xref: /openbmc/linux/drivers/misc/eeprom/at24.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * at24.c - handle most I2C EEPROMs
3  *
4  * Copyright (C) 2005-2007 David Brownell
5  * Copyright (C) 2008 Wolfram Sang, Pengutronix
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/sysfs.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/log2.h>
21 #include <linux/bitops.h>
22 #include <linux/jiffies.h>
23 #include <linux/of.h>
24 #include <linux/i2c.h>
25 #include <linux/platform_data/at24.h>
26 
27 /*
28  * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
29  * Differences between different vendor product lines (like Atmel AT24C or
30  * MicroChip 24LC, etc) won't much matter for typical read/write access.
31  * There are also I2C RAM chips, likewise interchangeable. One example
32  * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
33  *
34  * However, misconfiguration can lose data. "Set 16-bit memory address"
35  * to a part with 8-bit addressing will overwrite data. Writing with too
36  * big a page size also loses data. And it's not safe to assume that the
37  * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
38  * uses 0x51, for just one example.
39  *
40  * Accordingly, explicit board-specific configuration data should be used
41  * in almost all cases. (One partial exception is an SMBus used to access
42  * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
43  *
44  * So this driver uses "new style" I2C driver binding, expecting to be
45  * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
46  * similar kernel-resident tables; or, configuration data coming from
47  * a bootloader.
48  *
49  * Other than binding model, current differences from "eeprom" driver are
50  * that this one handles write access and isn't restricted to 24c02 devices.
51  * It also handles larger devices (32 kbit and up) with two-byte addresses,
52  * which won't work on pure SMBus systems.
53  */
54 
55 struct at24_data {
56 	struct at24_platform_data chip;
57 	struct memory_accessor macc;
58 	int use_smbus;
59 	int use_smbus_write;
60 
61 	/*
62 	 * Lock protects against activities from other Linux tasks,
63 	 * but not from changes by other I2C masters.
64 	 */
65 	struct mutex lock;
66 	struct bin_attribute bin;
67 
68 	u8 *writebuf;
69 	unsigned write_max;
70 	unsigned num_addresses;
71 
72 	/*
73 	 * Some chips tie up multiple I2C addresses; dummy devices reserve
74 	 * them for us, and we'll use them with SMBus calls.
75 	 */
76 	struct i2c_client *client[];
77 };
78 
79 /*
80  * This parameter is to help this driver avoid blocking other drivers out
81  * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
82  * clock, one 256 byte read takes about 1/43 second which is excessive;
83  * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
84  * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
85  *
86  * This value is forced to be a power of two so that writes align on pages.
87  */
88 static unsigned io_limit = 128;
89 module_param(io_limit, uint, 0);
90 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
91 
92 /*
93  * Specs often allow 5 msec for a page write, sometimes 20 msec;
94  * it's important to recover from write timeouts.
95  */
96 static unsigned write_timeout = 25;
97 module_param(write_timeout, uint, 0);
98 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
99 
100 #define AT24_SIZE_BYTELEN 5
101 #define AT24_SIZE_FLAGS 8
102 
103 #define AT24_BITMASK(x) (BIT(x) - 1)
104 
105 /* create non-zero magic value for given eeprom parameters */
106 #define AT24_DEVICE_MAGIC(_len, _flags) 		\
107 	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
108 	    << AT24_SIZE_BYTELEN | ilog2(_len))
109 
110 static const struct i2c_device_id at24_ids[] = {
111 	/* needs 8 addresses as A0-A2 are ignored */
112 	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
113 	/* old variants can't be handled with this generic entry! */
114 	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
115 	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
116 	/* spd is a 24c02 in memory DIMMs */
117 	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
118 		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
119 	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
120 	/* 24rf08 quirk is handled at i2c-core */
121 	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
122 	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
123 	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
124 	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
125 	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
126 	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
127 	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
128 	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
129 	{ "at24", 0 },
130 	{ /* END OF LIST */ }
131 };
132 MODULE_DEVICE_TABLE(i2c, at24_ids);
133 
134 /*-------------------------------------------------------------------------*/
135 
136 /*
137  * This routine supports chips which consume multiple I2C addresses. It
138  * computes the addressing information to be used for a given r/w request.
139  * Assumes that sanity checks for offset happened at sysfs-layer.
140  */
141 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
142 		unsigned *offset)
143 {
144 	unsigned i;
145 
146 	if (at24->chip.flags & AT24_FLAG_ADDR16) {
147 		i = *offset >> 16;
148 		*offset &= 0xffff;
149 	} else {
150 		i = *offset >> 8;
151 		*offset &= 0xff;
152 	}
153 
154 	return at24->client[i];
155 }
156 
157 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
158 		unsigned offset, size_t count)
159 {
160 	struct i2c_msg msg[2];
161 	u8 msgbuf[2];
162 	struct i2c_client *client;
163 	unsigned long timeout, read_time;
164 	int status, i;
165 
166 	memset(msg, 0, sizeof(msg));
167 
168 	/*
169 	 * REVISIT some multi-address chips don't rollover page reads to
170 	 * the next slave address, so we may need to truncate the count.
171 	 * Those chips might need another quirk flag.
172 	 *
173 	 * If the real hardware used four adjacent 24c02 chips and that
174 	 * were misconfigured as one 24c08, that would be a similar effect:
175 	 * one "eeprom" file not four, but larger reads would fail when
176 	 * they crossed certain pages.
177 	 */
178 
179 	/*
180 	 * Slave address and byte offset derive from the offset. Always
181 	 * set the byte address; on a multi-master board, another master
182 	 * may have changed the chip's "current" address pointer.
183 	 */
184 	client = at24_translate_offset(at24, &offset);
185 
186 	if (count > io_limit)
187 		count = io_limit;
188 
189 	if (at24->use_smbus) {
190 		/* Smaller eeproms can work given some SMBus extension calls */
191 		if (count > I2C_SMBUS_BLOCK_MAX)
192 			count = I2C_SMBUS_BLOCK_MAX;
193 	} else {
194 		/*
195 		 * When we have a better choice than SMBus calls, use a
196 		 * combined I2C message. Write address; then read up to
197 		 * io_limit data bytes. Note that read page rollover helps us
198 		 * here (unlike writes). msgbuf is u8 and will cast to our
199 		 * needs.
200 		 */
201 		i = 0;
202 		if (at24->chip.flags & AT24_FLAG_ADDR16)
203 			msgbuf[i++] = offset >> 8;
204 		msgbuf[i++] = offset;
205 
206 		msg[0].addr = client->addr;
207 		msg[0].buf = msgbuf;
208 		msg[0].len = i;
209 
210 		msg[1].addr = client->addr;
211 		msg[1].flags = I2C_M_RD;
212 		msg[1].buf = buf;
213 		msg[1].len = count;
214 	}
215 
216 	/*
217 	 * Reads fail if the previous write didn't complete yet. We may
218 	 * loop a few times until this one succeeds, waiting at least
219 	 * long enough for one entire page write to work.
220 	 */
221 	timeout = jiffies + msecs_to_jiffies(write_timeout);
222 	do {
223 		read_time = jiffies;
224 		if (at24->use_smbus) {
225 			status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
226 									   count, buf);
227 		} else {
228 			status = i2c_transfer(client->adapter, msg, 2);
229 			if (status == 2)
230 				status = count;
231 		}
232 		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
233 				count, offset, status, jiffies);
234 
235 		if (status == count)
236 			return count;
237 
238 		/* REVISIT: at HZ=100, this is sloooow */
239 		msleep(1);
240 	} while (time_before(read_time, timeout));
241 
242 	return -ETIMEDOUT;
243 }
244 
245 static ssize_t at24_read(struct at24_data *at24,
246 		char *buf, loff_t off, size_t count)
247 {
248 	ssize_t retval = 0;
249 
250 	if (unlikely(!count))
251 		return count;
252 
253 	/*
254 	 * Read data from chip, protecting against concurrent updates
255 	 * from this host, but not from other I2C masters.
256 	 */
257 	mutex_lock(&at24->lock);
258 
259 	while (count) {
260 		ssize_t	status;
261 
262 		status = at24_eeprom_read(at24, buf, off, count);
263 		if (status <= 0) {
264 			if (retval == 0)
265 				retval = status;
266 			break;
267 		}
268 		buf += status;
269 		off += status;
270 		count -= status;
271 		retval += status;
272 	}
273 
274 	mutex_unlock(&at24->lock);
275 
276 	return retval;
277 }
278 
279 static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
280 		struct bin_attribute *attr,
281 		char *buf, loff_t off, size_t count)
282 {
283 	struct at24_data *at24;
284 
285 	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
286 	return at24_read(at24, buf, off, count);
287 }
288 
289 
290 /*
291  * Note that if the hardware write-protect pin is pulled high, the whole
292  * chip is normally write protected. But there are plenty of product
293  * variants here, including OTP fuses and partial chip protect.
294  *
295  * We only use page mode writes; the alternative is sloooow. This routine
296  * writes at most one page.
297  */
298 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
299 		unsigned offset, size_t count)
300 {
301 	struct i2c_client *client;
302 	struct i2c_msg msg;
303 	ssize_t status = 0;
304 	unsigned long timeout, write_time;
305 	unsigned next_page;
306 
307 	/* Get corresponding I2C address and adjust offset */
308 	client = at24_translate_offset(at24, &offset);
309 
310 	/* write_max is at most a page */
311 	if (count > at24->write_max)
312 		count = at24->write_max;
313 
314 	/* Never roll over backwards, to the start of this page */
315 	next_page = roundup(offset + 1, at24->chip.page_size);
316 	if (offset + count > next_page)
317 		count = next_page - offset;
318 
319 	/* If we'll use I2C calls for I/O, set up the message */
320 	if (!at24->use_smbus) {
321 		int i = 0;
322 
323 		msg.addr = client->addr;
324 		msg.flags = 0;
325 
326 		/* msg.buf is u8 and casts will mask the values */
327 		msg.buf = at24->writebuf;
328 		if (at24->chip.flags & AT24_FLAG_ADDR16)
329 			msg.buf[i++] = offset >> 8;
330 
331 		msg.buf[i++] = offset;
332 		memcpy(&msg.buf[i], buf, count);
333 		msg.len = i + count;
334 	}
335 
336 	/*
337 	 * Writes fail if the previous one didn't complete yet. We may
338 	 * loop a few times until this one succeeds, waiting at least
339 	 * long enough for one entire page write to work.
340 	 */
341 	timeout = jiffies + msecs_to_jiffies(write_timeout);
342 	do {
343 		write_time = jiffies;
344 		if (at24->use_smbus_write) {
345 			switch (at24->use_smbus_write) {
346 			case I2C_SMBUS_I2C_BLOCK_DATA:
347 				status = i2c_smbus_write_i2c_block_data(client,
348 						offset, count, buf);
349 				break;
350 			case I2C_SMBUS_BYTE_DATA:
351 				status = i2c_smbus_write_byte_data(client,
352 						offset, buf[0]);
353 				break;
354 			}
355 
356 			if (status == 0)
357 				status = count;
358 		} else {
359 			status = i2c_transfer(client->adapter, &msg, 1);
360 			if (status == 1)
361 				status = count;
362 		}
363 		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
364 				count, offset, status, jiffies);
365 
366 		if (status == count)
367 			return count;
368 
369 		/* REVISIT: at HZ=100, this is sloooow */
370 		msleep(1);
371 	} while (time_before(write_time, timeout));
372 
373 	return -ETIMEDOUT;
374 }
375 
376 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
377 			  size_t count)
378 {
379 	ssize_t retval = 0;
380 
381 	if (unlikely(!count))
382 		return count;
383 
384 	/*
385 	 * Write data to chip, protecting against concurrent updates
386 	 * from this host, but not from other I2C masters.
387 	 */
388 	mutex_lock(&at24->lock);
389 
390 	while (count) {
391 		ssize_t	status;
392 
393 		status = at24_eeprom_write(at24, buf, off, count);
394 		if (status <= 0) {
395 			if (retval == 0)
396 				retval = status;
397 			break;
398 		}
399 		buf += status;
400 		off += status;
401 		count -= status;
402 		retval += status;
403 	}
404 
405 	mutex_unlock(&at24->lock);
406 
407 	return retval;
408 }
409 
410 static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
411 		struct bin_attribute *attr,
412 		char *buf, loff_t off, size_t count)
413 {
414 	struct at24_data *at24;
415 
416 	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
417 	return at24_write(at24, buf, off, count);
418 }
419 
420 /*-------------------------------------------------------------------------*/
421 
422 /*
423  * This lets other kernel code access the eeprom data. For example, it
424  * might hold a board's Ethernet address, or board-specific calibration
425  * data generated on the manufacturing floor.
426  */
427 
428 static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
429 			 off_t offset, size_t count)
430 {
431 	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
432 
433 	return at24_read(at24, buf, offset, count);
434 }
435 
436 static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
437 			  off_t offset, size_t count)
438 {
439 	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
440 
441 	return at24_write(at24, buf, offset, count);
442 }
443 
444 /*-------------------------------------------------------------------------*/
445 
446 #ifdef CONFIG_OF
447 static void at24_get_ofdata(struct i2c_client *client,
448 		struct at24_platform_data *chip)
449 {
450 	const __be32 *val;
451 	struct device_node *node = client->dev.of_node;
452 
453 	if (node) {
454 		if (of_get_property(node, "read-only", NULL))
455 			chip->flags |= AT24_FLAG_READONLY;
456 		val = of_get_property(node, "pagesize", NULL);
457 		if (val)
458 			chip->page_size = be32_to_cpup(val);
459 	}
460 }
461 #else
462 static void at24_get_ofdata(struct i2c_client *client,
463 		struct at24_platform_data *chip)
464 { }
465 #endif /* CONFIG_OF */
466 
467 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
468 {
469 	struct at24_platform_data chip;
470 	bool writable;
471 	int use_smbus = 0;
472 	int use_smbus_write = 0;
473 	struct at24_data *at24;
474 	int err;
475 	unsigned i, num_addresses;
476 	kernel_ulong_t magic;
477 
478 	if (client->dev.platform_data) {
479 		chip = *(struct at24_platform_data *)client->dev.platform_data;
480 	} else {
481 		if (!id->driver_data)
482 			return -ENODEV;
483 
484 		magic = id->driver_data;
485 		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
486 		magic >>= AT24_SIZE_BYTELEN;
487 		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
488 		/*
489 		 * This is slow, but we can't know all eeproms, so we better
490 		 * play safe. Specifying custom eeprom-types via platform_data
491 		 * is recommended anyhow.
492 		 */
493 		chip.page_size = 1;
494 
495 		/* update chipdata if OF is present */
496 		at24_get_ofdata(client, &chip);
497 
498 		chip.setup = NULL;
499 		chip.context = NULL;
500 	}
501 
502 	if (!is_power_of_2(chip.byte_len))
503 		dev_warn(&client->dev,
504 			"byte_len looks suspicious (no power of 2)!\n");
505 	if (!chip.page_size) {
506 		dev_err(&client->dev, "page_size must not be 0!\n");
507 		return -EINVAL;
508 	}
509 	if (!is_power_of_2(chip.page_size))
510 		dev_warn(&client->dev,
511 			"page_size looks suspicious (no power of 2)!\n");
512 
513 	/* Use I2C operations unless we're stuck with SMBus extensions. */
514 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
515 		if (chip.flags & AT24_FLAG_ADDR16)
516 			return -EPFNOSUPPORT;
517 
518 		if (i2c_check_functionality(client->adapter,
519 				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
520 			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
521 		} else if (i2c_check_functionality(client->adapter,
522 				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
523 			use_smbus = I2C_SMBUS_WORD_DATA;
524 		} else if (i2c_check_functionality(client->adapter,
525 				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
526 			use_smbus = I2C_SMBUS_BYTE_DATA;
527 		} else {
528 			return -EPFNOSUPPORT;
529 		}
530 	}
531 
532 	/* Use I2C operations unless we're stuck with SMBus extensions. */
533 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
534 		if (i2c_check_functionality(client->adapter,
535 				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
536 			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
537 		} else if (i2c_check_functionality(client->adapter,
538 				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
539 			use_smbus_write = I2C_SMBUS_BYTE_DATA;
540 			chip.page_size = 1;
541 		}
542 	}
543 
544 	if (chip.flags & AT24_FLAG_TAKE8ADDR)
545 		num_addresses = 8;
546 	else
547 		num_addresses =	DIV_ROUND_UP(chip.byte_len,
548 			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
549 
550 	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
551 		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
552 	if (!at24)
553 		return -ENOMEM;
554 
555 	mutex_init(&at24->lock);
556 	at24->use_smbus = use_smbus;
557 	at24->use_smbus_write = use_smbus_write;
558 	at24->chip = chip;
559 	at24->num_addresses = num_addresses;
560 
561 	/*
562 	 * Export the EEPROM bytes through sysfs, since that's convenient.
563 	 * By default, only root should see the data (maybe passwords etc)
564 	 */
565 	sysfs_bin_attr_init(&at24->bin);
566 	at24->bin.attr.name = "eeprom";
567 	at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
568 	at24->bin.read = at24_bin_read;
569 	at24->bin.size = chip.byte_len;
570 
571 	at24->macc.read = at24_macc_read;
572 
573 	writable = !(chip.flags & AT24_FLAG_READONLY);
574 	if (writable) {
575 		if (!use_smbus || use_smbus_write) {
576 
577 			unsigned write_max = chip.page_size;
578 
579 			at24->macc.write = at24_macc_write;
580 
581 			at24->bin.write = at24_bin_write;
582 			at24->bin.attr.mode |= S_IWUSR;
583 
584 			if (write_max > io_limit)
585 				write_max = io_limit;
586 			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
587 				write_max = I2C_SMBUS_BLOCK_MAX;
588 			at24->write_max = write_max;
589 
590 			/* buffer (data + address at the beginning) */
591 			at24->writebuf = devm_kzalloc(&client->dev,
592 				write_max + 2, GFP_KERNEL);
593 			if (!at24->writebuf)
594 				return -ENOMEM;
595 		} else {
596 			dev_warn(&client->dev,
597 				"cannot write due to controller restrictions.");
598 		}
599 	}
600 
601 	at24->client[0] = client;
602 
603 	/* use dummy devices for multiple-address chips */
604 	for (i = 1; i < num_addresses; i++) {
605 		at24->client[i] = i2c_new_dummy(client->adapter,
606 					client->addr + i);
607 		if (!at24->client[i]) {
608 			dev_err(&client->dev, "address 0x%02x unavailable\n",
609 					client->addr + i);
610 			err = -EADDRINUSE;
611 			goto err_clients;
612 		}
613 	}
614 
615 	err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
616 	if (err)
617 		goto err_clients;
618 
619 	i2c_set_clientdata(client, at24);
620 
621 	dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n",
622 		at24->bin.size, client->name,
623 		writable ? "writable" : "read-only", at24->write_max);
624 	if (use_smbus == I2C_SMBUS_WORD_DATA ||
625 	    use_smbus == I2C_SMBUS_BYTE_DATA) {
626 		dev_notice(&client->dev, "Falling back to %s reads, "
627 			   "performance will suffer\n", use_smbus ==
628 			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
629 	}
630 
631 	/* export data to kernel code */
632 	if (chip.setup)
633 		chip.setup(&at24->macc, chip.context);
634 
635 	return 0;
636 
637 err_clients:
638 	for (i = 1; i < num_addresses; i++)
639 		if (at24->client[i])
640 			i2c_unregister_device(at24->client[i]);
641 
642 	return err;
643 }
644 
645 static int at24_remove(struct i2c_client *client)
646 {
647 	struct at24_data *at24;
648 	int i;
649 
650 	at24 = i2c_get_clientdata(client);
651 	sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
652 
653 	for (i = 1; i < at24->num_addresses; i++)
654 		i2c_unregister_device(at24->client[i]);
655 
656 	return 0;
657 }
658 
659 /*-------------------------------------------------------------------------*/
660 
661 static struct i2c_driver at24_driver = {
662 	.driver = {
663 		.name = "at24",
664 	},
665 	.probe = at24_probe,
666 	.remove = at24_remove,
667 	.id_table = at24_ids,
668 };
669 
670 static int __init at24_init(void)
671 {
672 	if (!io_limit) {
673 		pr_err("at24: io_limit must not be 0!\n");
674 		return -EINVAL;
675 	}
676 
677 	io_limit = rounddown_pow_of_two(io_limit);
678 	return i2c_add_driver(&at24_driver);
679 }
680 module_init(at24_init);
681 
682 static void __exit at24_exit(void)
683 {
684 	i2c_del_driver(&at24_driver);
685 }
686 module_exit(at24_exit);
687 
688 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
689 MODULE_AUTHOR("David Brownell and Wolfram Sang");
690 MODULE_LICENSE("GPL");
691