xref: /openbmc/linux/drivers/misc/genwqe/card_base.h (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 #ifndef __CARD_BASE_H__
2 #define __CARD_BASE_H__
3 
4 /**
5  * IBM Accelerator Family 'GenWQE'
6  *
7  * (C) Copyright IBM Corp. 2013
8  *
9  * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
10  * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
11  * Author: Michael Jung <mijung@gmx.net>
12  * Author: Michael Ruettger <michael@ibmra.de>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License (version 2 only)
16  * as published by the Free Software Foundation.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21  * GNU General Public License for more details.
22  */
23 
24 /*
25  * Interfaces within the GenWQE module. Defines genwqe_card and
26  * ddcb_queue as well as ddcb_requ.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/types.h>
31 #include <linux/cdev.h>
32 #include <linux/stringify.h>
33 #include <linux/pci.h>
34 #include <linux/semaphore.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/debugfs.h>
38 #include <linux/slab.h>
39 
40 #include <linux/genwqe/genwqe_card.h>
41 #include "genwqe_driver.h"
42 
43 #define GENWQE_MSI_IRQS			4  /* Just one supported, no MSIx */
44 
45 #define GENWQE_MAX_VFS			15 /* maximum 15 VFs are possible */
46 #define GENWQE_MAX_FUNCS		16 /* 1 PF and 15 VFs */
47 #define GENWQE_CARD_NO_MAX		(16 * GENWQE_MAX_FUNCS)
48 
49 /* Compile parameters, some of them appear in debugfs for later adjustment */
50 #define GENWQE_DDCB_MAX			32 /* DDCBs on the work-queue */
51 #define GENWQE_POLLING_ENABLED		0  /* in case of irqs not working */
52 #define GENWQE_DDCB_SOFTWARE_TIMEOUT	10 /* timeout per DDCB in seconds */
53 #define GENWQE_KILL_TIMEOUT		8  /* time until process gets killed */
54 #define GENWQE_VF_JOBTIMEOUT_MSEC	250  /* 250 msec */
55 #define GENWQE_PF_JOBTIMEOUT_MSEC	8000 /* 8 sec should be ok */
56 #define GENWQE_HEALTH_CHECK_INTERVAL	4 /* <= 0: disabled */
57 
58 /* Sysfs attribute groups used when we create the genwqe device */
59 extern const struct attribute_group *genwqe_attribute_groups[];
60 
61 /*
62  * Config space for Genwqe5 A7:
63  * 00:[14 10 4b 04]40 00 10 00[00 00 00 12]00 00 00 00
64  * 10: 0c 00 00 f0 07 3c 00 00 00 00 00 00 00 00 00 00
65  * 20: 00 00 00 00 00 00 00 00 00 00 00 00[14 10 4b 04]
66  * 30: 00 00 00 00 50 00 00 00 00 00 00 00 00 00 00 00
67  */
68 #define PCI_DEVICE_GENWQE		0x044b /* Genwqe DeviceID */
69 
70 #define PCI_SUBSYSTEM_ID_GENWQE5	0x035f /* Genwqe A5 Subsystem-ID */
71 #define PCI_SUBSYSTEM_ID_GENWQE5_NEW	0x044b /* Genwqe A5 Subsystem-ID */
72 #define PCI_CLASSCODE_GENWQE5		0x1200 /* UNKNOWN */
73 
74 #define PCI_SUBVENDOR_ID_IBM_SRIOV	0x0000
75 #define PCI_SUBSYSTEM_ID_GENWQE5_SRIOV	0x0000 /* Genwqe A5 Subsystem-ID */
76 #define PCI_CLASSCODE_GENWQE5_SRIOV	0x1200 /* UNKNOWN */
77 
78 #define	GENWQE_SLU_ARCH_REQ		2 /* Required SLU architecture level */
79 
80 /**
81  * struct genwqe_reg - Genwqe data dump functionality
82  */
83 struct genwqe_reg {
84 	u32 addr;
85 	u32 idx;
86 	u64 val;
87 };
88 
89 /*
90  * enum genwqe_dbg_type - Specify chip unit to dump/debug
91  */
92 enum genwqe_dbg_type {
93 	GENWQE_DBG_UNIT0 = 0,  /* captured before prev errs cleared */
94 	GENWQE_DBG_UNIT1 = 1,
95 	GENWQE_DBG_UNIT2 = 2,
96 	GENWQE_DBG_UNIT3 = 3,
97 	GENWQE_DBG_UNIT4 = 4,
98 	GENWQE_DBG_UNIT5 = 5,
99 	GENWQE_DBG_UNIT6 = 6,
100 	GENWQE_DBG_UNIT7 = 7,
101 	GENWQE_DBG_REGS  = 8,
102 	GENWQE_DBG_DMA   = 9,
103 	GENWQE_DBG_UNITS = 10, /* max number of possible debug units  */
104 };
105 
106 /* Software error injection to simulate card failures */
107 #define GENWQE_INJECT_HARDWARE_FAILURE	0x00000001 /* injects -1 reg reads */
108 #define GENWQE_INJECT_BUS_RESET_FAILURE 0x00000002 /* pci_bus_reset fail */
109 #define GENWQE_INJECT_GFIR_FATAL	0x00000004 /* GFIR = 0x0000ffff */
110 #define GENWQE_INJECT_GFIR_INFO		0x00000008 /* GFIR = 0xffff0000 */
111 
112 /*
113  * Genwqe card description and management data.
114  *
115  * Error-handling in case of card malfunction
116  * ------------------------------------------
117  *
118  * If the card is detected to be defective the outside environment
119  * will cause the PCI layer to call deinit (the cleanup function for
120  * probe). This is the same effect like doing a unbind/bind operation
121  * on the card.
122  *
123  * The genwqe card driver implements a health checking thread which
124  * verifies the card function. If this detects a problem the cards
125  * device is being shutdown and restarted again, along with a reset of
126  * the card and queue.
127  *
128  * All functions accessing the card device return either -EIO or -ENODEV
129  * code to indicate the malfunction to the user. The user has to close
130  * the file descriptor and open a new one, once the card becomes
131  * available again.
132  *
133  * If the open file descriptor is setup to receive SIGIO, the signal is
134  * genereated for the application which has to provide a handler to
135  * react on it. If the application does not close the open
136  * file descriptor a SIGKILL is send to enforce freeing the cards
137  * resources.
138  *
139  * I did not find a different way to prevent kernel problems due to
140  * reference counters for the cards character devices getting out of
141  * sync. The character device deallocation does not block, even if
142  * there is still an open file descriptor pending. If this pending
143  * descriptor is closed, the data structures used by the character
144  * device is reinstantiated, which will lead to the reference counter
145  * dropping below the allowed values.
146  *
147  * Card recovery
148  * -------------
149  *
150  * To test the internal driver recovery the following command can be used:
151  *   sudo sh -c 'echo 0xfffff > /sys/class/genwqe/genwqe0_card/err_inject'
152  */
153 
154 
155 /**
156  * struct dma_mapping_type - Mapping type definition
157  *
158  * To avoid memcpying data arround we use user memory directly. To do
159  * this we need to pin/swap-in the memory and request a DMA address
160  * for it.
161  */
162 enum dma_mapping_type {
163 	GENWQE_MAPPING_RAW = 0,		/* contignous memory buffer */
164 	GENWQE_MAPPING_SGL_TEMP,	/* sglist dynamically used */
165 	GENWQE_MAPPING_SGL_PINNED,	/* sglist used with pinning */
166 };
167 
168 /**
169  * struct dma_mapping - Information about memory mappings done by the driver
170  */
171 struct dma_mapping {
172 	enum dma_mapping_type type;
173 
174 	void *u_vaddr;			/* user-space vaddr/non-aligned */
175 	void *k_vaddr;			/* kernel-space vaddr/non-aligned */
176 	dma_addr_t dma_addr;		/* physical DMA address */
177 
178 	struct page **page_list;	/* list of pages used by user buff */
179 	dma_addr_t *dma_list;		/* list of dma addresses per page */
180 	unsigned int nr_pages;		/* number of pages */
181 	unsigned int size;		/* size in bytes */
182 
183 	struct list_head card_list;	/* list of usr_maps for card */
184 	struct list_head pin_list;	/* list of pinned memory for dev */
185 	int write;			/* writable map? useful in unmapping */
186 };
187 
188 static inline void genwqe_mapping_init(struct dma_mapping *m,
189 				       enum dma_mapping_type type)
190 {
191 	memset(m, 0, sizeof(*m));
192 	m->type = type;
193 	m->write = 1; /* Assume the maps we create are R/W */
194 }
195 
196 /**
197  * struct ddcb_queue - DDCB queue data
198  * @ddcb_max:          Number of DDCBs on the queue
199  * @ddcb_next:         Next free DDCB
200  * @ddcb_act:          Next DDCB supposed to finish
201  * @ddcb_seq:          Sequence number of last DDCB
202  * @ddcbs_in_flight:   Currently enqueued DDCBs
203  * @ddcbs_completed:   Number of already completed DDCBs
204  * @return_on_busy:    Number of -EBUSY returns on full queue
205  * @wait_on_busy:      Number of waits on full queue
206  * @ddcb_daddr:        DMA address of first DDCB in the queue
207  * @ddcb_vaddr:        Kernel virtual address of first DDCB in the queue
208  * @ddcb_req:          Associated requests (one per DDCB)
209  * @ddcb_waitqs:       Associated wait queues (one per DDCB)
210  * @ddcb_lock:         Lock to protect queuing operations
211  * @ddcb_waitq:        Wait on next DDCB finishing
212  */
213 
214 struct ddcb_queue {
215 	int ddcb_max;			/* amount of DDCBs  */
216 	int ddcb_next;			/* next available DDCB num */
217 	int ddcb_act;			/* DDCB to be processed */
218 	u16 ddcb_seq;			/* slc seq num */
219 	unsigned int ddcbs_in_flight;	/* number of ddcbs in processing */
220 	unsigned int ddcbs_completed;
221 	unsigned int ddcbs_max_in_flight;
222 	unsigned int return_on_busy;    /* how many times -EBUSY? */
223 	unsigned int wait_on_busy;
224 
225 	dma_addr_t ddcb_daddr;		/* DMA address */
226 	struct ddcb *ddcb_vaddr;	/* kernel virtual addr for DDCBs */
227 	struct ddcb_requ **ddcb_req;	/* ddcb processing parameter */
228 	wait_queue_head_t *ddcb_waitqs; /* waitqueue per ddcb */
229 
230 	spinlock_t ddcb_lock;		/* exclusive access to queue */
231 	wait_queue_head_t busy_waitq;   /* wait for ddcb processing */
232 
233 	/* registers or the respective queue to be used */
234 	u32 IO_QUEUE_CONFIG;
235 	u32 IO_QUEUE_STATUS;
236 	u32 IO_QUEUE_SEGMENT;
237 	u32 IO_QUEUE_INITSQN;
238 	u32 IO_QUEUE_WRAP;
239 	u32 IO_QUEUE_OFFSET;
240 	u32 IO_QUEUE_WTIME;
241 	u32 IO_QUEUE_ERRCNTS;
242 	u32 IO_QUEUE_LRW;
243 };
244 
245 /*
246  * GFIR, SLU_UNITCFG, APP_UNITCFG
247  *   8 Units with FIR/FEC + 64 * 2ndary FIRS/FEC.
248  */
249 #define GENWQE_FFDC_REGS	(3 + (8 * (2 + 2 * 64)))
250 
251 struct genwqe_ffdc {
252 	unsigned int entries;
253 	struct genwqe_reg *regs;
254 };
255 
256 /**
257  * struct genwqe_dev - GenWQE device information
258  * @card_state:       Card operation state, see above
259  * @ffdc:             First Failure Data Capture buffers for each unit
260  * @card_thread:      Working thread to operate the DDCB queue
261  * @card_waitq:       Wait queue used in card_thread
262  * @queue:            DDCB queue
263  * @health_thread:    Card monitoring thread (only for PFs)
264  * @health_waitq:     Wait queue used in health_thread
265  * @pci_dev:          Associated PCI device (function)
266  * @mmio:             Base address of 64-bit register space
267  * @mmio_len:         Length of register area
268  * @file_lock:        Lock to protect access to file_list
269  * @file_list:        List of all processes with open GenWQE file descriptors
270  *
271  * This struct contains all information needed to communicate with a
272  * GenWQE card. It is initialized when a GenWQE device is found and
273  * destroyed when it goes away. It holds data to maintain the queue as
274  * well as data needed to feed the user interfaces.
275  */
276 struct genwqe_dev {
277 	enum genwqe_card_state card_state;
278 	spinlock_t print_lock;
279 
280 	int card_idx;			/* card index 0..CARD_NO_MAX-1 */
281 	u64 flags;			/* general flags */
282 
283 	/* FFDC data gathering */
284 	struct genwqe_ffdc ffdc[GENWQE_DBG_UNITS];
285 
286 	/* DDCB workqueue */
287 	struct task_struct *card_thread;
288 	wait_queue_head_t queue_waitq;
289 	struct ddcb_queue queue;	/* genwqe DDCB queue */
290 	unsigned int irqs_processed;
291 
292 	/* Card health checking thread */
293 	struct task_struct *health_thread;
294 	wait_queue_head_t health_waitq;
295 
296 	int use_platform_recovery;	/* use platform recovery mechanisms */
297 
298 	/* char device */
299 	dev_t  devnum_genwqe;		/* major/minor num card */
300 	struct class *class_genwqe;	/* reference to class object */
301 	struct device *dev;		/* for device creation */
302 	struct cdev cdev_genwqe;	/* char device for card */
303 
304 	struct dentry *debugfs_root;	/* debugfs card root directory */
305 	struct dentry *debugfs_genwqe;	/* debugfs driver root directory */
306 
307 	/* pci resources */
308 	struct pci_dev *pci_dev;	/* PCI device */
309 	void __iomem *mmio;		/* BAR-0 MMIO start */
310 	unsigned long mmio_len;
311 	int num_vfs;
312 	u32 vf_jobtimeout_msec[GENWQE_MAX_VFS];
313 	int is_privileged;		/* access to all regs possible */
314 
315 	/* config regs which we need often */
316 	u64 slu_unitcfg;
317 	u64 app_unitcfg;
318 	u64 softreset;
319 	u64 err_inject;
320 	u64 last_gfir;
321 	char app_name[5];
322 
323 	spinlock_t file_lock;		/* lock for open files */
324 	struct list_head file_list;	/* list of open files */
325 
326 	/* debugfs parameters */
327 	int ddcb_software_timeout;	/* wait until DDCB times out */
328 	int skip_recovery;		/* circumvention if recovery fails */
329 	int kill_timeout;		/* wait after sending SIGKILL */
330 };
331 
332 /**
333  * enum genwqe_requ_state - State of a DDCB execution request
334  */
335 enum genwqe_requ_state {
336 	GENWQE_REQU_NEW      = 0,
337 	GENWQE_REQU_ENQUEUED = 1,
338 	GENWQE_REQU_TAPPED   = 2,
339 	GENWQE_REQU_FINISHED = 3,
340 	GENWQE_REQU_STATE_MAX,
341 };
342 
343 /**
344  * struct genwqe_sgl - Scatter gather list describing user-space memory
345  * @sgl:            scatter gather list needs to be 128 byte aligned
346  * @sgl_dma_addr:   dma address of sgl
347  * @sgl_size:       size of area used for sgl
348  * @user_addr:      user-space address of memory area
349  * @user_size:      size of user-space memory area
350  * @page:           buffer for partial pages if needed
351  * @page_dma_addr:  dma address partial pages
352  * @write:          should we write it back to userspace?
353  */
354 struct genwqe_sgl {
355 	dma_addr_t sgl_dma_addr;
356 	struct sg_entry *sgl;
357 	size_t sgl_size;	/* size of sgl */
358 
359 	void __user *user_addr; /* user-space base-address */
360 	size_t user_size;       /* size of memory area */
361 
362 	int write;
363 
364 	unsigned long nr_pages;
365 	unsigned long fpage_offs;
366 	size_t fpage_size;
367 	size_t lpage_size;
368 
369 	void *fpage;
370 	dma_addr_t fpage_dma_addr;
371 
372 	void *lpage;
373 	dma_addr_t lpage_dma_addr;
374 };
375 
376 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
377 			  void __user *user_addr, size_t user_size, int write);
378 
379 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
380 		     dma_addr_t *dma_list);
381 
382 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl);
383 
384 /**
385  * struct ddcb_requ - Kernel internal representation of the DDCB request
386  * @cmd:          User space representation of the DDCB execution request
387  */
388 struct ddcb_requ {
389 	/* kernel specific content */
390 	enum genwqe_requ_state req_state; /* request status */
391 	int num;			  /* ddcb_no for this request */
392 	struct ddcb_queue *queue;	  /* associated queue */
393 
394 	struct dma_mapping  dma_mappings[DDCB_FIXUPS];
395 	struct genwqe_sgl sgls[DDCB_FIXUPS];
396 
397 	/* kernel/user shared content */
398 	struct genwqe_ddcb_cmd cmd;	/* ddcb_no for this request */
399 	struct genwqe_debug_data debug_data;
400 };
401 
402 /**
403  * struct genwqe_file - Information for open GenWQE devices
404  */
405 struct genwqe_file {
406 	struct genwqe_dev *cd;
407 	struct genwqe_driver *client;
408 	struct file *filp;
409 
410 	struct fasync_struct *async_queue;
411 	struct task_struct *owner;
412 	struct list_head list;		/* entry in list of open files */
413 
414 	spinlock_t map_lock;		/* lock for dma_mappings */
415 	struct list_head map_list;	/* list of dma_mappings */
416 
417 	spinlock_t pin_lock;		/* lock for pinned memory */
418 	struct list_head pin_list;	/* list of pinned memory */
419 };
420 
421 int  genwqe_setup_service_layer(struct genwqe_dev *cd); /* for PF only */
422 int  genwqe_finish_queue(struct genwqe_dev *cd);
423 int  genwqe_release_service_layer(struct genwqe_dev *cd);
424 
425 /**
426  * genwqe_get_slu_id() - Read Service Layer Unit Id
427  * Return: 0x00: Development code
428  *         0x01: SLC1 (old)
429  *         0x02: SLC2 (sept2012)
430  *         0x03: SLC2 (feb2013, generic driver)
431  */
432 static inline int genwqe_get_slu_id(struct genwqe_dev *cd)
433 {
434 	return (int)((cd->slu_unitcfg >> 32) & 0xff);
435 }
436 
437 int  genwqe_ddcbs_in_flight(struct genwqe_dev *cd);
438 
439 u8   genwqe_card_type(struct genwqe_dev *cd);
440 int  genwqe_card_reset(struct genwqe_dev *cd);
441 int  genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count);
442 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd);
443 
444 int  genwqe_device_create(struct genwqe_dev *cd);
445 int  genwqe_device_remove(struct genwqe_dev *cd);
446 
447 /* debugfs */
448 int  genwqe_init_debugfs(struct genwqe_dev *cd);
449 void genqwe_exit_debugfs(struct genwqe_dev *cd);
450 
451 int  genwqe_read_softreset(struct genwqe_dev *cd);
452 
453 /* Hardware Circumventions */
454 int  genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd);
455 int  genwqe_flash_readback_fails(struct genwqe_dev *cd);
456 
457 /**
458  * genwqe_write_vreg() - Write register in VF window
459  * @cd:    genwqe device
460  * @reg:   register address
461  * @val:   value to write
462  * @func:  0: PF, 1: VF0, ..., 15: VF14
463  */
464 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func);
465 
466 /**
467  * genwqe_read_vreg() - Read register in VF window
468  * @cd:    genwqe device
469  * @reg:   register address
470  * @func:  0: PF, 1: VF0, ..., 15: VF14
471  *
472  * Return: content of the register
473  */
474 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func);
475 
476 /* FFDC Buffer Management */
477 int  genwqe_ffdc_buff_size(struct genwqe_dev *cd, int unit_id);
478 int  genwqe_ffdc_buff_read(struct genwqe_dev *cd, int unit_id,
479 			   struct genwqe_reg *regs, unsigned int max_regs);
480 int  genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
481 			   unsigned int max_regs, int all);
482 int  genwqe_ffdc_dump_dma(struct genwqe_dev *cd,
483 			  struct genwqe_reg *regs, unsigned int max_regs);
484 
485 int  genwqe_init_debug_data(struct genwqe_dev *cd,
486 			    struct genwqe_debug_data *d);
487 
488 void genwqe_init_crc32(void);
489 int  genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len);
490 
491 /* Memory allocation/deallocation; dma address handling */
492 int  genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m,
493 		      void *uaddr, unsigned long size);
494 
495 int  genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m);
496 
497 static inline bool dma_mapping_used(struct dma_mapping *m)
498 {
499 	if (!m)
500 		return false;
501 	return m->size != 0;
502 }
503 
504 /**
505  * __genwqe_execute_ddcb() - Execute DDCB request with addr translation
506  *
507  * This function will do the address translation changes to the DDCBs
508  * according to the definitions required by the ATS field. It looks up
509  * the memory allocation buffer or does vmap/vunmap for the respective
510  * user-space buffers, inclusive page pinning and scatter gather list
511  * buildup and teardown.
512  */
513 int  __genwqe_execute_ddcb(struct genwqe_dev *cd,
514 			   struct genwqe_ddcb_cmd *cmd, unsigned int f_flags);
515 
516 /**
517  * __genwqe_execute_raw_ddcb() - Execute DDCB request without addr translation
518  *
519  * This version will not do address translation or any modification of
520  * the DDCB data. It is used e.g. for the MoveFlash DDCB which is
521  * entirely prepared by the driver itself. That means the appropriate
522  * DMA addresses are already in the DDCB and do not need any
523  * modification.
524  */
525 int  __genwqe_execute_raw_ddcb(struct genwqe_dev *cd,
526 			       struct genwqe_ddcb_cmd *cmd,
527 			       unsigned int f_flags);
528 int  __genwqe_enqueue_ddcb(struct genwqe_dev *cd,
529 			   struct ddcb_requ *req,
530 			   unsigned int f_flags);
531 
532 int  __genwqe_wait_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req);
533 int  __genwqe_purge_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req);
534 
535 /* register access */
536 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val);
537 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs);
538 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val);
539 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs);
540 
541 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
542 				 dma_addr_t *dma_handle);
543 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
544 			      void *vaddr, dma_addr_t dma_handle);
545 
546 /* Base clock frequency in MHz */
547 int  genwqe_base_clock_frequency(struct genwqe_dev *cd);
548 
549 /* Before FFDC is captured the traps should be stopped. */
550 void genwqe_stop_traps(struct genwqe_dev *cd);
551 void genwqe_start_traps(struct genwqe_dev *cd);
552 
553 /* Hardware circumvention */
554 bool genwqe_need_err_masking(struct genwqe_dev *cd);
555 
556 /**
557  * genwqe_is_privileged() - Determine operation mode for PCI function
558  *
559  * On Intel with SRIOV support we see:
560  *   PF: is_physfn = 1 is_virtfn = 0
561  *   VF: is_physfn = 0 is_virtfn = 1
562  *
563  * On Systems with no SRIOV support _and_ virtualized systems we get:
564  *       is_physfn = 0 is_virtfn = 0
565  *
566  * Other vendors have individual pci device ids to distinguish between
567  * virtual function drivers and physical function drivers. GenWQE
568  * unfortunately has just on pci device id for both, VFs and PF.
569  *
570  * The following code is used to distinguish if the card is running in
571  * privileged mode, either as true PF or in a virtualized system with
572  * full register access e.g. currently on PowerPC.
573  *
574  * if (pci_dev->is_virtfn)
575  *          cd->is_privileged = 0;
576  *  else
577  *          cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM)
578  *				 != IO_ILLEGAL_VALUE);
579  */
580 static inline int genwqe_is_privileged(struct genwqe_dev *cd)
581 {
582 	return cd->is_privileged;
583 }
584 
585 #endif	/* __CARD_BASE_H__ */
586