data __user *) 942 (unsigned long)cmd->ddata_addr, 943 &req->debug_data, 944 sizeof(struct genwqe_debug_data))) 945 return -EFAULT; 946 } 947 948 /* 949 * Higher values than 0x102 indicate completion with faults, 950 * lower values than 0x102 indicate processing faults. Note 951 * that DDCB might have been purged. E.g. Cntl+C. 952 */ 953 if (cmd->retc != DDCB_RETC_COMPLETE) { 954 /* This might happen e.g. flash read, and needs to be 955 handled by the upper layer code. */ 956 rc = -EBADMSG; /* not processed/error retc */ 957 } 958 959 return rc; 960 961 err_exit: 962 __genwqe_purge_ddcb(cd, req); 963 964 if (ddcb_requ_collect_debug_data(req)) { 965 if (copy_to_user((struct genwqe_debug_data __user *) 966 (unsigned long)cmd->ddata_addr, 967 &req->debug_data, 968 sizeof(struct genwqe_debug_data))) 969 return -EFAULT; 970 } 971 return rc; 972 } 973 974 /** 975 * genwqe_next_ddcb_ready() - Figure out if the next DDCB is already finished 976 * 977 * We use this as condition for our wait-queue code. 978 */ 979 static int genwqe_next_ddcb_ready(struct genwqe_dev *cd) 980 { 981 unsigned long flags; 982 struct ddcb *pddcb; 983 struct ddcb_queue *queue = &cd->queue; 984 985 spin_lock_irqsave(&queue->ddcb_lock, flags); 986 987 if (queue_empty(queue)) { /* emtpy queue */ 988 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 989 return 0; 990 } 991 992 pddcb = &queue->ddcb_vaddr[queue->ddcb_act]; 993 if (pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) { /* ddcb ready */ 994 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 995 return 1; 996 } 997 998 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 999 return 0; 1000 } 1001 1002 /** 1003 * genwqe_ddcbs_in_flight() - Check how many DDCBs are in flight 1004 * 1005 * Keep track on the number of DDCBs which ware currently in the 1006 * queue. This is needed for statistics as well as conditon if we want 1007 * to wait or better do polling in case of no interrupts available. 1008 */ 1009 int genwqe_ddcbs_in_flight(struct genwqe_dev *cd) 1010 { 1011 unsigned long flags; 1012 int ddcbs_in_flight = 0; 1013 struct ddcb_queue *queue = &cd->queue; 1014 1015 spin_lock_irqsave(&queue->ddcb_lock, flags); 1016 ddcbs_in_flight += queue->ddcbs_in_flight; 1017 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 1018 1019 return ddcbs_in_flight; 1020 } 1021 1022 static int setup_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue) 1023 { 1024 int rc, i; 1025 struct ddcb *pddcb; 1026 u64 val64; 1027 unsigned int queue_size; 1028 struct pci_dev *pci_dev = cd->pci_dev; 1029 1030 if (GENWQE_DDCB_MAX < 2) 1031 return -EINVAL; 1032 1033 queue_size = roundup(GENWQE_DDCB_MAX * sizeof(struct ddcb), PAGE_SIZE); 1034 1035 queue->ddcbs_in_flight = 0; /* statistics */ 1036 queue->ddcbs_max_in_flight = 0; 1037 queue->ddcbs_completed = 0; 1038 queue->return_on_busy = 0; 1039 queue->wait_on_busy = 0; 1040 1041 queue->ddcb_seq = 0x100; /* start sequence number */ 1042 queue->ddcb_max = GENWQE_DDCB_MAX; 1043 queue->ddcb_vaddr = __genwqe_alloc_consistent(cd, queue_size, 1044 &queue->ddcb_daddr); 1045 if (queue->ddcb_vaddr == NULL) { 1046 dev_err(&pci_dev->dev, 1047 "[%s] **err: could not allocate DDCB **\n", __func__); 1048 return -ENOMEM; 1049 } 1050 queue->ddcb_req = kcalloc(queue->ddcb_max, sizeof(struct ddcb_requ *), 1051 GFP_KERNEL); 1052 if (!queue->ddcb_req) { 1053 rc = -ENOMEM; 1054 goto free_ddcbs; 1055 } 1056 1057 queue->ddcb_waitqs = kcalloc(queue->ddcb_max, 1058 sizeof(wait_queue_head_t), 1059 GFP_KERNEL); 1060 if (!queue->ddcb_waitqs) { 1061 rc = -ENOMEM; 1062 goto free_requs; 1063 } 1064 1065 for (i = 0; i < queue->ddcb_max; i++) { 1066 pddcb = &queue->ddcb_vaddr[i]; /* DDCBs */ 1067 pddcb->icrc_hsi_shi_32 = DDCB_COMPLETED_BE32; 1068 pddcb->retc_16 = cpu_to_be16(0xfff); 1069 1070 queue->ddcb_req[i] = NULL; /* requests */ 1071 init_waitqueue_head(&queue->ddcb_waitqs[i]); /* waitqueues */ 1072 } 1073 1074 queue->ddcb_act = 0; 1075 queue->ddcb_next = 0; /* queue is empty */ 1076 1077 spin_lock_init(&queue->ddcb_lock); 1078 init_waitqueue_head(&queue->busy_waitq); 1079 1080 val64 = ((u64)(queue->ddcb_max - 1) << 8); /* lastptr */ 1081 __genwqe_writeq(cd, queue->IO_QUEUE_CONFIG, 0x07); /* iCRC/vCRC */ 1082 __genwqe_writeq(cd, queue->IO_QUEUE_SEGMENT, queue->ddcb_daddr); 1083 __genwqe_writeq(cd, queue->IO_QUEUE_INITSQN, queue->ddcb_seq); 1084 __genwqe_writeq(cd, queue->IO_QUEUE_WRAP, val64); 1085 return 0; 1086 1087 free_requs: 1088 kfree(queue->ddcb_req); 1089 queue->ddcb_req = NULL; 1090 free_ddcbs: 1091 __genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr, 1092 queue->ddcb_daddr); 1093 queue->ddcb_vaddr = NULL; 1094 queue->ddcb_daddr = 0ull; 1095 return -ENODEV; 1096 1097 } 1098 1099 static int ddcb_queue_initialized(struct ddcb_queue *queue) 1100 { 1101 return queue->ddcb_vaddr != NULL; 1102 } 1103 1104 static void free_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue) 1105 { 1106 unsigned int queue_size; 1107 1108 queue_size = roundup(queue->ddcb_max * sizeof(struct ddcb), PAGE_SIZE); 1109 1110 kfree(queue->ddcb_req); 1111 queue->ddcb_req = NULL; 1112 1113 if (queue->ddcb_vaddr) { 1114 __genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr, 1115 queue->ddcb_daddr); 1116 queue->ddcb_vaddr = NULL; 1117 queue->ddcb_daddr = 0ull; 1118 } 1119 } 1120 1121 static irqreturn_t genwqe_pf_isr(int irq, void *dev_id) 1122 { 1123 u64 gfir; 1124 struct genwqe_dev *cd = (struct genwqe_dev *)dev_id; 1125 struct pci_dev *pci_dev = cd->pci_dev; 1126 1127 /* 1128 * In case of fatal FIR error the queue is stopped, such that 1129 * we can safely check it without risking anything. 1130 */ 1131 cd->irqs_processed++; 1132 wake_up_interruptible(&cd->queue_waitq); 1133 1134 /* 1135 * Checking for errors before kicking the queue might be 1136 * safer, but slower for the good-case ... See above. 1137 */ 1138 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); 1139 if (((gfir & GFIR_ERR_TRIGGER) != 0x0) && 1140 !pci_channel_offline(pci_dev)) { 1141 1142 if (cd->use_platform_recovery) { 1143 /* 1144 * Since we use raw accessors, EEH errors won't be 1145 * detected by the platform until we do a non-raw 1146 * MMIO or config space read 1147 */ 1148 readq(cd->mmio + IO_SLC_CFGREG_GFIR); 1149 1150 /* Don't do anything if the PCI channel is frozen */ 1151 if (pci_channel_offline(pci_dev)) 1152 goto exit; 1153 } 1154 1155 wake_up_interruptible(&cd->health_waitq); 1156 1157 /* 1158 * By default GFIRs causes recovery actions. This 1159 * count is just for debug when recovery is masked. 1160 */ 1161 dev_err_ratelimited(&pci_dev->dev, 1162 "[%s] GFIR=%016llx\n", 1163 __func__, gfir); 1164 } 1165 1166 exit: 1167 return IRQ_HANDLED; 1168 } 1169 1170 static irqreturn_t genwqe_vf_isr(int irq, void *dev_id) 1171 { 1172 struct genwqe_dev *cd = (struct genwqe_dev *)dev_id; 1173 1174 cd->irqs_processed++; 1175 wake_up_interruptible(&cd->queue_waitq); 1176 1177 return IRQ_HANDLED; 1178 } 1179 1180 /** 1181 * genwqe_card_thread() - Work thread for the DDCB queue 1182 * 1183 * The idea is to check if there are DDCBs in processing. If there are 1184 * some finished DDCBs, we process them and wakeup the 1185 * requestors. Otherwise we give other processes time using 1186 * cond_resched(). 1187 */ 1188 static int genwqe_card_thread(void *data) 1189 { 1190 int should_stop = 0, rc = 0; 1191 struct genwqe_dev *cd = (struct genwqe_dev *)data; 1192 1193 while (!kthread_should_stop()) { 1194 1195 genwqe_check_ddcb_queue(cd, &cd->queue); 1196 1197 if (GENWQE_POLLING_ENABLED) { 1198 rc = wait_event_interruptible_timeout( 1199 cd->queue_waitq, 1200 genwqe_ddcbs_in_flight(cd) || 1201 (should_stop = kthread_should_stop()), 1); 1202 } else { 1203 rc = wait_event_interruptible_timeout( 1204 cd->queue_waitq, 1205 genwqe_next_ddcb_ready(cd) || 1206 (should_stop = kthread_should_stop()), HZ); 1207 } 1208 if (should_stop) 1209 break; 1210 1211 /* 1212 * Avoid soft lockups on heavy loads; we do not want 1213 * to disable our interrupts. 1214 */ 1215 cond_resched(); 1216 } 1217 return 0; 1218 } 1219 1220 /** 1221 * genwqe_setup_service_layer() - Setup DDCB queue 1222 * @cd: pointer to genwqe device descriptor 1223 * 1224 * Allocate DDCBs. Configure Service Layer Controller (SLC). 1225 * 1226 * Return: 0 success 1227 */ 1228 int genwqe_setup_service_layer(struct genwqe_dev *cd) 1229 { 1230 int rc; 1231 struct ddcb_queue *queue; 1232 struct pci_dev *pci_dev = cd->pci_dev; 1233 1234 if (genwqe_is_privileged(cd)) { 1235 rc = genwqe_card_reset(cd); 1236 if (rc < 0) { 1237 dev_err(&pci_dev->dev, 1238 "[%s] err: reset failed.\n", __func__); 1239 return rc; 1240 } 1241 genwqe_read_softreset(cd); 1242 } 1243 1244 queue = &cd->queue; 1245 queue->IO_QUEUE_CONFIG = IO_SLC_QUEUE_CONFIG; 1246 queue->IO_QUEUE_STATUS = IO_SLC_QUEUE_STATUS; 1247 queue->IO_QUEUE_SEGMENT = IO_SLC_QUEUE_SEGMENT; 1248 queue->IO_QUEUE_INITSQN = IO_SLC_QUEUE_INITSQN; 1249 queue->IO_QUEUE_OFFSET = IO_SLC_QUEUE_OFFSET; 1250 queue->IO_QUEUE_WRAP = IO_SLC_QUEUE_WRAP; 1251 queue->IO_QUEUE_WTIME = IO_SLC_QUEUE_WTIME; 1252 queue->IO_QUEUE_ERRCNTS = IO_SLC_QUEUE_ERRCNTS; 1253 queue->IO_QUEUE_LRW = IO_SLC_QUEUE_LRW; 1254 1255 rc = setup_ddcb_queue(cd, queue); 1256 if (rc != 0) { 1257 rc = -ENODEV; 1258 goto err_out; 1259 } 1260 1261 init_waitqueue_head(&cd->queue_waitq); 1262 cd->card_thread = kthread_run(genwqe_card_thread, cd, 1263 GENWQE_DEVNAME "%d_thread", 1264 cd->card_idx); 1265 if (IS_ERR(cd->card_thread)) { 1266 rc = PTR_ERR(cd->card_thread); 1267 cd->card_thread = NULL; 1268 goto stop_free_queue; 1269 } 1270 1271 rc = genwqe_set_interrupt_capability(cd, GENWQE_MSI_IRQS); 1272 if (rc) 1273 goto stop_kthread; 1274 1275 /* 1276 * We must have all wait-queues initialized when we enable the 1277 * interrupts. Otherwise we might crash if we get an early 1278 * irq. 1279 */ 1280 init_waitqueue_head(&cd->health_waitq); 1281 1282 if (genwqe_is_privileged(cd)) { 1283 rc = request_irq(pci_dev->irq, genwqe_pf_isr, IRQF_SHARED, 1284 GENWQE_DEVNAME, cd); 1285 } else { 1286 rc = request_irq(pci_dev->irq, genwqe_vf_isr, IRQF_SHARED, 1287 GENWQE_DEVNAME, cd); 1288 } 1289 if (rc < 0) { 1290 dev_err(&pci_dev->dev, "irq %d not free.\n", pci_dev->irq); 1291 goto stop_irq_cap; 1292 } 1293 1294 cd->card_state = GENWQE_CARD_USED; 1295 return 0; 1296 1297 stop_irq_cap: 1298 genwqe_reset_interrupt_capability(cd); 1299 stop_kthread: 1300 kthread_stop(cd->card_thread); 1301 cd->card_thread = NULL; 1302 stop_free_queue: 1303 free_ddcb_queue(cd, queue); 1304 err_out: 1305 return rc; 1306 } 1307 1308 /** 1309 * queue_wake_up_all() - Handles fatal error case 1310 * 1311 * The PCI device got unusable and we have to stop all pending 1312 * requests as fast as we can. The code after this must purge the 1313 * DDCBs in question and ensure that all mappings are freed. 1314 */ 1315 static int queue_wake_up_all(struct genwqe_dev *cd) 1316 { 1317 unsigned int i; 1318 unsigned long flags; 1319 struct ddcb_queue *queue = &cd->queue; 1320 1321 spin_lock_irqsave(&queue->ddcb_lock, flags); 1322 1323 for (i = 0; i < queue->ddcb_max; i++) 1324 wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]); 1325 1326 wake_up_interruptible(&queue->busy_waitq); 1327 spin_unlock_irqrestore(&queue->ddcb_lock, flags); 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * genwqe_finish_queue() - Remove any genwqe devices and user-interfaces 1334 * 1335 * Relies on the pre-condition that there are no users of the card 1336 * device anymore e.g. with open file-descriptors. 1337 * 1338 * This function must be robust enough to be called twice. 1339 */ 1340 int genwqe_finish_queue(struct genwqe_dev *cd) 1341 { 1342 int i, rc = 0, in_flight; 1343 int waitmax = GENWQE_DDCB_SOFTWARE_TIMEOUT; 1344 struct pci_dev *pci_dev = cd->pci_dev; 1345 struct ddcb_queue *queue = &cd->queue; 1346 1347 if (!ddcb_queue_initialized(queue)) 1348 return 0; 1349 1350 /* Do not wipe out the error state. */ 1351 if (cd->card_state == GENWQE_CARD_USED) 1352 cd->card_state = GENWQE_CARD_UNUSED; 1353 1354 /* Wake up all requests in the DDCB queue such that they 1355 should be removed nicely. */ 1356 queue_wake_up_all(cd); 1357 1358 /* We must wait to get rid of the DDCBs in flight */ 1359 for (i = 0; i < waitmax; i++) { 1360 in_flight = genwqe_ddcbs_in_flight(cd); 1361 1362 if (in_flight == 0) 1363 break; 1364 1365 dev_dbg(&pci_dev->dev, 1366 " DEBUG [%d/%d] waiting for queue to get empty: %d requests!\n", 1367 i, waitmax, in_flight); 1368 1369 /* 1370 * Severe severe error situation: The card itself has 1371 * 16 DDCB queues, each queue has e.g. 32 entries, 1372 * each DDBC has a hardware timeout of currently 250 1373 * msec but the PFs have a hardware timeout of 8 sec 1374 * ... so I take something large. 1375 */ 1376 msleep(1000); 1377 } 1378 if (i == waitmax) { 1379 dev_err(&pci_dev->dev, " [%s] err: queue is not empty!!\n", 1380 __func__); 1381 rc = -EIO; 1382 } 1383 return rc; 1384 } 1385 1386 /** 1387 * genwqe_release_service_layer() - Shutdown DDCB queue 1388 * @cd: genwqe device descriptor 1389 * 1390 * This function must be robust enough to be called twice. 1391 */ 1392 int genwqe_release_service_layer(struct genwqe_dev *cd) 1393 { 1394 struct pci_dev *pci_dev = cd->pci_dev; 1395 1396 if (!ddcb_queue_initialized(&cd->queue)) 1397 return 1; 1398 1399 free_irq(pci_dev->irq, cd); 1400 genwqe_reset_interrupt_capability(cd); 1401 1402 if (cd->card_thread != NULL) { 1403 kthread_stop(cd->card_thread); 1404 cd->card_thread = NULL; 1405 } 1406 1407 free_ddcb_queue(cd, &cd->queue); 1408 return 0; 1409 } 1410