1 /* 2 * at24.c - handle most I2C EEPROMs 3 * 4 * Copyright (C) 2005-2007 David Brownell 5 * Copyright (C) 2008 Wolfram Sang, Pengutronix 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/delay.h> 17 #include <linux/mutex.h> 18 #include <linux/sysfs.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/log2.h> 21 #include <linux/bitops.h> 22 #include <linux/jiffies.h> 23 #include <linux/of.h> 24 #include <linux/i2c.h> 25 #include <linux/i2c/at24.h> 26 27 /* 28 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable. 29 * Differences between different vendor product lines (like Atmel AT24C or 30 * MicroChip 24LC, etc) won't much matter for typical read/write access. 31 * There are also I2C RAM chips, likewise interchangeable. One example 32 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes). 33 * 34 * However, misconfiguration can lose data. "Set 16-bit memory address" 35 * to a part with 8-bit addressing will overwrite data. Writing with too 36 * big a page size also loses data. And it's not safe to assume that the 37 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC 38 * uses 0x51, for just one example. 39 * 40 * Accordingly, explicit board-specific configuration data should be used 41 * in almost all cases. (One partial exception is an SMBus used to access 42 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.) 43 * 44 * So this driver uses "new style" I2C driver binding, expecting to be 45 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or 46 * similar kernel-resident tables; or, configuration data coming from 47 * a bootloader. 48 * 49 * Other than binding model, current differences from "eeprom" driver are 50 * that this one handles write access and isn't restricted to 24c02 devices. 51 * It also handles larger devices (32 kbit and up) with two-byte addresses, 52 * which won't work on pure SMBus systems. 53 */ 54 55 struct at24_data { 56 struct at24_platform_data chip; 57 struct memory_accessor macc; 58 int use_smbus; 59 60 /* 61 * Lock protects against activities from other Linux tasks, 62 * but not from changes by other I2C masters. 63 */ 64 struct mutex lock; 65 struct bin_attribute bin; 66 67 u8 *writebuf; 68 unsigned write_max; 69 unsigned num_addresses; 70 71 /* 72 * Some chips tie up multiple I2C addresses; dummy devices reserve 73 * them for us, and we'll use them with SMBus calls. 74 */ 75 struct i2c_client *client[]; 76 }; 77 78 /* 79 * This parameter is to help this driver avoid blocking other drivers out 80 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C 81 * clock, one 256 byte read takes about 1/43 second which is excessive; 82 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and 83 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible. 84 * 85 * This value is forced to be a power of two so that writes align on pages. 86 */ 87 static unsigned io_limit = 128; 88 module_param(io_limit, uint, 0); 89 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)"); 90 91 /* 92 * Specs often allow 5 msec for a page write, sometimes 20 msec; 93 * it's important to recover from write timeouts. 94 */ 95 static unsigned write_timeout = 25; 96 module_param(write_timeout, uint, 0); 97 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)"); 98 99 #define AT24_SIZE_BYTELEN 5 100 #define AT24_SIZE_FLAGS 8 101 102 #define AT24_BITMASK(x) (BIT(x) - 1) 103 104 /* create non-zero magic value for given eeprom parameters */ 105 #define AT24_DEVICE_MAGIC(_len, _flags) \ 106 ((1 << AT24_SIZE_FLAGS | (_flags)) \ 107 << AT24_SIZE_BYTELEN | ilog2(_len)) 108 109 static const struct i2c_device_id at24_ids[] = { 110 /* needs 8 addresses as A0-A2 are ignored */ 111 { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) }, 112 /* old variants can't be handled with this generic entry! */ 113 { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) }, 114 { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) }, 115 /* spd is a 24c02 in memory DIMMs */ 116 { "spd", AT24_DEVICE_MAGIC(2048 / 8, 117 AT24_FLAG_READONLY | AT24_FLAG_IRUGO) }, 118 { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) }, 119 /* 24rf08 quirk is handled at i2c-core */ 120 { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) }, 121 { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) }, 122 { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) }, 123 { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) }, 124 { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) }, 125 { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) }, 126 { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) }, 127 { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) }, 128 { "at24", 0 }, 129 { /* END OF LIST */ } 130 }; 131 MODULE_DEVICE_TABLE(i2c, at24_ids); 132 133 /*-------------------------------------------------------------------------*/ 134 135 /* 136 * This routine supports chips which consume multiple I2C addresses. It 137 * computes the addressing information to be used for a given r/w request. 138 * Assumes that sanity checks for offset happened at sysfs-layer. 139 */ 140 static struct i2c_client *at24_translate_offset(struct at24_data *at24, 141 unsigned *offset) 142 { 143 unsigned i; 144 145 if (at24->chip.flags & AT24_FLAG_ADDR16) { 146 i = *offset >> 16; 147 *offset &= 0xffff; 148 } else { 149 i = *offset >> 8; 150 *offset &= 0xff; 151 } 152 153 return at24->client[i]; 154 } 155 156 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf, 157 unsigned offset, size_t count) 158 { 159 struct i2c_msg msg[2]; 160 u8 msgbuf[2]; 161 struct i2c_client *client; 162 unsigned long timeout, read_time; 163 int status, i; 164 165 memset(msg, 0, sizeof(msg)); 166 167 /* 168 * REVISIT some multi-address chips don't rollover page reads to 169 * the next slave address, so we may need to truncate the count. 170 * Those chips might need another quirk flag. 171 * 172 * If the real hardware used four adjacent 24c02 chips and that 173 * were misconfigured as one 24c08, that would be a similar effect: 174 * one "eeprom" file not four, but larger reads would fail when 175 * they crossed certain pages. 176 */ 177 178 /* 179 * Slave address and byte offset derive from the offset. Always 180 * set the byte address; on a multi-master board, another master 181 * may have changed the chip's "current" address pointer. 182 */ 183 client = at24_translate_offset(at24, &offset); 184 185 if (count > io_limit) 186 count = io_limit; 187 188 switch (at24->use_smbus) { 189 case I2C_SMBUS_I2C_BLOCK_DATA: 190 /* Smaller eeproms can work given some SMBus extension calls */ 191 if (count > I2C_SMBUS_BLOCK_MAX) 192 count = I2C_SMBUS_BLOCK_MAX; 193 break; 194 case I2C_SMBUS_WORD_DATA: 195 count = 2; 196 break; 197 case I2C_SMBUS_BYTE_DATA: 198 count = 1; 199 break; 200 default: 201 /* 202 * When we have a better choice than SMBus calls, use a 203 * combined I2C message. Write address; then read up to 204 * io_limit data bytes. Note that read page rollover helps us 205 * here (unlike writes). msgbuf is u8 and will cast to our 206 * needs. 207 */ 208 i = 0; 209 if (at24->chip.flags & AT24_FLAG_ADDR16) 210 msgbuf[i++] = offset >> 8; 211 msgbuf[i++] = offset; 212 213 msg[0].addr = client->addr; 214 msg[0].buf = msgbuf; 215 msg[0].len = i; 216 217 msg[1].addr = client->addr; 218 msg[1].flags = I2C_M_RD; 219 msg[1].buf = buf; 220 msg[1].len = count; 221 } 222 223 /* 224 * Reads fail if the previous write didn't complete yet. We may 225 * loop a few times until this one succeeds, waiting at least 226 * long enough for one entire page write to work. 227 */ 228 timeout = jiffies + msecs_to_jiffies(write_timeout); 229 do { 230 read_time = jiffies; 231 switch (at24->use_smbus) { 232 case I2C_SMBUS_I2C_BLOCK_DATA: 233 status = i2c_smbus_read_i2c_block_data(client, offset, 234 count, buf); 235 break; 236 case I2C_SMBUS_WORD_DATA: 237 status = i2c_smbus_read_word_data(client, offset); 238 if (status >= 0) { 239 buf[0] = status & 0xff; 240 buf[1] = status >> 8; 241 status = count; 242 } 243 break; 244 case I2C_SMBUS_BYTE_DATA: 245 status = i2c_smbus_read_byte_data(client, offset); 246 if (status >= 0) { 247 buf[0] = status; 248 status = count; 249 } 250 break; 251 default: 252 status = i2c_transfer(client->adapter, msg, 2); 253 if (status == 2) 254 status = count; 255 } 256 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n", 257 count, offset, status, jiffies); 258 259 if (status == count) 260 return count; 261 262 /* REVISIT: at HZ=100, this is sloooow */ 263 msleep(1); 264 } while (time_before(read_time, timeout)); 265 266 return -ETIMEDOUT; 267 } 268 269 static ssize_t at24_read(struct at24_data *at24, 270 char *buf, loff_t off, size_t count) 271 { 272 ssize_t retval = 0; 273 274 if (unlikely(!count)) 275 return count; 276 277 /* 278 * Read data from chip, protecting against concurrent updates 279 * from this host, but not from other I2C masters. 280 */ 281 mutex_lock(&at24->lock); 282 283 while (count) { 284 ssize_t status; 285 286 status = at24_eeprom_read(at24, buf, off, count); 287 if (status <= 0) { 288 if (retval == 0) 289 retval = status; 290 break; 291 } 292 buf += status; 293 off += status; 294 count -= status; 295 retval += status; 296 } 297 298 mutex_unlock(&at24->lock); 299 300 return retval; 301 } 302 303 static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj, 304 struct bin_attribute *attr, 305 char *buf, loff_t off, size_t count) 306 { 307 struct at24_data *at24; 308 309 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); 310 return at24_read(at24, buf, off, count); 311 } 312 313 314 /* 315 * Note that if the hardware write-protect pin is pulled high, the whole 316 * chip is normally write protected. But there are plenty of product 317 * variants here, including OTP fuses and partial chip protect. 318 * 319 * We only use page mode writes; the alternative is sloooow. This routine 320 * writes at most one page. 321 */ 322 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf, 323 unsigned offset, size_t count) 324 { 325 struct i2c_client *client; 326 struct i2c_msg msg; 327 ssize_t status; 328 unsigned long timeout, write_time; 329 unsigned next_page; 330 331 /* Get corresponding I2C address and adjust offset */ 332 client = at24_translate_offset(at24, &offset); 333 334 /* write_max is at most a page */ 335 if (count > at24->write_max) 336 count = at24->write_max; 337 338 /* Never roll over backwards, to the start of this page */ 339 next_page = roundup(offset + 1, at24->chip.page_size); 340 if (offset + count > next_page) 341 count = next_page - offset; 342 343 /* If we'll use I2C calls for I/O, set up the message */ 344 if (!at24->use_smbus) { 345 int i = 0; 346 347 msg.addr = client->addr; 348 msg.flags = 0; 349 350 /* msg.buf is u8 and casts will mask the values */ 351 msg.buf = at24->writebuf; 352 if (at24->chip.flags & AT24_FLAG_ADDR16) 353 msg.buf[i++] = offset >> 8; 354 355 msg.buf[i++] = offset; 356 memcpy(&msg.buf[i], buf, count); 357 msg.len = i + count; 358 } 359 360 /* 361 * Writes fail if the previous one didn't complete yet. We may 362 * loop a few times until this one succeeds, waiting at least 363 * long enough for one entire page write to work. 364 */ 365 timeout = jiffies + msecs_to_jiffies(write_timeout); 366 do { 367 write_time = jiffies; 368 if (at24->use_smbus) { 369 status = i2c_smbus_write_i2c_block_data(client, 370 offset, count, buf); 371 if (status == 0) 372 status = count; 373 } else { 374 status = i2c_transfer(client->adapter, &msg, 1); 375 if (status == 1) 376 status = count; 377 } 378 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n", 379 count, offset, status, jiffies); 380 381 if (status == count) 382 return count; 383 384 /* REVISIT: at HZ=100, this is sloooow */ 385 msleep(1); 386 } while (time_before(write_time, timeout)); 387 388 return -ETIMEDOUT; 389 } 390 391 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off, 392 size_t count) 393 { 394 ssize_t retval = 0; 395 396 if (unlikely(!count)) 397 return count; 398 399 /* 400 * Write data to chip, protecting against concurrent updates 401 * from this host, but not from other I2C masters. 402 */ 403 mutex_lock(&at24->lock); 404 405 while (count) { 406 ssize_t status; 407 408 status = at24_eeprom_write(at24, buf, off, count); 409 if (status <= 0) { 410 if (retval == 0) 411 retval = status; 412 break; 413 } 414 buf += status; 415 off += status; 416 count -= status; 417 retval += status; 418 } 419 420 mutex_unlock(&at24->lock); 421 422 return retval; 423 } 424 425 static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj, 426 struct bin_attribute *attr, 427 char *buf, loff_t off, size_t count) 428 { 429 struct at24_data *at24; 430 431 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); 432 return at24_write(at24, buf, off, count); 433 } 434 435 /*-------------------------------------------------------------------------*/ 436 437 /* 438 * This lets other kernel code access the eeprom data. For example, it 439 * might hold a board's Ethernet address, or board-specific calibration 440 * data generated on the manufacturing floor. 441 */ 442 443 static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf, 444 off_t offset, size_t count) 445 { 446 struct at24_data *at24 = container_of(macc, struct at24_data, macc); 447 448 return at24_read(at24, buf, offset, count); 449 } 450 451 static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf, 452 off_t offset, size_t count) 453 { 454 struct at24_data *at24 = container_of(macc, struct at24_data, macc); 455 456 return at24_write(at24, buf, offset, count); 457 } 458 459 /*-------------------------------------------------------------------------*/ 460 461 #ifdef CONFIG_OF 462 static void at24_get_ofdata(struct i2c_client *client, 463 struct at24_platform_data *chip) 464 { 465 const __be32 *val; 466 struct device_node *node = client->dev.of_node; 467 468 if (node) { 469 if (of_get_property(node, "read-only", NULL)) 470 chip->flags |= AT24_FLAG_READONLY; 471 val = of_get_property(node, "pagesize", NULL); 472 if (val) 473 chip->page_size = be32_to_cpup(val); 474 } 475 } 476 #else 477 static void at24_get_ofdata(struct i2c_client *client, 478 struct at24_platform_data *chip) 479 { } 480 #endif /* CONFIG_OF */ 481 482 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id) 483 { 484 struct at24_platform_data chip; 485 bool writable; 486 int use_smbus = 0; 487 struct at24_data *at24; 488 int err; 489 unsigned i, num_addresses; 490 kernel_ulong_t magic; 491 492 if (client->dev.platform_data) { 493 chip = *(struct at24_platform_data *)client->dev.platform_data; 494 } else { 495 if (!id->driver_data) { 496 err = -ENODEV; 497 goto err_out; 498 } 499 magic = id->driver_data; 500 chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN)); 501 magic >>= AT24_SIZE_BYTELEN; 502 chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS); 503 /* 504 * This is slow, but we can't know all eeproms, so we better 505 * play safe. Specifying custom eeprom-types via platform_data 506 * is recommended anyhow. 507 */ 508 chip.page_size = 1; 509 510 /* update chipdata if OF is present */ 511 at24_get_ofdata(client, &chip); 512 513 chip.setup = NULL; 514 chip.context = NULL; 515 } 516 517 if (!is_power_of_2(chip.byte_len)) 518 dev_warn(&client->dev, 519 "byte_len looks suspicious (no power of 2)!\n"); 520 if (!chip.page_size) { 521 dev_err(&client->dev, "page_size must not be 0!\n"); 522 err = -EINVAL; 523 goto err_out; 524 } 525 if (!is_power_of_2(chip.page_size)) 526 dev_warn(&client->dev, 527 "page_size looks suspicious (no power of 2)!\n"); 528 529 /* Use I2C operations unless we're stuck with SMBus extensions. */ 530 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 531 if (chip.flags & AT24_FLAG_ADDR16) { 532 err = -EPFNOSUPPORT; 533 goto err_out; 534 } 535 if (i2c_check_functionality(client->adapter, 536 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) { 537 use_smbus = I2C_SMBUS_I2C_BLOCK_DATA; 538 } else if (i2c_check_functionality(client->adapter, 539 I2C_FUNC_SMBUS_READ_WORD_DATA)) { 540 use_smbus = I2C_SMBUS_WORD_DATA; 541 } else if (i2c_check_functionality(client->adapter, 542 I2C_FUNC_SMBUS_READ_BYTE_DATA)) { 543 use_smbus = I2C_SMBUS_BYTE_DATA; 544 } else { 545 err = -EPFNOSUPPORT; 546 goto err_out; 547 } 548 } 549 550 if (chip.flags & AT24_FLAG_TAKE8ADDR) 551 num_addresses = 8; 552 else 553 num_addresses = DIV_ROUND_UP(chip.byte_len, 554 (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256); 555 556 at24 = kzalloc(sizeof(struct at24_data) + 557 num_addresses * sizeof(struct i2c_client *), GFP_KERNEL); 558 if (!at24) { 559 err = -ENOMEM; 560 goto err_out; 561 } 562 563 mutex_init(&at24->lock); 564 at24->use_smbus = use_smbus; 565 at24->chip = chip; 566 at24->num_addresses = num_addresses; 567 568 /* 569 * Export the EEPROM bytes through sysfs, since that's convenient. 570 * By default, only root should see the data (maybe passwords etc) 571 */ 572 sysfs_bin_attr_init(&at24->bin); 573 at24->bin.attr.name = "eeprom"; 574 at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR; 575 at24->bin.read = at24_bin_read; 576 at24->bin.size = chip.byte_len; 577 578 at24->macc.read = at24_macc_read; 579 580 writable = !(chip.flags & AT24_FLAG_READONLY); 581 if (writable) { 582 if (!use_smbus || i2c_check_functionality(client->adapter, 583 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) { 584 585 unsigned write_max = chip.page_size; 586 587 at24->macc.write = at24_macc_write; 588 589 at24->bin.write = at24_bin_write; 590 at24->bin.attr.mode |= S_IWUSR; 591 592 if (write_max > io_limit) 593 write_max = io_limit; 594 if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX) 595 write_max = I2C_SMBUS_BLOCK_MAX; 596 at24->write_max = write_max; 597 598 /* buffer (data + address at the beginning) */ 599 at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL); 600 if (!at24->writebuf) { 601 err = -ENOMEM; 602 goto err_struct; 603 } 604 } else { 605 dev_warn(&client->dev, 606 "cannot write due to controller restrictions."); 607 } 608 } 609 610 at24->client[0] = client; 611 612 /* use dummy devices for multiple-address chips */ 613 for (i = 1; i < num_addresses; i++) { 614 at24->client[i] = i2c_new_dummy(client->adapter, 615 client->addr + i); 616 if (!at24->client[i]) { 617 dev_err(&client->dev, "address 0x%02x unavailable\n", 618 client->addr + i); 619 err = -EADDRINUSE; 620 goto err_clients; 621 } 622 } 623 624 err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin); 625 if (err) 626 goto err_clients; 627 628 i2c_set_clientdata(client, at24); 629 630 dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n", 631 at24->bin.size, client->name, 632 writable ? "writable" : "read-only", at24->write_max); 633 if (use_smbus == I2C_SMBUS_WORD_DATA || 634 use_smbus == I2C_SMBUS_BYTE_DATA) { 635 dev_notice(&client->dev, "Falling back to %s reads, " 636 "performance will suffer\n", use_smbus == 637 I2C_SMBUS_WORD_DATA ? "word" : "byte"); 638 } 639 640 /* export data to kernel code */ 641 if (chip.setup) 642 chip.setup(&at24->macc, chip.context); 643 644 return 0; 645 646 err_clients: 647 for (i = 1; i < num_addresses; i++) 648 if (at24->client[i]) 649 i2c_unregister_device(at24->client[i]); 650 651 kfree(at24->writebuf); 652 err_struct: 653 kfree(at24); 654 err_out: 655 dev_dbg(&client->dev, "probe error %d\n", err); 656 return err; 657 } 658 659 static int __devexit at24_remove(struct i2c_client *client) 660 { 661 struct at24_data *at24; 662 int i; 663 664 at24 = i2c_get_clientdata(client); 665 sysfs_remove_bin_file(&client->dev.kobj, &at24->bin); 666 667 for (i = 1; i < at24->num_addresses; i++) 668 i2c_unregister_device(at24->client[i]); 669 670 kfree(at24->writebuf); 671 kfree(at24); 672 return 0; 673 } 674 675 /*-------------------------------------------------------------------------*/ 676 677 static struct i2c_driver at24_driver = { 678 .driver = { 679 .name = "at24", 680 .owner = THIS_MODULE, 681 }, 682 .probe = at24_probe, 683 .remove = __devexit_p(at24_remove), 684 .id_table = at24_ids, 685 }; 686 687 static int __init at24_init(void) 688 { 689 if (!io_limit) { 690 pr_err("at24: io_limit must not be 0!\n"); 691 return -EINVAL; 692 } 693 694 io_limit = rounddown_pow_of_two(io_limit); 695 return i2c_add_driver(&at24_driver); 696 } 697 module_init(at24_init); 698 699 static void __exit at24_exit(void) 700 { 701 i2c_del_driver(&at24_driver); 702 } 703 module_exit(at24_exit); 704 705 MODULE_DESCRIPTION("Driver for most I2C EEPROMs"); 706 MODULE_AUTHOR("David Brownell and Wolfram Sang"); 707 MODULE_LICENSE("GPL"); 708