xref: /openbmc/linux/drivers/misc/genwqe/card_base.c (revision eb3fcf00)
1 /**
2  * IBM Accelerator Family 'GenWQE'
3  *
4  * (C) Copyright IBM Corp. 2013
5  *
6  * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
7  * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
8  * Author: Michael Jung <mijung@gmx.net>
9  * Author: Michael Ruettger <michael@ibmra.de>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License (version 2 only)
13  * as published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  */
20 
21 /*
22  * Module initialization and PCIe setup. Card health monitoring and
23  * recovery functionality. Character device creation and deletion are
24  * controlled from here.
25  */
26 
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/err.h>
31 #include <linux/aer.h>
32 #include <linux/string.h>
33 #include <linux/sched.h>
34 #include <linux/wait.h>
35 #include <linux/delay.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/module.h>
38 #include <linux/notifier.h>
39 #include <linux/device.h>
40 #include <linux/log2.h>
41 
42 #include "card_base.h"
43 #include "card_ddcb.h"
44 
45 MODULE_AUTHOR("Frank Haverkamp <haver@linux.vnet.ibm.com>");
46 MODULE_AUTHOR("Michael Ruettger <michael@ibmra.de>");
47 MODULE_AUTHOR("Joerg-Stephan Vogt <jsvogt@de.ibm.com>");
48 MODULE_AUTHOR("Michael Jung <mijung@gmx.net>");
49 
50 MODULE_DESCRIPTION("GenWQE Card");
51 MODULE_VERSION(DRV_VERSION);
52 MODULE_LICENSE("GPL");
53 
54 static char genwqe_driver_name[] = GENWQE_DEVNAME;
55 static struct class *class_genwqe;
56 static struct dentry *debugfs_genwqe;
57 static struct genwqe_dev *genwqe_devices[GENWQE_CARD_NO_MAX];
58 
59 /* PCI structure for identifying device by PCI vendor and device ID */
60 static const struct pci_device_id genwqe_device_table[] = {
61 	{ .vendor      = PCI_VENDOR_ID_IBM,
62 	  .device      = PCI_DEVICE_GENWQE,
63 	  .subvendor   = PCI_SUBVENDOR_ID_IBM,
64 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
65 	  .class       = (PCI_CLASSCODE_GENWQE5 << 8),
66 	  .class_mask  = ~0,
67 	  .driver_data = 0 },
68 
69 	/* Initial SR-IOV bring-up image */
70 	{ .vendor      = PCI_VENDOR_ID_IBM,
71 	  .device      = PCI_DEVICE_GENWQE,
72 	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
73 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
74 	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
75 	  .class_mask  = ~0,
76 	  .driver_data = 0 },
77 
78 	{ .vendor      = PCI_VENDOR_ID_IBM,  /* VF Vendor ID */
79 	  .device      = 0x0000,  /* VF Device ID */
80 	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
81 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
82 	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
83 	  .class_mask  = ~0,
84 	  .driver_data = 0 },
85 
86 	/* Fixed up image */
87 	{ .vendor      = PCI_VENDOR_ID_IBM,
88 	  .device      = PCI_DEVICE_GENWQE,
89 	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
90 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
91 	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
92 	  .class_mask  = ~0,
93 	  .driver_data = 0 },
94 
95 	{ .vendor      = PCI_VENDOR_ID_IBM,  /* VF Vendor ID */
96 	  .device      = 0x0000,  /* VF Device ID */
97 	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
98 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
99 	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
100 	  .class_mask  = ~0,
101 	  .driver_data = 0 },
102 
103 	/* Even one more ... */
104 	{ .vendor      = PCI_VENDOR_ID_IBM,
105 	  .device      = PCI_DEVICE_GENWQE,
106 	  .subvendor   = PCI_SUBVENDOR_ID_IBM,
107 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_NEW,
108 	  .class       = (PCI_CLASSCODE_GENWQE5 << 8),
109 	  .class_mask  = ~0,
110 	  .driver_data = 0 },
111 
112 	{ 0, }			/* 0 terminated list. */
113 };
114 
115 MODULE_DEVICE_TABLE(pci, genwqe_device_table);
116 
117 /**
118  * genwqe_dev_alloc() - Create and prepare a new card descriptor
119  *
120  * Return: Pointer to card descriptor, or ERR_PTR(err) on error
121  */
122 static struct genwqe_dev *genwqe_dev_alloc(void)
123 {
124 	unsigned int i = 0, j;
125 	struct genwqe_dev *cd;
126 
127 	for (i = 0; i < GENWQE_CARD_NO_MAX; i++) {
128 		if (genwqe_devices[i] == NULL)
129 			break;
130 	}
131 	if (i >= GENWQE_CARD_NO_MAX)
132 		return ERR_PTR(-ENODEV);
133 
134 	cd = kzalloc(sizeof(struct genwqe_dev), GFP_KERNEL);
135 	if (!cd)
136 		return ERR_PTR(-ENOMEM);
137 
138 	cd->card_idx = i;
139 	cd->class_genwqe = class_genwqe;
140 	cd->debugfs_genwqe = debugfs_genwqe;
141 
142 	/*
143 	 * This comes from kernel config option and can be overritten via
144 	 * debugfs.
145 	 */
146 	cd->use_platform_recovery = CONFIG_GENWQE_PLATFORM_ERROR_RECOVERY;
147 
148 	init_waitqueue_head(&cd->queue_waitq);
149 
150 	spin_lock_init(&cd->file_lock);
151 	INIT_LIST_HEAD(&cd->file_list);
152 
153 	cd->card_state = GENWQE_CARD_UNUSED;
154 	spin_lock_init(&cd->print_lock);
155 
156 	cd->ddcb_software_timeout = genwqe_ddcb_software_timeout;
157 	cd->kill_timeout = genwqe_kill_timeout;
158 
159 	for (j = 0; j < GENWQE_MAX_VFS; j++)
160 		cd->vf_jobtimeout_msec[j] = genwqe_vf_jobtimeout_msec;
161 
162 	genwqe_devices[i] = cd;
163 	return cd;
164 }
165 
166 static void genwqe_dev_free(struct genwqe_dev *cd)
167 {
168 	if (!cd)
169 		return;
170 
171 	genwqe_devices[cd->card_idx] = NULL;
172 	kfree(cd);
173 }
174 
175 /**
176  * genwqe_bus_reset() - Card recovery
177  *
178  * pci_reset_function() will recover the device and ensure that the
179  * registers are accessible again when it completes with success. If
180  * not, the card will stay dead and registers will be unaccessible
181  * still.
182  */
183 static int genwqe_bus_reset(struct genwqe_dev *cd)
184 {
185 	int bars, rc = 0;
186 	struct pci_dev *pci_dev = cd->pci_dev;
187 	void __iomem *mmio;
188 
189 	if (cd->err_inject & GENWQE_INJECT_BUS_RESET_FAILURE)
190 		return -EIO;
191 
192 	mmio = cd->mmio;
193 	cd->mmio = NULL;
194 	pci_iounmap(pci_dev, mmio);
195 
196 	bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
197 	pci_release_selected_regions(pci_dev, bars);
198 
199 	/*
200 	 * Firmware/BIOS might change memory mapping during bus reset.
201 	 * Settings like enable bus-mastering, ... are backuped and
202 	 * restored by the pci_reset_function().
203 	 */
204 	dev_dbg(&pci_dev->dev, "[%s] pci_reset function ...\n", __func__);
205 	rc = pci_reset_function(pci_dev);
206 	if (rc) {
207 		dev_err(&pci_dev->dev,
208 			"[%s] err: failed reset func (rc %d)\n", __func__, rc);
209 		return rc;
210 	}
211 	dev_dbg(&pci_dev->dev, "[%s] done with rc=%d\n", __func__, rc);
212 
213 	/*
214 	 * Here is the right spot to clear the register read
215 	 * failure. pci_bus_reset() does this job in real systems.
216 	 */
217 	cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
218 			    GENWQE_INJECT_GFIR_FATAL |
219 			    GENWQE_INJECT_GFIR_INFO);
220 
221 	rc = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name);
222 	if (rc) {
223 		dev_err(&pci_dev->dev,
224 			"[%s] err: request bars failed (%d)\n", __func__, rc);
225 		return -EIO;
226 	}
227 
228 	cd->mmio = pci_iomap(pci_dev, 0, 0);
229 	if (cd->mmio == NULL) {
230 		dev_err(&pci_dev->dev,
231 			"[%s] err: mapping BAR0 failed\n", __func__);
232 		return -ENOMEM;
233 	}
234 	return 0;
235 }
236 
237 /*
238  * Hardware circumvention section. Certain bitstreams in our test-lab
239  * had different kinds of problems. Here is where we adjust those
240  * bitstreams to function will with this version of our device driver.
241  *
242  * Thise circumventions are applied to the physical function only.
243  * The magical numbers below are identifying development/manufacturing
244  * versions of the bitstream used on the card.
245  *
246  * Turn off error reporting for old/manufacturing images.
247  */
248 
249 bool genwqe_need_err_masking(struct genwqe_dev *cd)
250 {
251 	return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
252 }
253 
254 static void genwqe_tweak_hardware(struct genwqe_dev *cd)
255 {
256 	struct pci_dev *pci_dev = cd->pci_dev;
257 
258 	/* Mask FIRs for development images */
259 	if (((cd->slu_unitcfg & 0xFFFF0ull) >= 0x32000ull) &&
260 	    ((cd->slu_unitcfg & 0xFFFF0ull) <= 0x33250ull)) {
261 		dev_warn(&pci_dev->dev,
262 			 "FIRs masked due to bitstream %016llx.%016llx\n",
263 			 cd->slu_unitcfg, cd->app_unitcfg);
264 
265 		__genwqe_writeq(cd, IO_APP_SEC_LEM_DEBUG_OVR,
266 				0xFFFFFFFFFFFFFFFFull);
267 
268 		__genwqe_writeq(cd, IO_APP_ERR_ACT_MASK,
269 				0x0000000000000000ull);
270 	}
271 }
272 
273 /**
274  * genwqe_recovery_on_fatal_gfir_required() - Version depended actions
275  *
276  * Bitstreams older than 2013-02-17 have a bug where fatal GFIRs must
277  * be ignored. This is e.g. true for the bitstream we gave to the card
278  * manufacturer, but also for some old bitstreams we released to our
279  * test-lab.
280  */
281 int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd)
282 {
283 	return (cd->slu_unitcfg & 0xFFFF0ull) >= 0x32170ull;
284 }
285 
286 int genwqe_flash_readback_fails(struct genwqe_dev *cd)
287 {
288 	return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
289 }
290 
291 /**
292  * genwqe_T_psec() - Calculate PF/VF timeout register content
293  *
294  * Note: From a design perspective it turned out to be a bad idea to
295  * use codes here to specifiy the frequency/speed values. An old
296  * driver cannot understand new codes and is therefore always a
297  * problem. Better is to measure out the value or put the
298  * speed/frequency directly into a register which is always a valid
299  * value for old as well as for new software.
300  */
301 /* T = 1/f */
302 static int genwqe_T_psec(struct genwqe_dev *cd)
303 {
304 	u16 speed;	/* 1/f -> 250,  200,  166,  175 */
305 	static const int T[] = { 4000, 5000, 6000, 5714 };
306 
307 	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
308 	if (speed >= ARRAY_SIZE(T))
309 		return -1;	/* illegal value */
310 
311 	return T[speed];
312 }
313 
314 /**
315  * genwqe_setup_pf_jtimer() - Setup PF hardware timeouts for DDCB execution
316  *
317  * Do this _after_ card_reset() is called. Otherwise the values will
318  * vanish. The settings need to be done when the queues are inactive.
319  *
320  * The max. timeout value is 2^(10+x) * T (6ns for 166MHz) * 15/16.
321  * The min. timeout value is 2^(10+x) * T (6ns for 166MHz) * 14/16.
322  */
323 static bool genwqe_setup_pf_jtimer(struct genwqe_dev *cd)
324 {
325 	u32 T = genwqe_T_psec(cd);
326 	u64 x;
327 
328 	if (genwqe_pf_jobtimeout_msec == 0)
329 		return false;
330 
331 	/* PF: large value needed, flash update 2sec per block */
332 	x = ilog2(genwqe_pf_jobtimeout_msec *
333 		  16000000000uL/(T * 15)) - 10;
334 
335 	genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
336 			  0xff00 | (x & 0xff), 0);
337 	return true;
338 }
339 
340 /**
341  * genwqe_setup_vf_jtimer() - Setup VF hardware timeouts for DDCB execution
342  */
343 static bool genwqe_setup_vf_jtimer(struct genwqe_dev *cd)
344 {
345 	struct pci_dev *pci_dev = cd->pci_dev;
346 	unsigned int vf;
347 	u32 T = genwqe_T_psec(cd);
348 	u64 x;
349 	int totalvfs;
350 
351 	totalvfs = pci_sriov_get_totalvfs(pci_dev);
352 	if (totalvfs <= 0)
353 		return false;
354 
355 	for (vf = 0; vf < totalvfs; vf++) {
356 
357 		if (cd->vf_jobtimeout_msec[vf] == 0)
358 			continue;
359 
360 		x = ilog2(cd->vf_jobtimeout_msec[vf] *
361 			  16000000000uL/(T * 15)) - 10;
362 
363 		genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
364 				  0xff00 | (x & 0xff), vf + 1);
365 	}
366 	return true;
367 }
368 
369 static int genwqe_ffdc_buffs_alloc(struct genwqe_dev *cd)
370 {
371 	unsigned int type, e = 0;
372 
373 	for (type = 0; type < GENWQE_DBG_UNITS; type++) {
374 		switch (type) {
375 		case GENWQE_DBG_UNIT0:
376 			e = genwqe_ffdc_buff_size(cd, 0);
377 			break;
378 		case GENWQE_DBG_UNIT1:
379 			e = genwqe_ffdc_buff_size(cd, 1);
380 			break;
381 		case GENWQE_DBG_UNIT2:
382 			e = genwqe_ffdc_buff_size(cd, 2);
383 			break;
384 		case GENWQE_DBG_REGS:
385 			e = GENWQE_FFDC_REGS;
386 			break;
387 		}
388 
389 		/* currently support only the debug units mentioned here */
390 		cd->ffdc[type].entries = e;
391 		cd->ffdc[type].regs =
392 			kmalloc_array(e, sizeof(struct genwqe_reg),
393 				      GFP_KERNEL);
394 		/*
395 		 * regs == NULL is ok, the using code treats this as no regs,
396 		 * Printing warning is ok in this case.
397 		 */
398 	}
399 	return 0;
400 }
401 
402 static void genwqe_ffdc_buffs_free(struct genwqe_dev *cd)
403 {
404 	unsigned int type;
405 
406 	for (type = 0; type < GENWQE_DBG_UNITS; type++) {
407 		kfree(cd->ffdc[type].regs);
408 		cd->ffdc[type].regs = NULL;
409 	}
410 }
411 
412 static int genwqe_read_ids(struct genwqe_dev *cd)
413 {
414 	int err = 0;
415 	int slu_id;
416 	struct pci_dev *pci_dev = cd->pci_dev;
417 
418 	cd->slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
419 	if (cd->slu_unitcfg == IO_ILLEGAL_VALUE) {
420 		dev_err(&pci_dev->dev,
421 			"err: SLUID=%016llx\n", cd->slu_unitcfg);
422 		err = -EIO;
423 		goto out_err;
424 	}
425 
426 	slu_id = genwqe_get_slu_id(cd);
427 	if (slu_id < GENWQE_SLU_ARCH_REQ || slu_id == 0xff) {
428 		dev_err(&pci_dev->dev,
429 			"err: incompatible SLU Architecture %u\n", slu_id);
430 		err = -ENOENT;
431 		goto out_err;
432 	}
433 
434 	cd->app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
435 	if (cd->app_unitcfg == IO_ILLEGAL_VALUE) {
436 		dev_err(&pci_dev->dev,
437 			"err: APPID=%016llx\n", cd->app_unitcfg);
438 		err = -EIO;
439 		goto out_err;
440 	}
441 	genwqe_read_app_id(cd, cd->app_name, sizeof(cd->app_name));
442 
443 	/*
444 	 * Is access to all registers possible? If we are a VF the
445 	 * answer is obvious. If we run fully virtualized, we need to
446 	 * check if we can access all registers. If we do not have
447 	 * full access we will cause an UR and some informational FIRs
448 	 * in the PF, but that should not harm.
449 	 */
450 	if (pci_dev->is_virtfn)
451 		cd->is_privileged = 0;
452 	else
453 		cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM)
454 				     != IO_ILLEGAL_VALUE);
455 
456  out_err:
457 	return err;
458 }
459 
460 static int genwqe_start(struct genwqe_dev *cd)
461 {
462 	int err;
463 	struct pci_dev *pci_dev = cd->pci_dev;
464 
465 	err = genwqe_read_ids(cd);
466 	if (err)
467 		return err;
468 
469 	if (genwqe_is_privileged(cd)) {
470 		/* do this after the tweaks. alloc fail is acceptable */
471 		genwqe_ffdc_buffs_alloc(cd);
472 		genwqe_stop_traps(cd);
473 
474 		/* Collect registers e.g. FIRs, UNITIDs, traces ... */
475 		genwqe_read_ffdc_regs(cd, cd->ffdc[GENWQE_DBG_REGS].regs,
476 				      cd->ffdc[GENWQE_DBG_REGS].entries, 0);
477 
478 		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT0,
479 				      cd->ffdc[GENWQE_DBG_UNIT0].regs,
480 				      cd->ffdc[GENWQE_DBG_UNIT0].entries);
481 
482 		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT1,
483 				      cd->ffdc[GENWQE_DBG_UNIT1].regs,
484 				      cd->ffdc[GENWQE_DBG_UNIT1].entries);
485 
486 		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT2,
487 				      cd->ffdc[GENWQE_DBG_UNIT2].regs,
488 				      cd->ffdc[GENWQE_DBG_UNIT2].entries);
489 
490 		genwqe_start_traps(cd);
491 
492 		if (cd->card_state == GENWQE_CARD_FATAL_ERROR) {
493 			dev_warn(&pci_dev->dev,
494 				 "[%s] chip reload/recovery!\n", __func__);
495 
496 			/*
497 			 * Stealth Mode: Reload chip on either hot
498 			 * reset or PERST.
499 			 */
500 			cd->softreset = 0x7Cull;
501 			__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
502 				       cd->softreset);
503 
504 			err = genwqe_bus_reset(cd);
505 			if (err != 0) {
506 				dev_err(&pci_dev->dev,
507 					"[%s] err: bus reset failed!\n",
508 					__func__);
509 				goto out;
510 			}
511 
512 			/*
513 			 * Re-read the IDs because
514 			 * it could happen that the bitstream load
515 			 * failed!
516 			 */
517 			err = genwqe_read_ids(cd);
518 			if (err)
519 				goto out;
520 		}
521 	}
522 
523 	err = genwqe_setup_service_layer(cd);  /* does a reset to the card */
524 	if (err != 0) {
525 		dev_err(&pci_dev->dev,
526 			"[%s] err: could not setup servicelayer!\n", __func__);
527 		err = -ENODEV;
528 		goto out;
529 	}
530 
531 	if (genwqe_is_privileged(cd)) {	 /* code is running _after_ reset */
532 		genwqe_tweak_hardware(cd);
533 
534 		genwqe_setup_pf_jtimer(cd);
535 		genwqe_setup_vf_jtimer(cd);
536 	}
537 
538 	err = genwqe_device_create(cd);
539 	if (err < 0) {
540 		dev_err(&pci_dev->dev,
541 			"err: chdev init failed! (err=%d)\n", err);
542 		goto out_release_service_layer;
543 	}
544 	return 0;
545 
546  out_release_service_layer:
547 	genwqe_release_service_layer(cd);
548  out:
549 	if (genwqe_is_privileged(cd))
550 		genwqe_ffdc_buffs_free(cd);
551 	return -EIO;
552 }
553 
554 /**
555  * genwqe_stop() - Stop card operation
556  *
557  * Recovery notes:
558  *   As long as genwqe_thread runs we might access registers during
559  *   error data capture. Same is with the genwqe_health_thread.
560  *   When genwqe_bus_reset() fails this function might called two times:
561  *   first by the genwqe_health_thread() and later by genwqe_remove() to
562  *   unbind the device. We must be able to survive that.
563  *
564  * This function must be robust enough to be called twice.
565  */
566 static int genwqe_stop(struct genwqe_dev *cd)
567 {
568 	genwqe_finish_queue(cd);	    /* no register access */
569 	genwqe_device_remove(cd);	    /* device removed, procs killed */
570 	genwqe_release_service_layer(cd);   /* here genwqe_thread is stopped */
571 
572 	if (genwqe_is_privileged(cd)) {
573 		pci_disable_sriov(cd->pci_dev);	/* access pci config space */
574 		genwqe_ffdc_buffs_free(cd);
575 	}
576 
577 	return 0;
578 }
579 
580 /**
581  * genwqe_recover_card() - Try to recover the card if it is possible
582  *
583  * If fatal_err is set no register access is possible anymore. It is
584  * likely that genwqe_start fails in that situation. Proper error
585  * handling is required in this case.
586  *
587  * genwqe_bus_reset() will cause the pci code to call genwqe_remove()
588  * and later genwqe_probe() for all virtual functions.
589  */
590 static int genwqe_recover_card(struct genwqe_dev *cd, int fatal_err)
591 {
592 	int rc;
593 	struct pci_dev *pci_dev = cd->pci_dev;
594 
595 	genwqe_stop(cd);
596 
597 	/*
598 	 * Make sure chip is not reloaded to maintain FFDC. Write SLU
599 	 * Reset Register, CPLDReset field to 0.
600 	 */
601 	if (!fatal_err) {
602 		cd->softreset = 0x70ull;
603 		__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, cd->softreset);
604 	}
605 
606 	rc = genwqe_bus_reset(cd);
607 	if (rc != 0) {
608 		dev_err(&pci_dev->dev,
609 			"[%s] err: card recovery impossible!\n", __func__);
610 		return rc;
611 	}
612 
613 	rc = genwqe_start(cd);
614 	if (rc < 0) {
615 		dev_err(&pci_dev->dev,
616 			"[%s] err: failed to launch device!\n", __func__);
617 		return rc;
618 	}
619 	return 0;
620 }
621 
622 static int genwqe_health_check_cond(struct genwqe_dev *cd, u64 *gfir)
623 {
624 	*gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
625 	return (*gfir & GFIR_ERR_TRIGGER) &&
626 		genwqe_recovery_on_fatal_gfir_required(cd);
627 }
628 
629 /**
630  * genwqe_fir_checking() - Check the fault isolation registers of the card
631  *
632  * If this code works ok, can be tried out with help of the genwqe_poke tool:
633  *   sudo ./tools/genwqe_poke 0x8 0xfefefefefef
634  *
635  * Now the relevant FIRs/sFIRs should be printed out and the driver should
636  * invoke recovery (devices are removed and readded).
637  */
638 static u64 genwqe_fir_checking(struct genwqe_dev *cd)
639 {
640 	int j, iterations = 0;
641 	u64 mask, fir, fec, uid, gfir, gfir_masked, sfir, sfec;
642 	u32 fir_addr, fir_clr_addr, fec_addr, sfir_addr, sfec_addr;
643 	struct pci_dev *pci_dev = cd->pci_dev;
644 
645  healthMonitor:
646 	iterations++;
647 	if (iterations > 16) {
648 		dev_err(&pci_dev->dev, "* exit looping after %d times\n",
649 			iterations);
650 		goto fatal_error;
651 	}
652 
653 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
654 	if (gfir != 0x0)
655 		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n",
656 				    IO_SLC_CFGREG_GFIR, gfir);
657 	if (gfir == IO_ILLEGAL_VALUE)
658 		goto fatal_error;
659 
660 	/*
661 	 * Avoid printing when to GFIR bit is on prevents contignous
662 	 * printout e.g. for the following bug:
663 	 *   FIR set without a 2ndary FIR/FIR cannot be cleared
664 	 * Comment out the following if to get the prints:
665 	 */
666 	if (gfir == 0)
667 		return 0;
668 
669 	gfir_masked = gfir & GFIR_ERR_TRIGGER;  /* fatal errors */
670 
671 	for (uid = 0; uid < GENWQE_MAX_UNITS; uid++) { /* 0..2 in zEDC */
672 
673 		/* read the primary FIR (pfir) */
674 		fir_addr = (uid << 24) + 0x08;
675 		fir = __genwqe_readq(cd, fir_addr);
676 		if (fir == 0x0)
677 			continue;  /* no error in this unit */
678 
679 		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fir_addr, fir);
680 		if (fir == IO_ILLEGAL_VALUE)
681 			goto fatal_error;
682 
683 		/* read primary FEC */
684 		fec_addr = (uid << 24) + 0x18;
685 		fec = __genwqe_readq(cd, fec_addr);
686 
687 		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fec_addr, fec);
688 		if (fec == IO_ILLEGAL_VALUE)
689 			goto fatal_error;
690 
691 		for (j = 0, mask = 1ULL; j < 64; j++, mask <<= 1) {
692 
693 			/* secondary fir empty, skip it */
694 			if ((fir & mask) == 0x0)
695 				continue;
696 
697 			sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
698 			sfir = __genwqe_readq(cd, sfir_addr);
699 
700 			if (sfir == IO_ILLEGAL_VALUE)
701 				goto fatal_error;
702 			dev_err(&pci_dev->dev,
703 				"* 0x%08x 0x%016llx\n", sfir_addr, sfir);
704 
705 			sfec_addr = (uid << 24) + 0x300 + 0x08 * j;
706 			sfec = __genwqe_readq(cd, sfec_addr);
707 
708 			if (sfec == IO_ILLEGAL_VALUE)
709 				goto fatal_error;
710 			dev_err(&pci_dev->dev,
711 				"* 0x%08x 0x%016llx\n", sfec_addr, sfec);
712 
713 			gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
714 			if (gfir == IO_ILLEGAL_VALUE)
715 				goto fatal_error;
716 
717 			/* gfir turned on during routine! get out and
718 			   start over. */
719 			if ((gfir_masked == 0x0) &&
720 			    (gfir & GFIR_ERR_TRIGGER)) {
721 				goto healthMonitor;
722 			}
723 
724 			/* do not clear if we entered with a fatal gfir */
725 			if (gfir_masked == 0x0) {
726 
727 				/* NEW clear by mask the logged bits */
728 				sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
729 				__genwqe_writeq(cd, sfir_addr, sfir);
730 
731 				dev_dbg(&pci_dev->dev,
732 					"[HM] Clearing  2ndary FIR 0x%08x with 0x%016llx\n",
733 					sfir_addr, sfir);
734 
735 				/*
736 				 * note, these cannot be error-Firs
737 				 * since gfir_masked is 0 after sfir
738 				 * was read. Also, it is safe to do
739 				 * this write if sfir=0. Still need to
740 				 * clear the primary. This just means
741 				 * there is no secondary FIR.
742 				 */
743 
744 				/* clear by mask the logged bit. */
745 				fir_clr_addr = (uid << 24) + 0x10;
746 				__genwqe_writeq(cd, fir_clr_addr, mask);
747 
748 				dev_dbg(&pci_dev->dev,
749 					"[HM] Clearing primary FIR 0x%08x with 0x%016llx\n",
750 					fir_clr_addr, mask);
751 			}
752 		}
753 	}
754 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
755 	if (gfir == IO_ILLEGAL_VALUE)
756 		goto fatal_error;
757 
758 	if ((gfir_masked == 0x0) && (gfir & GFIR_ERR_TRIGGER)) {
759 		/*
760 		 * Check once more that it didn't go on after all the
761 		 * FIRS were cleared.
762 		 */
763 		dev_dbg(&pci_dev->dev, "ACK! Another FIR! Recursing %d!\n",
764 			iterations);
765 		goto healthMonitor;
766 	}
767 	return gfir_masked;
768 
769  fatal_error:
770 	return IO_ILLEGAL_VALUE;
771 }
772 
773 /**
774  * genwqe_pci_fundamental_reset() - trigger a PCIe fundamental reset on the slot
775  *
776  * Note: pci_set_pcie_reset_state() is not implemented on all archs, so this
777  * reset method will not work in all cases.
778  *
779  * Return: 0 on success or error code from pci_set_pcie_reset_state()
780  */
781 static int genwqe_pci_fundamental_reset(struct pci_dev *pci_dev)
782 {
783 	int rc;
784 
785 	/*
786 	 * lock pci config space access from userspace,
787 	 * save state and issue PCIe fundamental reset
788 	 */
789 	pci_cfg_access_lock(pci_dev);
790 	pci_save_state(pci_dev);
791 	rc = pci_set_pcie_reset_state(pci_dev, pcie_warm_reset);
792 	if (!rc) {
793 		/* keep PCIe reset asserted for 250ms */
794 		msleep(250);
795 		pci_set_pcie_reset_state(pci_dev, pcie_deassert_reset);
796 		/* Wait for 2s to reload flash and train the link */
797 		msleep(2000);
798 	}
799 	pci_restore_state(pci_dev);
800 	pci_cfg_access_unlock(pci_dev);
801 	return rc;
802 }
803 
804 
805 static int genwqe_platform_recovery(struct genwqe_dev *cd)
806 {
807 	struct pci_dev *pci_dev = cd->pci_dev;
808 	int rc;
809 
810 	dev_info(&pci_dev->dev,
811 		 "[%s] resetting card for error recovery\n", __func__);
812 
813 	/* Clear out error injection flags */
814 	cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
815 			    GENWQE_INJECT_GFIR_FATAL |
816 			    GENWQE_INJECT_GFIR_INFO);
817 
818 	genwqe_stop(cd);
819 
820 	/* Try recoverying the card with fundamental reset */
821 	rc = genwqe_pci_fundamental_reset(pci_dev);
822 	if (!rc) {
823 		rc = genwqe_start(cd);
824 		if (!rc)
825 			dev_info(&pci_dev->dev,
826 				 "[%s] card recovered\n", __func__);
827 		else
828 			dev_err(&pci_dev->dev,
829 				"[%s] err: cannot start card services! (err=%d)\n",
830 				__func__, rc);
831 	} else {
832 		dev_err(&pci_dev->dev,
833 			"[%s] card reset failed\n", __func__);
834 	}
835 
836 	return rc;
837 }
838 
839 /*
840  * genwqe_reload_bistream() - reload card bitstream
841  *
842  * Set the appropriate register and call fundamental reset to reaload the card
843  * bitstream.
844  *
845  * Return: 0 on success, error code otherwise
846  */
847 static int genwqe_reload_bistream(struct genwqe_dev *cd)
848 {
849 	struct pci_dev *pci_dev = cd->pci_dev;
850 	int rc;
851 
852 	dev_info(&pci_dev->dev,
853 		 "[%s] resetting card for bitstream reload\n",
854 		 __func__);
855 
856 	genwqe_stop(cd);
857 
858 	/*
859 	 * Cause a CPLD reprogram with the 'next_bitstream'
860 	 * partition on PCIe hot or fundamental reset
861 	 */
862 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
863 			(cd->softreset & 0xcull) | 0x70ull);
864 
865 	rc = genwqe_pci_fundamental_reset(pci_dev);
866 	if (rc) {
867 		/*
868 		 * A fundamental reset failure can be caused
869 		 * by lack of support on the arch, so we just
870 		 * log the error and try to start the card
871 		 * again.
872 		 */
873 		dev_err(&pci_dev->dev,
874 			"[%s] err: failed to reset card for bitstream reload\n",
875 			__func__);
876 	}
877 
878 	rc = genwqe_start(cd);
879 	if (rc) {
880 		dev_err(&pci_dev->dev,
881 			"[%s] err: cannot start card services! (err=%d)\n",
882 			__func__, rc);
883 		return rc;
884 	}
885 	dev_info(&pci_dev->dev,
886 		 "[%s] card reloaded\n", __func__);
887 	return 0;
888 }
889 
890 
891 /**
892  * genwqe_health_thread() - Health checking thread
893  *
894  * This thread is only started for the PF of the card.
895  *
896  * This thread monitors the health of the card. A critical situation
897  * is when we read registers which contain -1 (IO_ILLEGAL_VALUE). In
898  * this case we need to be recovered from outside. Writing to
899  * registers will very likely not work either.
900  *
901  * This thread must only exit if kthread_should_stop() becomes true.
902  *
903  * Condition for the health-thread to trigger:
904  *   a) when a kthread_stop() request comes in or
905  *   b) a critical GFIR occured
906  *
907  * Informational GFIRs are checked and potentially printed in
908  * health_check_interval seconds.
909  */
910 static int genwqe_health_thread(void *data)
911 {
912 	int rc, should_stop = 0;
913 	struct genwqe_dev *cd = data;
914 	struct pci_dev *pci_dev = cd->pci_dev;
915 	u64 gfir, gfir_masked, slu_unitcfg, app_unitcfg;
916 
917  health_thread_begin:
918 	while (!kthread_should_stop()) {
919 		rc = wait_event_interruptible_timeout(cd->health_waitq,
920 			 (genwqe_health_check_cond(cd, &gfir) ||
921 			  (should_stop = kthread_should_stop())),
922 				genwqe_health_check_interval * HZ);
923 
924 		if (should_stop)
925 			break;
926 
927 		if (gfir == IO_ILLEGAL_VALUE) {
928 			dev_err(&pci_dev->dev,
929 				"[%s] GFIR=%016llx\n", __func__, gfir);
930 			goto fatal_error;
931 		}
932 
933 		slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
934 		if (slu_unitcfg == IO_ILLEGAL_VALUE) {
935 			dev_err(&pci_dev->dev,
936 				"[%s] SLU_UNITCFG=%016llx\n",
937 				__func__, slu_unitcfg);
938 			goto fatal_error;
939 		}
940 
941 		app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
942 		if (app_unitcfg == IO_ILLEGAL_VALUE) {
943 			dev_err(&pci_dev->dev,
944 				"[%s] APP_UNITCFG=%016llx\n",
945 				__func__, app_unitcfg);
946 			goto fatal_error;
947 		}
948 
949 		gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
950 		if (gfir == IO_ILLEGAL_VALUE) {
951 			dev_err(&pci_dev->dev,
952 				"[%s] %s: GFIR=%016llx\n", __func__,
953 				(gfir & GFIR_ERR_TRIGGER) ? "err" : "info",
954 				gfir);
955 			goto fatal_error;
956 		}
957 
958 		gfir_masked = genwqe_fir_checking(cd);
959 		if (gfir_masked == IO_ILLEGAL_VALUE)
960 			goto fatal_error;
961 
962 		/*
963 		 * GFIR ErrorTrigger bits set => reset the card!
964 		 * Never do this for old/manufacturing images!
965 		 */
966 		if ((gfir_masked) && !cd->skip_recovery &&
967 		    genwqe_recovery_on_fatal_gfir_required(cd)) {
968 
969 			cd->card_state = GENWQE_CARD_FATAL_ERROR;
970 
971 			rc = genwqe_recover_card(cd, 0);
972 			if (rc < 0) {
973 				/* FIXME Card is unusable and needs unbind! */
974 				goto fatal_error;
975 			}
976 		}
977 
978 		if (cd->card_state == GENWQE_CARD_RELOAD_BITSTREAM) {
979 			/* Userspace requested card bitstream reload */
980 			rc = genwqe_reload_bistream(cd);
981 			if (rc)
982 				goto fatal_error;
983 		}
984 
985 		cd->last_gfir = gfir;
986 		cond_resched();
987 	}
988 
989 	return 0;
990 
991  fatal_error:
992 	if (cd->use_platform_recovery) {
993 		/*
994 		 * Since we use raw accessors, EEH errors won't be detected
995 		 * by the platform until we do a non-raw MMIO or config space
996 		 * read
997 		 */
998 		readq(cd->mmio + IO_SLC_CFGREG_GFIR);
999 
1000 		/* We do nothing if the card is going over PCI recovery */
1001 		if (pci_channel_offline(pci_dev))
1002 			return -EIO;
1003 
1004 		/*
1005 		 * If it's supported by the platform, we try a fundamental reset
1006 		 * to recover from a fatal error. Otherwise, we continue to wait
1007 		 * for an external recovery procedure to take care of it.
1008 		 */
1009 		rc = genwqe_platform_recovery(cd);
1010 		if (!rc)
1011 			goto health_thread_begin;
1012 	}
1013 
1014 	dev_err(&pci_dev->dev,
1015 		"[%s] card unusable. Please trigger unbind!\n", __func__);
1016 
1017 	/* Bring down logical devices to inform user space via udev remove. */
1018 	cd->card_state = GENWQE_CARD_FATAL_ERROR;
1019 	genwqe_stop(cd);
1020 
1021 	/* genwqe_bus_reset failed(). Now wait for genwqe_remove(). */
1022 	while (!kthread_should_stop())
1023 		cond_resched();
1024 
1025 	return -EIO;
1026 }
1027 
1028 static int genwqe_health_check_start(struct genwqe_dev *cd)
1029 {
1030 	int rc;
1031 
1032 	if (genwqe_health_check_interval <= 0)
1033 		return 0;	/* valid for disabling the service */
1034 
1035 	/* moved before request_irq() */
1036 	/* init_waitqueue_head(&cd->health_waitq); */
1037 
1038 	cd->health_thread = kthread_run(genwqe_health_thread, cd,
1039 					GENWQE_DEVNAME "%d_health",
1040 					cd->card_idx);
1041 	if (IS_ERR(cd->health_thread)) {
1042 		rc = PTR_ERR(cd->health_thread);
1043 		cd->health_thread = NULL;
1044 		return rc;
1045 	}
1046 	return 0;
1047 }
1048 
1049 static int genwqe_health_thread_running(struct genwqe_dev *cd)
1050 {
1051 	return cd->health_thread != NULL;
1052 }
1053 
1054 static int genwqe_health_check_stop(struct genwqe_dev *cd)
1055 {
1056 	int rc;
1057 
1058 	if (!genwqe_health_thread_running(cd))
1059 		return -EIO;
1060 
1061 	rc = kthread_stop(cd->health_thread);
1062 	cd->health_thread = NULL;
1063 	return 0;
1064 }
1065 
1066 /**
1067  * genwqe_pci_setup() - Allocate PCIe related resources for our card
1068  */
1069 static int genwqe_pci_setup(struct genwqe_dev *cd)
1070 {
1071 	int err, bars;
1072 	struct pci_dev *pci_dev = cd->pci_dev;
1073 
1074 	bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
1075 	err = pci_enable_device_mem(pci_dev);
1076 	if (err) {
1077 		dev_err(&pci_dev->dev,
1078 			"err: failed to enable pci memory (err=%d)\n", err);
1079 		goto err_out;
1080 	}
1081 
1082 	/* Reserve PCI I/O and memory resources */
1083 	err = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name);
1084 	if (err) {
1085 		dev_err(&pci_dev->dev,
1086 			"[%s] err: request bars failed (%d)\n", __func__, err);
1087 		err = -EIO;
1088 		goto err_disable_device;
1089 	}
1090 
1091 	/* check for 64-bit DMA address supported (DAC) */
1092 	if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1093 		err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(64));
1094 		if (err) {
1095 			dev_err(&pci_dev->dev,
1096 				"err: DMA64 consistent mask error\n");
1097 			err = -EIO;
1098 			goto out_release_resources;
1099 		}
1100 	/* check for 32-bit DMA address supported (SAC) */
1101 	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1102 		err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(32));
1103 		if (err) {
1104 			dev_err(&pci_dev->dev,
1105 				"err: DMA32 consistent mask error\n");
1106 			err = -EIO;
1107 			goto out_release_resources;
1108 		}
1109 	} else {
1110 		dev_err(&pci_dev->dev,
1111 			"err: neither DMA32 nor DMA64 supported\n");
1112 		err = -EIO;
1113 		goto out_release_resources;
1114 	}
1115 
1116 	pci_set_master(pci_dev);
1117 	pci_enable_pcie_error_reporting(pci_dev);
1118 
1119 	/* EEH recovery requires PCIe fundamental reset */
1120 	pci_dev->needs_freset = 1;
1121 
1122 	/* request complete BAR-0 space (length = 0) */
1123 	cd->mmio_len = pci_resource_len(pci_dev, 0);
1124 	cd->mmio = pci_iomap(pci_dev, 0, 0);
1125 	if (cd->mmio == NULL) {
1126 		dev_err(&pci_dev->dev,
1127 			"[%s] err: mapping BAR0 failed\n", __func__);
1128 		err = -ENOMEM;
1129 		goto out_release_resources;
1130 	}
1131 
1132 	cd->num_vfs = pci_sriov_get_totalvfs(pci_dev);
1133 	if (cd->num_vfs < 0)
1134 		cd->num_vfs = 0;
1135 
1136 	err = genwqe_read_ids(cd);
1137 	if (err)
1138 		goto out_iounmap;
1139 
1140 	return 0;
1141 
1142  out_iounmap:
1143 	pci_iounmap(pci_dev, cd->mmio);
1144  out_release_resources:
1145 	pci_release_selected_regions(pci_dev, bars);
1146  err_disable_device:
1147 	pci_disable_device(pci_dev);
1148  err_out:
1149 	return err;
1150 }
1151 
1152 /**
1153  * genwqe_pci_remove() - Free PCIe related resources for our card
1154  */
1155 static void genwqe_pci_remove(struct genwqe_dev *cd)
1156 {
1157 	int bars;
1158 	struct pci_dev *pci_dev = cd->pci_dev;
1159 
1160 	if (cd->mmio)
1161 		pci_iounmap(pci_dev, cd->mmio);
1162 
1163 	bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
1164 	pci_release_selected_regions(pci_dev, bars);
1165 	pci_disable_device(pci_dev);
1166 }
1167 
1168 /**
1169  * genwqe_probe() - Device initialization
1170  * @pdev:	PCI device information struct
1171  *
1172  * Callable for multiple cards. This function is called on bind.
1173  *
1174  * Return: 0 if succeeded, < 0 when failed
1175  */
1176 static int genwqe_probe(struct pci_dev *pci_dev,
1177 			const struct pci_device_id *id)
1178 {
1179 	int err;
1180 	struct genwqe_dev *cd;
1181 
1182 	genwqe_init_crc32();
1183 
1184 	cd = genwqe_dev_alloc();
1185 	if (IS_ERR(cd)) {
1186 		dev_err(&pci_dev->dev, "err: could not alloc mem (err=%d)!\n",
1187 			(int)PTR_ERR(cd));
1188 		return PTR_ERR(cd);
1189 	}
1190 
1191 	dev_set_drvdata(&pci_dev->dev, cd);
1192 	cd->pci_dev = pci_dev;
1193 
1194 	err = genwqe_pci_setup(cd);
1195 	if (err < 0) {
1196 		dev_err(&pci_dev->dev,
1197 			"err: problems with PCI setup (err=%d)\n", err);
1198 		goto out_free_dev;
1199 	}
1200 
1201 	err = genwqe_start(cd);
1202 	if (err < 0) {
1203 		dev_err(&pci_dev->dev,
1204 			"err: cannot start card services! (err=%d)\n", err);
1205 		goto out_pci_remove;
1206 	}
1207 
1208 	if (genwqe_is_privileged(cd)) {
1209 		err = genwqe_health_check_start(cd);
1210 		if (err < 0) {
1211 			dev_err(&pci_dev->dev,
1212 				"err: cannot start health checking! (err=%d)\n",
1213 				err);
1214 			goto out_stop_services;
1215 		}
1216 	}
1217 	return 0;
1218 
1219  out_stop_services:
1220 	genwqe_stop(cd);
1221  out_pci_remove:
1222 	genwqe_pci_remove(cd);
1223  out_free_dev:
1224 	genwqe_dev_free(cd);
1225 	return err;
1226 }
1227 
1228 /**
1229  * genwqe_remove() - Called when device is removed (hot-plugable)
1230  *
1231  * Or when driver is unloaded respecitively when unbind is done.
1232  */
1233 static void genwqe_remove(struct pci_dev *pci_dev)
1234 {
1235 	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1236 
1237 	genwqe_health_check_stop(cd);
1238 
1239 	/*
1240 	 * genwqe_stop() must survive if it is called twice
1241 	 * sequentially. This happens when the health thread calls it
1242 	 * and fails on genwqe_bus_reset().
1243 	 */
1244 	genwqe_stop(cd);
1245 	genwqe_pci_remove(cd);
1246 	genwqe_dev_free(cd);
1247 }
1248 
1249 /*
1250  * genwqe_err_error_detected() - Error detection callback
1251  *
1252  * This callback is called by the PCI subsystem whenever a PCI bus
1253  * error is detected.
1254  */
1255 static pci_ers_result_t genwqe_err_error_detected(struct pci_dev *pci_dev,
1256 						 enum pci_channel_state state)
1257 {
1258 	struct genwqe_dev *cd;
1259 
1260 	dev_err(&pci_dev->dev, "[%s] state=%d\n", __func__, state);
1261 
1262 	cd = dev_get_drvdata(&pci_dev->dev);
1263 	if (cd == NULL)
1264 		return PCI_ERS_RESULT_DISCONNECT;
1265 
1266 	/* Stop the card */
1267 	genwqe_health_check_stop(cd);
1268 	genwqe_stop(cd);
1269 
1270 	/*
1271 	 * On permanent failure, the PCI code will call device remove
1272 	 * after the return of this function.
1273 	 * genwqe_stop() can be called twice.
1274 	 */
1275 	if (state == pci_channel_io_perm_failure) {
1276 		return PCI_ERS_RESULT_DISCONNECT;
1277 	} else {
1278 		genwqe_pci_remove(cd);
1279 		return PCI_ERS_RESULT_NEED_RESET;
1280 	}
1281 }
1282 
1283 static pci_ers_result_t genwqe_err_slot_reset(struct pci_dev *pci_dev)
1284 {
1285 	int rc;
1286 	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1287 
1288 	rc = genwqe_pci_setup(cd);
1289 	if (!rc) {
1290 		return PCI_ERS_RESULT_RECOVERED;
1291 	} else {
1292 		dev_err(&pci_dev->dev,
1293 			"err: problems with PCI setup (err=%d)\n", rc);
1294 		return PCI_ERS_RESULT_DISCONNECT;
1295 	}
1296 }
1297 
1298 static pci_ers_result_t genwqe_err_result_none(struct pci_dev *dev)
1299 {
1300 	return PCI_ERS_RESULT_NONE;
1301 }
1302 
1303 static void genwqe_err_resume(struct pci_dev *pci_dev)
1304 {
1305 	int rc;
1306 	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1307 
1308 	rc = genwqe_start(cd);
1309 	if (!rc) {
1310 		rc = genwqe_health_check_start(cd);
1311 		if (rc)
1312 			dev_err(&pci_dev->dev,
1313 				"err: cannot start health checking! (err=%d)\n",
1314 				rc);
1315 	} else {
1316 		dev_err(&pci_dev->dev,
1317 			"err: cannot start card services! (err=%d)\n", rc);
1318 	}
1319 }
1320 
1321 static int genwqe_sriov_configure(struct pci_dev *dev, int numvfs)
1322 {
1323 	int rc;
1324 	struct genwqe_dev *cd = dev_get_drvdata(&dev->dev);
1325 
1326 	if (numvfs > 0) {
1327 		genwqe_setup_vf_jtimer(cd);
1328 		rc = pci_enable_sriov(dev, numvfs);
1329 		if (rc < 0)
1330 			return rc;
1331 		return numvfs;
1332 	}
1333 	if (numvfs == 0) {
1334 		pci_disable_sriov(dev);
1335 		return 0;
1336 	}
1337 	return 0;
1338 }
1339 
1340 static struct pci_error_handlers genwqe_err_handler = {
1341 	.error_detected = genwqe_err_error_detected,
1342 	.mmio_enabled	= genwqe_err_result_none,
1343 	.link_reset	= genwqe_err_result_none,
1344 	.slot_reset	= genwqe_err_slot_reset,
1345 	.resume		= genwqe_err_resume,
1346 };
1347 
1348 static struct pci_driver genwqe_driver = {
1349 	.name	  = genwqe_driver_name,
1350 	.id_table = genwqe_device_table,
1351 	.probe	  = genwqe_probe,
1352 	.remove	  = genwqe_remove,
1353 	.sriov_configure = genwqe_sriov_configure,
1354 	.err_handler = &genwqe_err_handler,
1355 };
1356 
1357 /**
1358  * genwqe_init_module() - Driver registration and initialization
1359  */
1360 static int __init genwqe_init_module(void)
1361 {
1362 	int rc;
1363 
1364 	class_genwqe = class_create(THIS_MODULE, GENWQE_DEVNAME);
1365 	if (IS_ERR(class_genwqe)) {
1366 		pr_err("[%s] create class failed\n", __func__);
1367 		return -ENOMEM;
1368 	}
1369 
1370 	debugfs_genwqe = debugfs_create_dir(GENWQE_DEVNAME, NULL);
1371 	if (!debugfs_genwqe) {
1372 		rc = -ENOMEM;
1373 		goto err_out;
1374 	}
1375 
1376 	rc = pci_register_driver(&genwqe_driver);
1377 	if (rc != 0) {
1378 		pr_err("[%s] pci_reg_driver (rc=%d)\n", __func__, rc);
1379 		goto err_out0;
1380 	}
1381 
1382 	return rc;
1383 
1384  err_out0:
1385 	debugfs_remove(debugfs_genwqe);
1386  err_out:
1387 	class_destroy(class_genwqe);
1388 	return rc;
1389 }
1390 
1391 /**
1392  * genwqe_exit_module() - Driver exit
1393  */
1394 static void __exit genwqe_exit_module(void)
1395 {
1396 	pci_unregister_driver(&genwqe_driver);
1397 	debugfs_remove(debugfs_genwqe);
1398 	class_destroy(class_genwqe);
1399 }
1400 
1401 module_init(genwqe_init_module);
1402 module_exit(genwqe_exit_module);
1403