xref: /openbmc/linux/drivers/misc/genwqe/card_base.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3  * IBM Accelerator Family 'GenWQE'
4  *
5  * (C) Copyright IBM Corp. 2013
6  *
7  * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
8  * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
9  * Author: Michael Jung <mijung@gmx.net>
10  * Author: Michael Ruettger <michael@ibmra.de>
11  */
12 
13 /*
14  * Module initialization and PCIe setup. Card health monitoring and
15  * recovery functionality. Character device creation and deletion are
16  * controlled from here.
17  */
18 
19 #include <linux/types.h>
20 #include <linux/pci.h>
21 #include <linux/err.h>
22 #include <linux/aer.h>
23 #include <linux/string.h>
24 #include <linux/sched.h>
25 #include <linux/wait.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/device.h>
31 #include <linux/log2.h>
32 
33 #include "card_base.h"
34 #include "card_ddcb.h"
35 
36 MODULE_AUTHOR("Frank Haverkamp <haver@linux.vnet.ibm.com>");
37 MODULE_AUTHOR("Michael Ruettger <michael@ibmra.de>");
38 MODULE_AUTHOR("Joerg-Stephan Vogt <jsvogt@de.ibm.com>");
39 MODULE_AUTHOR("Michael Jung <mijung@gmx.net>");
40 
41 MODULE_DESCRIPTION("GenWQE Card");
42 MODULE_VERSION(DRV_VERSION);
43 MODULE_LICENSE("GPL");
44 
45 static char genwqe_driver_name[] = GENWQE_DEVNAME;
46 static struct class *class_genwqe;
47 static struct dentry *debugfs_genwqe;
48 static struct genwqe_dev *genwqe_devices[GENWQE_CARD_NO_MAX];
49 
50 /* PCI structure for identifying device by PCI vendor and device ID */
51 static const struct pci_device_id genwqe_device_table[] = {
52 	{ .vendor      = PCI_VENDOR_ID_IBM,
53 	  .device      = PCI_DEVICE_GENWQE,
54 	  .subvendor   = PCI_SUBVENDOR_ID_IBM,
55 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
56 	  .class       = (PCI_CLASSCODE_GENWQE5 << 8),
57 	  .class_mask  = ~0,
58 	  .driver_data = 0 },
59 
60 	/* Initial SR-IOV bring-up image */
61 	{ .vendor      = PCI_VENDOR_ID_IBM,
62 	  .device      = PCI_DEVICE_GENWQE,
63 	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
64 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
65 	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
66 	  .class_mask  = ~0,
67 	  .driver_data = 0 },
68 
69 	{ .vendor      = PCI_VENDOR_ID_IBM,  /* VF Vendor ID */
70 	  .device      = 0x0000,  /* VF Device ID */
71 	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
72 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
73 	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
74 	  .class_mask  = ~0,
75 	  .driver_data = 0 },
76 
77 	/* Fixed up image */
78 	{ .vendor      = PCI_VENDOR_ID_IBM,
79 	  .device      = PCI_DEVICE_GENWQE,
80 	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
81 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
82 	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
83 	  .class_mask  = ~0,
84 	  .driver_data = 0 },
85 
86 	{ .vendor      = PCI_VENDOR_ID_IBM,  /* VF Vendor ID */
87 	  .device      = 0x0000,  /* VF Device ID */
88 	  .subvendor   = PCI_SUBVENDOR_ID_IBM_SRIOV,
89 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5,
90 	  .class       = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
91 	  .class_mask  = ~0,
92 	  .driver_data = 0 },
93 
94 	/* Even one more ... */
95 	{ .vendor      = PCI_VENDOR_ID_IBM,
96 	  .device      = PCI_DEVICE_GENWQE,
97 	  .subvendor   = PCI_SUBVENDOR_ID_IBM,
98 	  .subdevice   = PCI_SUBSYSTEM_ID_GENWQE5_NEW,
99 	  .class       = (PCI_CLASSCODE_GENWQE5 << 8),
100 	  .class_mask  = ~0,
101 	  .driver_data = 0 },
102 
103 	{ 0, }			/* 0 terminated list. */
104 };
105 
106 MODULE_DEVICE_TABLE(pci, genwqe_device_table);
107 
108 /**
109  * genwqe_dev_alloc() - Create and prepare a new card descriptor
110  *
111  * Return: Pointer to card descriptor, or ERR_PTR(err) on error
112  */
113 static struct genwqe_dev *genwqe_dev_alloc(void)
114 {
115 	unsigned int i = 0, j;
116 	struct genwqe_dev *cd;
117 
118 	for (i = 0; i < GENWQE_CARD_NO_MAX; i++) {
119 		if (genwqe_devices[i] == NULL)
120 			break;
121 	}
122 	if (i >= GENWQE_CARD_NO_MAX)
123 		return ERR_PTR(-ENODEV);
124 
125 	cd = kzalloc(sizeof(struct genwqe_dev), GFP_KERNEL);
126 	if (!cd)
127 		return ERR_PTR(-ENOMEM);
128 
129 	cd->card_idx = i;
130 	cd->class_genwqe = class_genwqe;
131 	cd->debugfs_genwqe = debugfs_genwqe;
132 
133 	/*
134 	 * This comes from kernel config option and can be overritten via
135 	 * debugfs.
136 	 */
137 	cd->use_platform_recovery = CONFIG_GENWQE_PLATFORM_ERROR_RECOVERY;
138 
139 	init_waitqueue_head(&cd->queue_waitq);
140 
141 	spin_lock_init(&cd->file_lock);
142 	INIT_LIST_HEAD(&cd->file_list);
143 
144 	cd->card_state = GENWQE_CARD_UNUSED;
145 	spin_lock_init(&cd->print_lock);
146 
147 	cd->ddcb_software_timeout = GENWQE_DDCB_SOFTWARE_TIMEOUT;
148 	cd->kill_timeout = GENWQE_KILL_TIMEOUT;
149 
150 	for (j = 0; j < GENWQE_MAX_VFS; j++)
151 		cd->vf_jobtimeout_msec[j] = GENWQE_VF_JOBTIMEOUT_MSEC;
152 
153 	genwqe_devices[i] = cd;
154 	return cd;
155 }
156 
157 static void genwqe_dev_free(struct genwqe_dev *cd)
158 {
159 	if (!cd)
160 		return;
161 
162 	genwqe_devices[cd->card_idx] = NULL;
163 	kfree(cd);
164 }
165 
166 /**
167  * genwqe_bus_reset() - Card recovery
168  *
169  * pci_reset_function() will recover the device and ensure that the
170  * registers are accessible again when it completes with success. If
171  * not, the card will stay dead and registers will be unaccessible
172  * still.
173  */
174 static int genwqe_bus_reset(struct genwqe_dev *cd)
175 {
176 	int rc = 0;
177 	struct pci_dev *pci_dev = cd->pci_dev;
178 	void __iomem *mmio;
179 
180 	if (cd->err_inject & GENWQE_INJECT_BUS_RESET_FAILURE)
181 		return -EIO;
182 
183 	mmio = cd->mmio;
184 	cd->mmio = NULL;
185 	pci_iounmap(pci_dev, mmio);
186 
187 	pci_release_mem_regions(pci_dev);
188 
189 	/*
190 	 * Firmware/BIOS might change memory mapping during bus reset.
191 	 * Settings like enable bus-mastering, ... are backuped and
192 	 * restored by the pci_reset_function().
193 	 */
194 	dev_dbg(&pci_dev->dev, "[%s] pci_reset function ...\n", __func__);
195 	rc = pci_reset_function(pci_dev);
196 	if (rc) {
197 		dev_err(&pci_dev->dev,
198 			"[%s] err: failed reset func (rc %d)\n", __func__, rc);
199 		return rc;
200 	}
201 	dev_dbg(&pci_dev->dev, "[%s] done with rc=%d\n", __func__, rc);
202 
203 	/*
204 	 * Here is the right spot to clear the register read
205 	 * failure. pci_bus_reset() does this job in real systems.
206 	 */
207 	cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
208 			    GENWQE_INJECT_GFIR_FATAL |
209 			    GENWQE_INJECT_GFIR_INFO);
210 
211 	rc = pci_request_mem_regions(pci_dev, genwqe_driver_name);
212 	if (rc) {
213 		dev_err(&pci_dev->dev,
214 			"[%s] err: request bars failed (%d)\n", __func__, rc);
215 		return -EIO;
216 	}
217 
218 	cd->mmio = pci_iomap(pci_dev, 0, 0);
219 	if (cd->mmio == NULL) {
220 		dev_err(&pci_dev->dev,
221 			"[%s] err: mapping BAR0 failed\n", __func__);
222 		return -ENOMEM;
223 	}
224 	return 0;
225 }
226 
227 /*
228  * Hardware circumvention section. Certain bitstreams in our test-lab
229  * had different kinds of problems. Here is where we adjust those
230  * bitstreams to function will with this version of our device driver.
231  *
232  * Thise circumventions are applied to the physical function only.
233  * The magical numbers below are identifying development/manufacturing
234  * versions of the bitstream used on the card.
235  *
236  * Turn off error reporting for old/manufacturing images.
237  */
238 
239 bool genwqe_need_err_masking(struct genwqe_dev *cd)
240 {
241 	return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
242 }
243 
244 static void genwqe_tweak_hardware(struct genwqe_dev *cd)
245 {
246 	struct pci_dev *pci_dev = cd->pci_dev;
247 
248 	/* Mask FIRs for development images */
249 	if (((cd->slu_unitcfg & 0xFFFF0ull) >= 0x32000ull) &&
250 	    ((cd->slu_unitcfg & 0xFFFF0ull) <= 0x33250ull)) {
251 		dev_warn(&pci_dev->dev,
252 			 "FIRs masked due to bitstream %016llx.%016llx\n",
253 			 cd->slu_unitcfg, cd->app_unitcfg);
254 
255 		__genwqe_writeq(cd, IO_APP_SEC_LEM_DEBUG_OVR,
256 				0xFFFFFFFFFFFFFFFFull);
257 
258 		__genwqe_writeq(cd, IO_APP_ERR_ACT_MASK,
259 				0x0000000000000000ull);
260 	}
261 }
262 
263 /**
264  * genwqe_recovery_on_fatal_gfir_required() - Version depended actions
265  *
266  * Bitstreams older than 2013-02-17 have a bug where fatal GFIRs must
267  * be ignored. This is e.g. true for the bitstream we gave to the card
268  * manufacturer, but also for some old bitstreams we released to our
269  * test-lab.
270  */
271 int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd)
272 {
273 	return (cd->slu_unitcfg & 0xFFFF0ull) >= 0x32170ull;
274 }
275 
276 int genwqe_flash_readback_fails(struct genwqe_dev *cd)
277 {
278 	return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
279 }
280 
281 /**
282  * genwqe_T_psec() - Calculate PF/VF timeout register content
283  *
284  * Note: From a design perspective it turned out to be a bad idea to
285  * use codes here to specifiy the frequency/speed values. An old
286  * driver cannot understand new codes and is therefore always a
287  * problem. Better is to measure out the value or put the
288  * speed/frequency directly into a register which is always a valid
289  * value for old as well as for new software.
290  */
291 /* T = 1/f */
292 static int genwqe_T_psec(struct genwqe_dev *cd)
293 {
294 	u16 speed;	/* 1/f -> 250,  200,  166,  175 */
295 	static const int T[] = { 4000, 5000, 6000, 5714 };
296 
297 	speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
298 	if (speed >= ARRAY_SIZE(T))
299 		return -1;	/* illegal value */
300 
301 	return T[speed];
302 }
303 
304 /**
305  * genwqe_setup_pf_jtimer() - Setup PF hardware timeouts for DDCB execution
306  *
307  * Do this _after_ card_reset() is called. Otherwise the values will
308  * vanish. The settings need to be done when the queues are inactive.
309  *
310  * The max. timeout value is 2^(10+x) * T (6ns for 166MHz) * 15/16.
311  * The min. timeout value is 2^(10+x) * T (6ns for 166MHz) * 14/16.
312  */
313 static bool genwqe_setup_pf_jtimer(struct genwqe_dev *cd)
314 {
315 	u32 T = genwqe_T_psec(cd);
316 	u64 x;
317 
318 	if (GENWQE_PF_JOBTIMEOUT_MSEC == 0)
319 		return false;
320 
321 	/* PF: large value needed, flash update 2sec per block */
322 	x = ilog2(GENWQE_PF_JOBTIMEOUT_MSEC *
323 		  16000000000uL/(T * 15)) - 10;
324 
325 	genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
326 			  0xff00 | (x & 0xff), 0);
327 	return true;
328 }
329 
330 /**
331  * genwqe_setup_vf_jtimer() - Setup VF hardware timeouts for DDCB execution
332  */
333 static bool genwqe_setup_vf_jtimer(struct genwqe_dev *cd)
334 {
335 	struct pci_dev *pci_dev = cd->pci_dev;
336 	unsigned int vf;
337 	u32 T = genwqe_T_psec(cd);
338 	u64 x;
339 	int totalvfs;
340 
341 	totalvfs = pci_sriov_get_totalvfs(pci_dev);
342 	if (totalvfs <= 0)
343 		return false;
344 
345 	for (vf = 0; vf < totalvfs; vf++) {
346 
347 		if (cd->vf_jobtimeout_msec[vf] == 0)
348 			continue;
349 
350 		x = ilog2(cd->vf_jobtimeout_msec[vf] *
351 			  16000000000uL/(T * 15)) - 10;
352 
353 		genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
354 				  0xff00 | (x & 0xff), vf + 1);
355 	}
356 	return true;
357 }
358 
359 static int genwqe_ffdc_buffs_alloc(struct genwqe_dev *cd)
360 {
361 	unsigned int type, e = 0;
362 
363 	for (type = 0; type < GENWQE_DBG_UNITS; type++) {
364 		switch (type) {
365 		case GENWQE_DBG_UNIT0:
366 			e = genwqe_ffdc_buff_size(cd, 0);
367 			break;
368 		case GENWQE_DBG_UNIT1:
369 			e = genwqe_ffdc_buff_size(cd, 1);
370 			break;
371 		case GENWQE_DBG_UNIT2:
372 			e = genwqe_ffdc_buff_size(cd, 2);
373 			break;
374 		case GENWQE_DBG_REGS:
375 			e = GENWQE_FFDC_REGS;
376 			break;
377 		}
378 
379 		/* currently support only the debug units mentioned here */
380 		cd->ffdc[type].entries = e;
381 		cd->ffdc[type].regs =
382 			kmalloc_array(e, sizeof(struct genwqe_reg),
383 				      GFP_KERNEL);
384 		/*
385 		 * regs == NULL is ok, the using code treats this as no regs,
386 		 * Printing warning is ok in this case.
387 		 */
388 	}
389 	return 0;
390 }
391 
392 static void genwqe_ffdc_buffs_free(struct genwqe_dev *cd)
393 {
394 	unsigned int type;
395 
396 	for (type = 0; type < GENWQE_DBG_UNITS; type++) {
397 		kfree(cd->ffdc[type].regs);
398 		cd->ffdc[type].regs = NULL;
399 	}
400 }
401 
402 static int genwqe_read_ids(struct genwqe_dev *cd)
403 {
404 	int err = 0;
405 	int slu_id;
406 	struct pci_dev *pci_dev = cd->pci_dev;
407 
408 	cd->slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
409 	if (cd->slu_unitcfg == IO_ILLEGAL_VALUE) {
410 		dev_err(&pci_dev->dev,
411 			"err: SLUID=%016llx\n", cd->slu_unitcfg);
412 		err = -EIO;
413 		goto out_err;
414 	}
415 
416 	slu_id = genwqe_get_slu_id(cd);
417 	if (slu_id < GENWQE_SLU_ARCH_REQ || slu_id == 0xff) {
418 		dev_err(&pci_dev->dev,
419 			"err: incompatible SLU Architecture %u\n", slu_id);
420 		err = -ENOENT;
421 		goto out_err;
422 	}
423 
424 	cd->app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
425 	if (cd->app_unitcfg == IO_ILLEGAL_VALUE) {
426 		dev_err(&pci_dev->dev,
427 			"err: APPID=%016llx\n", cd->app_unitcfg);
428 		err = -EIO;
429 		goto out_err;
430 	}
431 	genwqe_read_app_id(cd, cd->app_name, sizeof(cd->app_name));
432 
433 	/*
434 	 * Is access to all registers possible? If we are a VF the
435 	 * answer is obvious. If we run fully virtualized, we need to
436 	 * check if we can access all registers. If we do not have
437 	 * full access we will cause an UR and some informational FIRs
438 	 * in the PF, but that should not harm.
439 	 */
440 	if (pci_dev->is_virtfn)
441 		cd->is_privileged = 0;
442 	else
443 		cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM)
444 				     != IO_ILLEGAL_VALUE);
445 
446  out_err:
447 	return err;
448 }
449 
450 static int genwqe_start(struct genwqe_dev *cd)
451 {
452 	int err;
453 	struct pci_dev *pci_dev = cd->pci_dev;
454 
455 	err = genwqe_read_ids(cd);
456 	if (err)
457 		return err;
458 
459 	if (genwqe_is_privileged(cd)) {
460 		/* do this after the tweaks. alloc fail is acceptable */
461 		genwqe_ffdc_buffs_alloc(cd);
462 		genwqe_stop_traps(cd);
463 
464 		/* Collect registers e.g. FIRs, UNITIDs, traces ... */
465 		genwqe_read_ffdc_regs(cd, cd->ffdc[GENWQE_DBG_REGS].regs,
466 				      cd->ffdc[GENWQE_DBG_REGS].entries, 0);
467 
468 		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT0,
469 				      cd->ffdc[GENWQE_DBG_UNIT0].regs,
470 				      cd->ffdc[GENWQE_DBG_UNIT0].entries);
471 
472 		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT1,
473 				      cd->ffdc[GENWQE_DBG_UNIT1].regs,
474 				      cd->ffdc[GENWQE_DBG_UNIT1].entries);
475 
476 		genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT2,
477 				      cd->ffdc[GENWQE_DBG_UNIT2].regs,
478 				      cd->ffdc[GENWQE_DBG_UNIT2].entries);
479 
480 		genwqe_start_traps(cd);
481 
482 		if (cd->card_state == GENWQE_CARD_FATAL_ERROR) {
483 			dev_warn(&pci_dev->dev,
484 				 "[%s] chip reload/recovery!\n", __func__);
485 
486 			/*
487 			 * Stealth Mode: Reload chip on either hot
488 			 * reset or PERST.
489 			 */
490 			cd->softreset = 0x7Cull;
491 			__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
492 				       cd->softreset);
493 
494 			err = genwqe_bus_reset(cd);
495 			if (err != 0) {
496 				dev_err(&pci_dev->dev,
497 					"[%s] err: bus reset failed!\n",
498 					__func__);
499 				goto out;
500 			}
501 
502 			/*
503 			 * Re-read the IDs because
504 			 * it could happen that the bitstream load
505 			 * failed!
506 			 */
507 			err = genwqe_read_ids(cd);
508 			if (err)
509 				goto out;
510 		}
511 	}
512 
513 	err = genwqe_setup_service_layer(cd);  /* does a reset to the card */
514 	if (err != 0) {
515 		dev_err(&pci_dev->dev,
516 			"[%s] err: could not setup servicelayer!\n", __func__);
517 		err = -ENODEV;
518 		goto out;
519 	}
520 
521 	if (genwqe_is_privileged(cd)) {	 /* code is running _after_ reset */
522 		genwqe_tweak_hardware(cd);
523 
524 		genwqe_setup_pf_jtimer(cd);
525 		genwqe_setup_vf_jtimer(cd);
526 	}
527 
528 	err = genwqe_device_create(cd);
529 	if (err < 0) {
530 		dev_err(&pci_dev->dev,
531 			"err: chdev init failed! (err=%d)\n", err);
532 		goto out_release_service_layer;
533 	}
534 	return 0;
535 
536  out_release_service_layer:
537 	genwqe_release_service_layer(cd);
538  out:
539 	if (genwqe_is_privileged(cd))
540 		genwqe_ffdc_buffs_free(cd);
541 	return -EIO;
542 }
543 
544 /**
545  * genwqe_stop() - Stop card operation
546  *
547  * Recovery notes:
548  *   As long as genwqe_thread runs we might access registers during
549  *   error data capture. Same is with the genwqe_health_thread.
550  *   When genwqe_bus_reset() fails this function might called two times:
551  *   first by the genwqe_health_thread() and later by genwqe_remove() to
552  *   unbind the device. We must be able to survive that.
553  *
554  * This function must be robust enough to be called twice.
555  */
556 static int genwqe_stop(struct genwqe_dev *cd)
557 {
558 	genwqe_finish_queue(cd);	    /* no register access */
559 	genwqe_device_remove(cd);	    /* device removed, procs killed */
560 	genwqe_release_service_layer(cd);   /* here genwqe_thread is stopped */
561 
562 	if (genwqe_is_privileged(cd)) {
563 		pci_disable_sriov(cd->pci_dev);	/* access pci config space */
564 		genwqe_ffdc_buffs_free(cd);
565 	}
566 
567 	return 0;
568 }
569 
570 /**
571  * genwqe_recover_card() - Try to recover the card if it is possible
572  *
573  * If fatal_err is set no register access is possible anymore. It is
574  * likely that genwqe_start fails in that situation. Proper error
575  * handling is required in this case.
576  *
577  * genwqe_bus_reset() will cause the pci code to call genwqe_remove()
578  * and later genwqe_probe() for all virtual functions.
579  */
580 static int genwqe_recover_card(struct genwqe_dev *cd, int fatal_err)
581 {
582 	int rc;
583 	struct pci_dev *pci_dev = cd->pci_dev;
584 
585 	genwqe_stop(cd);
586 
587 	/*
588 	 * Make sure chip is not reloaded to maintain FFDC. Write SLU
589 	 * Reset Register, CPLDReset field to 0.
590 	 */
591 	if (!fatal_err) {
592 		cd->softreset = 0x70ull;
593 		__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, cd->softreset);
594 	}
595 
596 	rc = genwqe_bus_reset(cd);
597 	if (rc != 0) {
598 		dev_err(&pci_dev->dev,
599 			"[%s] err: card recovery impossible!\n", __func__);
600 		return rc;
601 	}
602 
603 	rc = genwqe_start(cd);
604 	if (rc < 0) {
605 		dev_err(&pci_dev->dev,
606 			"[%s] err: failed to launch device!\n", __func__);
607 		return rc;
608 	}
609 	return 0;
610 }
611 
612 static int genwqe_health_check_cond(struct genwqe_dev *cd, u64 *gfir)
613 {
614 	*gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
615 	return (*gfir & GFIR_ERR_TRIGGER) &&
616 		genwqe_recovery_on_fatal_gfir_required(cd);
617 }
618 
619 /**
620  * genwqe_fir_checking() - Check the fault isolation registers of the card
621  *
622  * If this code works ok, can be tried out with help of the genwqe_poke tool:
623  *   sudo ./tools/genwqe_poke 0x8 0xfefefefefef
624  *
625  * Now the relevant FIRs/sFIRs should be printed out and the driver should
626  * invoke recovery (devices are removed and readded).
627  */
628 static u64 genwqe_fir_checking(struct genwqe_dev *cd)
629 {
630 	int j, iterations = 0;
631 	u64 mask, fir, fec, uid, gfir, gfir_masked, sfir, sfec;
632 	u32 fir_addr, fir_clr_addr, fec_addr, sfir_addr, sfec_addr;
633 	struct pci_dev *pci_dev = cd->pci_dev;
634 
635  healthMonitor:
636 	iterations++;
637 	if (iterations > 16) {
638 		dev_err(&pci_dev->dev, "* exit looping after %d times\n",
639 			iterations);
640 		goto fatal_error;
641 	}
642 
643 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
644 	if (gfir != 0x0)
645 		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n",
646 				    IO_SLC_CFGREG_GFIR, gfir);
647 	if (gfir == IO_ILLEGAL_VALUE)
648 		goto fatal_error;
649 
650 	/*
651 	 * Avoid printing when to GFIR bit is on prevents contignous
652 	 * printout e.g. for the following bug:
653 	 *   FIR set without a 2ndary FIR/FIR cannot be cleared
654 	 * Comment out the following if to get the prints:
655 	 */
656 	if (gfir == 0)
657 		return 0;
658 
659 	gfir_masked = gfir & GFIR_ERR_TRIGGER;  /* fatal errors */
660 
661 	for (uid = 0; uid < GENWQE_MAX_UNITS; uid++) { /* 0..2 in zEDC */
662 
663 		/* read the primary FIR (pfir) */
664 		fir_addr = (uid << 24) + 0x08;
665 		fir = __genwqe_readq(cd, fir_addr);
666 		if (fir == 0x0)
667 			continue;  /* no error in this unit */
668 
669 		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fir_addr, fir);
670 		if (fir == IO_ILLEGAL_VALUE)
671 			goto fatal_error;
672 
673 		/* read primary FEC */
674 		fec_addr = (uid << 24) + 0x18;
675 		fec = __genwqe_readq(cd, fec_addr);
676 
677 		dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fec_addr, fec);
678 		if (fec == IO_ILLEGAL_VALUE)
679 			goto fatal_error;
680 
681 		for (j = 0, mask = 1ULL; j < 64; j++, mask <<= 1) {
682 
683 			/* secondary fir empty, skip it */
684 			if ((fir & mask) == 0x0)
685 				continue;
686 
687 			sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
688 			sfir = __genwqe_readq(cd, sfir_addr);
689 
690 			if (sfir == IO_ILLEGAL_VALUE)
691 				goto fatal_error;
692 			dev_err(&pci_dev->dev,
693 				"* 0x%08x 0x%016llx\n", sfir_addr, sfir);
694 
695 			sfec_addr = (uid << 24) + 0x300 + 0x08 * j;
696 			sfec = __genwqe_readq(cd, sfec_addr);
697 
698 			if (sfec == IO_ILLEGAL_VALUE)
699 				goto fatal_error;
700 			dev_err(&pci_dev->dev,
701 				"* 0x%08x 0x%016llx\n", sfec_addr, sfec);
702 
703 			gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
704 			if (gfir == IO_ILLEGAL_VALUE)
705 				goto fatal_error;
706 
707 			/* gfir turned on during routine! get out and
708 			   start over. */
709 			if ((gfir_masked == 0x0) &&
710 			    (gfir & GFIR_ERR_TRIGGER)) {
711 				goto healthMonitor;
712 			}
713 
714 			/* do not clear if we entered with a fatal gfir */
715 			if (gfir_masked == 0x0) {
716 
717 				/* NEW clear by mask the logged bits */
718 				sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
719 				__genwqe_writeq(cd, sfir_addr, sfir);
720 
721 				dev_dbg(&pci_dev->dev,
722 					"[HM] Clearing  2ndary FIR 0x%08x with 0x%016llx\n",
723 					sfir_addr, sfir);
724 
725 				/*
726 				 * note, these cannot be error-Firs
727 				 * since gfir_masked is 0 after sfir
728 				 * was read. Also, it is safe to do
729 				 * this write if sfir=0. Still need to
730 				 * clear the primary. This just means
731 				 * there is no secondary FIR.
732 				 */
733 
734 				/* clear by mask the logged bit. */
735 				fir_clr_addr = (uid << 24) + 0x10;
736 				__genwqe_writeq(cd, fir_clr_addr, mask);
737 
738 				dev_dbg(&pci_dev->dev,
739 					"[HM] Clearing primary FIR 0x%08x with 0x%016llx\n",
740 					fir_clr_addr, mask);
741 			}
742 		}
743 	}
744 	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
745 	if (gfir == IO_ILLEGAL_VALUE)
746 		goto fatal_error;
747 
748 	if ((gfir_masked == 0x0) && (gfir & GFIR_ERR_TRIGGER)) {
749 		/*
750 		 * Check once more that it didn't go on after all the
751 		 * FIRS were cleared.
752 		 */
753 		dev_dbg(&pci_dev->dev, "ACK! Another FIR! Recursing %d!\n",
754 			iterations);
755 		goto healthMonitor;
756 	}
757 	return gfir_masked;
758 
759  fatal_error:
760 	return IO_ILLEGAL_VALUE;
761 }
762 
763 /**
764  * genwqe_pci_fundamental_reset() - trigger a PCIe fundamental reset on the slot
765  *
766  * Note: pci_set_pcie_reset_state() is not implemented on all archs, so this
767  * reset method will not work in all cases.
768  *
769  * Return: 0 on success or error code from pci_set_pcie_reset_state()
770  */
771 static int genwqe_pci_fundamental_reset(struct pci_dev *pci_dev)
772 {
773 	int rc;
774 
775 	/*
776 	 * lock pci config space access from userspace,
777 	 * save state and issue PCIe fundamental reset
778 	 */
779 	pci_cfg_access_lock(pci_dev);
780 	pci_save_state(pci_dev);
781 	rc = pci_set_pcie_reset_state(pci_dev, pcie_warm_reset);
782 	if (!rc) {
783 		/* keep PCIe reset asserted for 250ms */
784 		msleep(250);
785 		pci_set_pcie_reset_state(pci_dev, pcie_deassert_reset);
786 		/* Wait for 2s to reload flash and train the link */
787 		msleep(2000);
788 	}
789 	pci_restore_state(pci_dev);
790 	pci_cfg_access_unlock(pci_dev);
791 	return rc;
792 }
793 
794 
795 static int genwqe_platform_recovery(struct genwqe_dev *cd)
796 {
797 	struct pci_dev *pci_dev = cd->pci_dev;
798 	int rc;
799 
800 	dev_info(&pci_dev->dev,
801 		 "[%s] resetting card for error recovery\n", __func__);
802 
803 	/* Clear out error injection flags */
804 	cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
805 			    GENWQE_INJECT_GFIR_FATAL |
806 			    GENWQE_INJECT_GFIR_INFO);
807 
808 	genwqe_stop(cd);
809 
810 	/* Try recoverying the card with fundamental reset */
811 	rc = genwqe_pci_fundamental_reset(pci_dev);
812 	if (!rc) {
813 		rc = genwqe_start(cd);
814 		if (!rc)
815 			dev_info(&pci_dev->dev,
816 				 "[%s] card recovered\n", __func__);
817 		else
818 			dev_err(&pci_dev->dev,
819 				"[%s] err: cannot start card services! (err=%d)\n",
820 				__func__, rc);
821 	} else {
822 		dev_err(&pci_dev->dev,
823 			"[%s] card reset failed\n", __func__);
824 	}
825 
826 	return rc;
827 }
828 
829 /*
830  * genwqe_reload_bistream() - reload card bitstream
831  *
832  * Set the appropriate register and call fundamental reset to reaload the card
833  * bitstream.
834  *
835  * Return: 0 on success, error code otherwise
836  */
837 static int genwqe_reload_bistream(struct genwqe_dev *cd)
838 {
839 	struct pci_dev *pci_dev = cd->pci_dev;
840 	int rc;
841 
842 	dev_info(&pci_dev->dev,
843 		 "[%s] resetting card for bitstream reload\n",
844 		 __func__);
845 
846 	genwqe_stop(cd);
847 
848 	/*
849 	 * Cause a CPLD reprogram with the 'next_bitstream'
850 	 * partition on PCIe hot or fundamental reset
851 	 */
852 	__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
853 			(cd->softreset & 0xcull) | 0x70ull);
854 
855 	rc = genwqe_pci_fundamental_reset(pci_dev);
856 	if (rc) {
857 		/*
858 		 * A fundamental reset failure can be caused
859 		 * by lack of support on the arch, so we just
860 		 * log the error and try to start the card
861 		 * again.
862 		 */
863 		dev_err(&pci_dev->dev,
864 			"[%s] err: failed to reset card for bitstream reload\n",
865 			__func__);
866 	}
867 
868 	rc = genwqe_start(cd);
869 	if (rc) {
870 		dev_err(&pci_dev->dev,
871 			"[%s] err: cannot start card services! (err=%d)\n",
872 			__func__, rc);
873 		return rc;
874 	}
875 	dev_info(&pci_dev->dev,
876 		 "[%s] card reloaded\n", __func__);
877 	return 0;
878 }
879 
880 
881 /**
882  * genwqe_health_thread() - Health checking thread
883  *
884  * This thread is only started for the PF of the card.
885  *
886  * This thread monitors the health of the card. A critical situation
887  * is when we read registers which contain -1 (IO_ILLEGAL_VALUE). In
888  * this case we need to be recovered from outside. Writing to
889  * registers will very likely not work either.
890  *
891  * This thread must only exit if kthread_should_stop() becomes true.
892  *
893  * Condition for the health-thread to trigger:
894  *   a) when a kthread_stop() request comes in or
895  *   b) a critical GFIR occured
896  *
897  * Informational GFIRs are checked and potentially printed in
898  * GENWQE_HEALTH_CHECK_INTERVAL seconds.
899  */
900 static int genwqe_health_thread(void *data)
901 {
902 	int rc, should_stop = 0;
903 	struct genwqe_dev *cd = data;
904 	struct pci_dev *pci_dev = cd->pci_dev;
905 	u64 gfir, gfir_masked, slu_unitcfg, app_unitcfg;
906 
907  health_thread_begin:
908 	while (!kthread_should_stop()) {
909 		rc = wait_event_interruptible_timeout(cd->health_waitq,
910 			 (genwqe_health_check_cond(cd, &gfir) ||
911 			  (should_stop = kthread_should_stop())),
912 				GENWQE_HEALTH_CHECK_INTERVAL * HZ);
913 
914 		if (should_stop)
915 			break;
916 
917 		if (gfir == IO_ILLEGAL_VALUE) {
918 			dev_err(&pci_dev->dev,
919 				"[%s] GFIR=%016llx\n", __func__, gfir);
920 			goto fatal_error;
921 		}
922 
923 		slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
924 		if (slu_unitcfg == IO_ILLEGAL_VALUE) {
925 			dev_err(&pci_dev->dev,
926 				"[%s] SLU_UNITCFG=%016llx\n",
927 				__func__, slu_unitcfg);
928 			goto fatal_error;
929 		}
930 
931 		app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
932 		if (app_unitcfg == IO_ILLEGAL_VALUE) {
933 			dev_err(&pci_dev->dev,
934 				"[%s] APP_UNITCFG=%016llx\n",
935 				__func__, app_unitcfg);
936 			goto fatal_error;
937 		}
938 
939 		gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
940 		if (gfir == IO_ILLEGAL_VALUE) {
941 			dev_err(&pci_dev->dev,
942 				"[%s] %s: GFIR=%016llx\n", __func__,
943 				(gfir & GFIR_ERR_TRIGGER) ? "err" : "info",
944 				gfir);
945 			goto fatal_error;
946 		}
947 
948 		gfir_masked = genwqe_fir_checking(cd);
949 		if (gfir_masked == IO_ILLEGAL_VALUE)
950 			goto fatal_error;
951 
952 		/*
953 		 * GFIR ErrorTrigger bits set => reset the card!
954 		 * Never do this for old/manufacturing images!
955 		 */
956 		if ((gfir_masked) && !cd->skip_recovery &&
957 		    genwqe_recovery_on_fatal_gfir_required(cd)) {
958 
959 			cd->card_state = GENWQE_CARD_FATAL_ERROR;
960 
961 			rc = genwqe_recover_card(cd, 0);
962 			if (rc < 0) {
963 				/* FIXME Card is unusable and needs unbind! */
964 				goto fatal_error;
965 			}
966 		}
967 
968 		if (cd->card_state == GENWQE_CARD_RELOAD_BITSTREAM) {
969 			/* Userspace requested card bitstream reload */
970 			rc = genwqe_reload_bistream(cd);
971 			if (rc)
972 				goto fatal_error;
973 		}
974 
975 		cd->last_gfir = gfir;
976 		cond_resched();
977 	}
978 
979 	return 0;
980 
981  fatal_error:
982 	if (cd->use_platform_recovery) {
983 		/*
984 		 * Since we use raw accessors, EEH errors won't be detected
985 		 * by the platform until we do a non-raw MMIO or config space
986 		 * read
987 		 */
988 		readq(cd->mmio + IO_SLC_CFGREG_GFIR);
989 
990 		/* We do nothing if the card is going over PCI recovery */
991 		if (pci_channel_offline(pci_dev))
992 			return -EIO;
993 
994 		/*
995 		 * If it's supported by the platform, we try a fundamental reset
996 		 * to recover from a fatal error. Otherwise, we continue to wait
997 		 * for an external recovery procedure to take care of it.
998 		 */
999 		rc = genwqe_platform_recovery(cd);
1000 		if (!rc)
1001 			goto health_thread_begin;
1002 	}
1003 
1004 	dev_err(&pci_dev->dev,
1005 		"[%s] card unusable. Please trigger unbind!\n", __func__);
1006 
1007 	/* Bring down logical devices to inform user space via udev remove. */
1008 	cd->card_state = GENWQE_CARD_FATAL_ERROR;
1009 	genwqe_stop(cd);
1010 
1011 	/* genwqe_bus_reset failed(). Now wait for genwqe_remove(). */
1012 	while (!kthread_should_stop())
1013 		cond_resched();
1014 
1015 	return -EIO;
1016 }
1017 
1018 static int genwqe_health_check_start(struct genwqe_dev *cd)
1019 {
1020 	int rc;
1021 
1022 	if (GENWQE_HEALTH_CHECK_INTERVAL <= 0)
1023 		return 0;	/* valid for disabling the service */
1024 
1025 	/* moved before request_irq() */
1026 	/* init_waitqueue_head(&cd->health_waitq); */
1027 
1028 	cd->health_thread = kthread_run(genwqe_health_thread, cd,
1029 					GENWQE_DEVNAME "%d_health",
1030 					cd->card_idx);
1031 	if (IS_ERR(cd->health_thread)) {
1032 		rc = PTR_ERR(cd->health_thread);
1033 		cd->health_thread = NULL;
1034 		return rc;
1035 	}
1036 	return 0;
1037 }
1038 
1039 static int genwqe_health_thread_running(struct genwqe_dev *cd)
1040 {
1041 	return cd->health_thread != NULL;
1042 }
1043 
1044 static int genwqe_health_check_stop(struct genwqe_dev *cd)
1045 {
1046 	int rc;
1047 
1048 	if (!genwqe_health_thread_running(cd))
1049 		return -EIO;
1050 
1051 	rc = kthread_stop(cd->health_thread);
1052 	cd->health_thread = NULL;
1053 	return 0;
1054 }
1055 
1056 /**
1057  * genwqe_pci_setup() - Allocate PCIe related resources for our card
1058  */
1059 static int genwqe_pci_setup(struct genwqe_dev *cd)
1060 {
1061 	int err;
1062 	struct pci_dev *pci_dev = cd->pci_dev;
1063 
1064 	err = pci_enable_device_mem(pci_dev);
1065 	if (err) {
1066 		dev_err(&pci_dev->dev,
1067 			"err: failed to enable pci memory (err=%d)\n", err);
1068 		goto err_out;
1069 	}
1070 
1071 	/* Reserve PCI I/O and memory resources */
1072 	err = pci_request_mem_regions(pci_dev, genwqe_driver_name);
1073 	if (err) {
1074 		dev_err(&pci_dev->dev,
1075 			"[%s] err: request bars failed (%d)\n", __func__, err);
1076 		err = -EIO;
1077 		goto err_disable_device;
1078 	}
1079 
1080 	/* check for 64-bit DMA address supported (DAC) */
1081 	if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1082 		err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(64));
1083 		if (err) {
1084 			dev_err(&pci_dev->dev,
1085 				"err: DMA64 consistent mask error\n");
1086 			err = -EIO;
1087 			goto out_release_resources;
1088 		}
1089 	/* check for 32-bit DMA address supported (SAC) */
1090 	} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1091 		err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(32));
1092 		if (err) {
1093 			dev_err(&pci_dev->dev,
1094 				"err: DMA32 consistent mask error\n");
1095 			err = -EIO;
1096 			goto out_release_resources;
1097 		}
1098 	} else {
1099 		dev_err(&pci_dev->dev,
1100 			"err: neither DMA32 nor DMA64 supported\n");
1101 		err = -EIO;
1102 		goto out_release_resources;
1103 	}
1104 
1105 	pci_set_master(pci_dev);
1106 	pci_enable_pcie_error_reporting(pci_dev);
1107 
1108 	/* EEH recovery requires PCIe fundamental reset */
1109 	pci_dev->needs_freset = 1;
1110 
1111 	/* request complete BAR-0 space (length = 0) */
1112 	cd->mmio_len = pci_resource_len(pci_dev, 0);
1113 	cd->mmio = pci_iomap(pci_dev, 0, 0);
1114 	if (cd->mmio == NULL) {
1115 		dev_err(&pci_dev->dev,
1116 			"[%s] err: mapping BAR0 failed\n", __func__);
1117 		err = -ENOMEM;
1118 		goto out_release_resources;
1119 	}
1120 
1121 	cd->num_vfs = pci_sriov_get_totalvfs(pci_dev);
1122 	if (cd->num_vfs < 0)
1123 		cd->num_vfs = 0;
1124 
1125 	err = genwqe_read_ids(cd);
1126 	if (err)
1127 		goto out_iounmap;
1128 
1129 	return 0;
1130 
1131  out_iounmap:
1132 	pci_iounmap(pci_dev, cd->mmio);
1133  out_release_resources:
1134 	pci_release_mem_regions(pci_dev);
1135  err_disable_device:
1136 	pci_disable_device(pci_dev);
1137  err_out:
1138 	return err;
1139 }
1140 
1141 /**
1142  * genwqe_pci_remove() - Free PCIe related resources for our card
1143  */
1144 static void genwqe_pci_remove(struct genwqe_dev *cd)
1145 {
1146 	struct pci_dev *pci_dev = cd->pci_dev;
1147 
1148 	if (cd->mmio)
1149 		pci_iounmap(pci_dev, cd->mmio);
1150 
1151 	pci_release_mem_regions(pci_dev);
1152 	pci_disable_device(pci_dev);
1153 }
1154 
1155 /**
1156  * genwqe_probe() - Device initialization
1157  * @pdev:	PCI device information struct
1158  *
1159  * Callable for multiple cards. This function is called on bind.
1160  *
1161  * Return: 0 if succeeded, < 0 when failed
1162  */
1163 static int genwqe_probe(struct pci_dev *pci_dev,
1164 			const struct pci_device_id *id)
1165 {
1166 	int err;
1167 	struct genwqe_dev *cd;
1168 
1169 	genwqe_init_crc32();
1170 
1171 	cd = genwqe_dev_alloc();
1172 	if (IS_ERR(cd)) {
1173 		dev_err(&pci_dev->dev, "err: could not alloc mem (err=%d)!\n",
1174 			(int)PTR_ERR(cd));
1175 		return PTR_ERR(cd);
1176 	}
1177 
1178 	dev_set_drvdata(&pci_dev->dev, cd);
1179 	cd->pci_dev = pci_dev;
1180 
1181 	err = genwqe_pci_setup(cd);
1182 	if (err < 0) {
1183 		dev_err(&pci_dev->dev,
1184 			"err: problems with PCI setup (err=%d)\n", err);
1185 		goto out_free_dev;
1186 	}
1187 
1188 	err = genwqe_start(cd);
1189 	if (err < 0) {
1190 		dev_err(&pci_dev->dev,
1191 			"err: cannot start card services! (err=%d)\n", err);
1192 		goto out_pci_remove;
1193 	}
1194 
1195 	if (genwqe_is_privileged(cd)) {
1196 		err = genwqe_health_check_start(cd);
1197 		if (err < 0) {
1198 			dev_err(&pci_dev->dev,
1199 				"err: cannot start health checking! (err=%d)\n",
1200 				err);
1201 			goto out_stop_services;
1202 		}
1203 	}
1204 	return 0;
1205 
1206  out_stop_services:
1207 	genwqe_stop(cd);
1208  out_pci_remove:
1209 	genwqe_pci_remove(cd);
1210  out_free_dev:
1211 	genwqe_dev_free(cd);
1212 	return err;
1213 }
1214 
1215 /**
1216  * genwqe_remove() - Called when device is removed (hot-plugable)
1217  *
1218  * Or when driver is unloaded respecitively when unbind is done.
1219  */
1220 static void genwqe_remove(struct pci_dev *pci_dev)
1221 {
1222 	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1223 
1224 	genwqe_health_check_stop(cd);
1225 
1226 	/*
1227 	 * genwqe_stop() must survive if it is called twice
1228 	 * sequentially. This happens when the health thread calls it
1229 	 * and fails on genwqe_bus_reset().
1230 	 */
1231 	genwqe_stop(cd);
1232 	genwqe_pci_remove(cd);
1233 	genwqe_dev_free(cd);
1234 }
1235 
1236 /*
1237  * genwqe_err_error_detected() - Error detection callback
1238  *
1239  * This callback is called by the PCI subsystem whenever a PCI bus
1240  * error is detected.
1241  */
1242 static pci_ers_result_t genwqe_err_error_detected(struct pci_dev *pci_dev,
1243 						 enum pci_channel_state state)
1244 {
1245 	struct genwqe_dev *cd;
1246 
1247 	dev_err(&pci_dev->dev, "[%s] state=%d\n", __func__, state);
1248 
1249 	cd = dev_get_drvdata(&pci_dev->dev);
1250 	if (cd == NULL)
1251 		return PCI_ERS_RESULT_DISCONNECT;
1252 
1253 	/* Stop the card */
1254 	genwqe_health_check_stop(cd);
1255 	genwqe_stop(cd);
1256 
1257 	/*
1258 	 * On permanent failure, the PCI code will call device remove
1259 	 * after the return of this function.
1260 	 * genwqe_stop() can be called twice.
1261 	 */
1262 	if (state == pci_channel_io_perm_failure) {
1263 		return PCI_ERS_RESULT_DISCONNECT;
1264 	} else {
1265 		genwqe_pci_remove(cd);
1266 		return PCI_ERS_RESULT_NEED_RESET;
1267 	}
1268 }
1269 
1270 static pci_ers_result_t genwqe_err_slot_reset(struct pci_dev *pci_dev)
1271 {
1272 	int rc;
1273 	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1274 
1275 	rc = genwqe_pci_setup(cd);
1276 	if (!rc) {
1277 		return PCI_ERS_RESULT_RECOVERED;
1278 	} else {
1279 		dev_err(&pci_dev->dev,
1280 			"err: problems with PCI setup (err=%d)\n", rc);
1281 		return PCI_ERS_RESULT_DISCONNECT;
1282 	}
1283 }
1284 
1285 static pci_ers_result_t genwqe_err_result_none(struct pci_dev *dev)
1286 {
1287 	return PCI_ERS_RESULT_NONE;
1288 }
1289 
1290 static void genwqe_err_resume(struct pci_dev *pci_dev)
1291 {
1292 	int rc;
1293 	struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
1294 
1295 	rc = genwqe_start(cd);
1296 	if (!rc) {
1297 		rc = genwqe_health_check_start(cd);
1298 		if (rc)
1299 			dev_err(&pci_dev->dev,
1300 				"err: cannot start health checking! (err=%d)\n",
1301 				rc);
1302 	} else {
1303 		dev_err(&pci_dev->dev,
1304 			"err: cannot start card services! (err=%d)\n", rc);
1305 	}
1306 }
1307 
1308 static int genwqe_sriov_configure(struct pci_dev *dev, int numvfs)
1309 {
1310 	int rc;
1311 	struct genwqe_dev *cd = dev_get_drvdata(&dev->dev);
1312 
1313 	if (numvfs > 0) {
1314 		genwqe_setup_vf_jtimer(cd);
1315 		rc = pci_enable_sriov(dev, numvfs);
1316 		if (rc < 0)
1317 			return rc;
1318 		return numvfs;
1319 	}
1320 	if (numvfs == 0) {
1321 		pci_disable_sriov(dev);
1322 		return 0;
1323 	}
1324 	return 0;
1325 }
1326 
1327 static struct pci_error_handlers genwqe_err_handler = {
1328 	.error_detected = genwqe_err_error_detected,
1329 	.mmio_enabled	= genwqe_err_result_none,
1330 	.slot_reset	= genwqe_err_slot_reset,
1331 	.resume		= genwqe_err_resume,
1332 };
1333 
1334 static struct pci_driver genwqe_driver = {
1335 	.name	  = genwqe_driver_name,
1336 	.id_table = genwqe_device_table,
1337 	.probe	  = genwqe_probe,
1338 	.remove	  = genwqe_remove,
1339 	.sriov_configure = genwqe_sriov_configure,
1340 	.err_handler = &genwqe_err_handler,
1341 };
1342 
1343 /**
1344  * genwqe_devnode() - Set default access mode for genwqe devices.
1345  *
1346  * Default mode should be rw for everybody. Do not change default
1347  * device name.
1348  */
1349 static char *genwqe_devnode(struct device *dev, umode_t *mode)
1350 {
1351 	if (mode)
1352 		*mode = 0666;
1353 	return NULL;
1354 }
1355 
1356 /**
1357  * genwqe_init_module() - Driver registration and initialization
1358  */
1359 static int __init genwqe_init_module(void)
1360 {
1361 	int rc;
1362 
1363 	class_genwqe = class_create(THIS_MODULE, GENWQE_DEVNAME);
1364 	if (IS_ERR(class_genwqe)) {
1365 		pr_err("[%s] create class failed\n", __func__);
1366 		return -ENOMEM;
1367 	}
1368 
1369 	class_genwqe->devnode = genwqe_devnode;
1370 
1371 	debugfs_genwqe = debugfs_create_dir(GENWQE_DEVNAME, NULL);
1372 
1373 	rc = pci_register_driver(&genwqe_driver);
1374 	if (rc != 0) {
1375 		pr_err("[%s] pci_reg_driver (rc=%d)\n", __func__, rc);
1376 		goto err_out0;
1377 	}
1378 
1379 	return rc;
1380 
1381  err_out0:
1382 	debugfs_remove(debugfs_genwqe);
1383 	class_destroy(class_genwqe);
1384 	return rc;
1385 }
1386 
1387 /**
1388  * genwqe_exit_module() - Driver exit
1389  */
1390 static void __exit genwqe_exit_module(void)
1391 {
1392 	pci_unregister_driver(&genwqe_driver);
1393 	debugfs_remove(debugfs_genwqe);
1394 	class_destroy(class_genwqe);
1395 }
1396 
1397 module_init(genwqe_init_module);
1398 module_exit(genwqe_exit_module);
1399