xref: /openbmc/linux/drivers/misc/eeprom/at24.c (revision 82ced6fd)
1 /*
2  * at24.c - handle most I2C EEPROMs
3  *
4  * Copyright (C) 2005-2007 David Brownell
5  * Copyright (C) 2008 Wolfram Sang, Pengutronix
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/sysfs.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/log2.h>
21 #include <linux/bitops.h>
22 #include <linux/jiffies.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c/at24.h>
25 
26 /*
27  * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
28  * Differences between different vendor product lines (like Atmel AT24C or
29  * MicroChip 24LC, etc) won't much matter for typical read/write access.
30  * There are also I2C RAM chips, likewise interchangeable. One example
31  * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
32  *
33  * However, misconfiguration can lose data. "Set 16-bit memory address"
34  * to a part with 8-bit addressing will overwrite data. Writing with too
35  * big a page size also loses data. And it's not safe to assume that the
36  * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
37  * uses 0x51, for just one example.
38  *
39  * Accordingly, explicit board-specific configuration data should be used
40  * in almost all cases. (One partial exception is an SMBus used to access
41  * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
42  *
43  * So this driver uses "new style" I2C driver binding, expecting to be
44  * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
45  * similar kernel-resident tables; or, configuration data coming from
46  * a bootloader.
47  *
48  * Other than binding model, current differences from "eeprom" driver are
49  * that this one handles write access and isn't restricted to 24c02 devices.
50  * It also handles larger devices (32 kbit and up) with two-byte addresses,
51  * which won't work on pure SMBus systems.
52  */
53 
54 struct at24_data {
55 	struct at24_platform_data chip;
56 	struct memory_accessor macc;
57 	bool use_smbus;
58 
59 	/*
60 	 * Lock protects against activities from other Linux tasks,
61 	 * but not from changes by other I2C masters.
62 	 */
63 	struct mutex lock;
64 	struct bin_attribute bin;
65 
66 	u8 *writebuf;
67 	unsigned write_max;
68 	unsigned num_addresses;
69 
70 	/*
71 	 * Some chips tie up multiple I2C addresses; dummy devices reserve
72 	 * them for us, and we'll use them with SMBus calls.
73 	 */
74 	struct i2c_client *client[];
75 };
76 
77 /*
78  * This parameter is to help this driver avoid blocking other drivers out
79  * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
80  * clock, one 256 byte read takes about 1/43 second which is excessive;
81  * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
82  * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
83  *
84  * This value is forced to be a power of two so that writes align on pages.
85  */
86 static unsigned io_limit = 128;
87 module_param(io_limit, uint, 0);
88 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
89 
90 /*
91  * Specs often allow 5 msec for a page write, sometimes 20 msec;
92  * it's important to recover from write timeouts.
93  */
94 static unsigned write_timeout = 25;
95 module_param(write_timeout, uint, 0);
96 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
97 
98 #define AT24_SIZE_BYTELEN 5
99 #define AT24_SIZE_FLAGS 8
100 
101 #define AT24_BITMASK(x) (BIT(x) - 1)
102 
103 /* create non-zero magic value for given eeprom parameters */
104 #define AT24_DEVICE_MAGIC(_len, _flags) 		\
105 	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
106 	    << AT24_SIZE_BYTELEN | ilog2(_len))
107 
108 static const struct i2c_device_id at24_ids[] = {
109 	/* needs 8 addresses as A0-A2 are ignored */
110 	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
111 	/* old variants can't be handled with this generic entry! */
112 	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
113 	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
114 	/* spd is a 24c02 in memory DIMMs */
115 	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
116 		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
117 	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
118 	/* 24rf08 quirk is handled at i2c-core */
119 	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
120 	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
121 	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
122 	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
123 	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
124 	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
125 	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
126 	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
127 	{ "at24", 0 },
128 	{ /* END OF LIST */ }
129 };
130 MODULE_DEVICE_TABLE(i2c, at24_ids);
131 
132 /*-------------------------------------------------------------------------*/
133 
134 /*
135  * This routine supports chips which consume multiple I2C addresses. It
136  * computes the addressing information to be used for a given r/w request.
137  * Assumes that sanity checks for offset happened at sysfs-layer.
138  */
139 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
140 		unsigned *offset)
141 {
142 	unsigned i;
143 
144 	if (at24->chip.flags & AT24_FLAG_ADDR16) {
145 		i = *offset >> 16;
146 		*offset &= 0xffff;
147 	} else {
148 		i = *offset >> 8;
149 		*offset &= 0xff;
150 	}
151 
152 	return at24->client[i];
153 }
154 
155 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
156 		unsigned offset, size_t count)
157 {
158 	struct i2c_msg msg[2];
159 	u8 msgbuf[2];
160 	struct i2c_client *client;
161 	int status, i;
162 
163 	memset(msg, 0, sizeof(msg));
164 
165 	/*
166 	 * REVISIT some multi-address chips don't rollover page reads to
167 	 * the next slave address, so we may need to truncate the count.
168 	 * Those chips might need another quirk flag.
169 	 *
170 	 * If the real hardware used four adjacent 24c02 chips and that
171 	 * were misconfigured as one 24c08, that would be a similar effect:
172 	 * one "eeprom" file not four, but larger reads would fail when
173 	 * they crossed certain pages.
174 	 */
175 
176 	/*
177 	 * Slave address and byte offset derive from the offset. Always
178 	 * set the byte address; on a multi-master board, another master
179 	 * may have changed the chip's "current" address pointer.
180 	 */
181 	client = at24_translate_offset(at24, &offset);
182 
183 	if (count > io_limit)
184 		count = io_limit;
185 
186 	/* Smaller eeproms can work given some SMBus extension calls */
187 	if (at24->use_smbus) {
188 		if (count > I2C_SMBUS_BLOCK_MAX)
189 			count = I2C_SMBUS_BLOCK_MAX;
190 		status = i2c_smbus_read_i2c_block_data(client, offset,
191 				count, buf);
192 		dev_dbg(&client->dev, "smbus read %zu@%d --> %d\n",
193 				count, offset, status);
194 		return (status < 0) ? -EIO : status;
195 	}
196 
197 	/*
198 	 * When we have a better choice than SMBus calls, use a combined
199 	 * I2C message. Write address; then read up to io_limit data bytes.
200 	 * Note that read page rollover helps us here (unlike writes).
201 	 * msgbuf is u8 and will cast to our needs.
202 	 */
203 	i = 0;
204 	if (at24->chip.flags & AT24_FLAG_ADDR16)
205 		msgbuf[i++] = offset >> 8;
206 	msgbuf[i++] = offset;
207 
208 	msg[0].addr = client->addr;
209 	msg[0].buf = msgbuf;
210 	msg[0].len = i;
211 
212 	msg[1].addr = client->addr;
213 	msg[1].flags = I2C_M_RD;
214 	msg[1].buf = buf;
215 	msg[1].len = count;
216 
217 	status = i2c_transfer(client->adapter, msg, 2);
218 	dev_dbg(&client->dev, "i2c read %zu@%d --> %d\n",
219 			count, offset, status);
220 
221 	if (status == 2)
222 		return count;
223 	else if (status >= 0)
224 		return -EIO;
225 	else
226 		return status;
227 }
228 
229 static ssize_t at24_read(struct at24_data *at24,
230 		char *buf, loff_t off, size_t count)
231 {
232 	ssize_t retval = 0;
233 
234 	if (unlikely(!count))
235 		return count;
236 
237 	/*
238 	 * Read data from chip, protecting against concurrent updates
239 	 * from this host, but not from other I2C masters.
240 	 */
241 	mutex_lock(&at24->lock);
242 
243 	while (count) {
244 		ssize_t	status;
245 
246 		status = at24_eeprom_read(at24, buf, off, count);
247 		if (status <= 0) {
248 			if (retval == 0)
249 				retval = status;
250 			break;
251 		}
252 		buf += status;
253 		off += status;
254 		count -= status;
255 		retval += status;
256 	}
257 
258 	mutex_unlock(&at24->lock);
259 
260 	return retval;
261 }
262 
263 static ssize_t at24_bin_read(struct kobject *kobj, struct bin_attribute *attr,
264 		char *buf, loff_t off, size_t count)
265 {
266 	struct at24_data *at24;
267 
268 	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
269 	return at24_read(at24, buf, off, count);
270 }
271 
272 
273 /*
274  * Note that if the hardware write-protect pin is pulled high, the whole
275  * chip is normally write protected. But there are plenty of product
276  * variants here, including OTP fuses and partial chip protect.
277  *
278  * We only use page mode writes; the alternative is sloooow. This routine
279  * writes at most one page.
280  */
281 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
282 		unsigned offset, size_t count)
283 {
284 	struct i2c_client *client;
285 	struct i2c_msg msg;
286 	ssize_t status;
287 	unsigned long timeout, write_time;
288 	unsigned next_page;
289 
290 	/* Get corresponding I2C address and adjust offset */
291 	client = at24_translate_offset(at24, &offset);
292 
293 	/* write_max is at most a page */
294 	if (count > at24->write_max)
295 		count = at24->write_max;
296 
297 	/* Never roll over backwards, to the start of this page */
298 	next_page = roundup(offset + 1, at24->chip.page_size);
299 	if (offset + count > next_page)
300 		count = next_page - offset;
301 
302 	/* If we'll use I2C calls for I/O, set up the message */
303 	if (!at24->use_smbus) {
304 		int i = 0;
305 
306 		msg.addr = client->addr;
307 		msg.flags = 0;
308 
309 		/* msg.buf is u8 and casts will mask the values */
310 		msg.buf = at24->writebuf;
311 		if (at24->chip.flags & AT24_FLAG_ADDR16)
312 			msg.buf[i++] = offset >> 8;
313 
314 		msg.buf[i++] = offset;
315 		memcpy(&msg.buf[i], buf, count);
316 		msg.len = i + count;
317 	}
318 
319 	/*
320 	 * Writes fail if the previous one didn't complete yet. We may
321 	 * loop a few times until this one succeeds, waiting at least
322 	 * long enough for one entire page write to work.
323 	 */
324 	timeout = jiffies + msecs_to_jiffies(write_timeout);
325 	do {
326 		write_time = jiffies;
327 		if (at24->use_smbus) {
328 			status = i2c_smbus_write_i2c_block_data(client,
329 					offset, count, buf);
330 			if (status == 0)
331 				status = count;
332 		} else {
333 			status = i2c_transfer(client->adapter, &msg, 1);
334 			if (status == 1)
335 				status = count;
336 		}
337 		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
338 				count, offset, status, jiffies);
339 
340 		if (status == count)
341 			return count;
342 
343 		/* REVISIT: at HZ=100, this is sloooow */
344 		msleep(1);
345 	} while (time_before(write_time, timeout));
346 
347 	return -ETIMEDOUT;
348 }
349 
350 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
351 			  size_t count)
352 {
353 	ssize_t retval = 0;
354 
355 	if (unlikely(!count))
356 		return count;
357 
358 	/*
359 	 * Write data to chip, protecting against concurrent updates
360 	 * from this host, but not from other I2C masters.
361 	 */
362 	mutex_lock(&at24->lock);
363 
364 	while (count) {
365 		ssize_t	status;
366 
367 		status = at24_eeprom_write(at24, buf, off, count);
368 		if (status <= 0) {
369 			if (retval == 0)
370 				retval = status;
371 			break;
372 		}
373 		buf += status;
374 		off += status;
375 		count -= status;
376 		retval += status;
377 	}
378 
379 	mutex_unlock(&at24->lock);
380 
381 	return retval;
382 }
383 
384 static ssize_t at24_bin_write(struct kobject *kobj, struct bin_attribute *attr,
385 		char *buf, loff_t off, size_t count)
386 {
387 	struct at24_data *at24;
388 
389 	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
390 	return at24_write(at24, buf, off, count);
391 }
392 
393 /*-------------------------------------------------------------------------*/
394 
395 /*
396  * This lets other kernel code access the eeprom data. For example, it
397  * might hold a board's Ethernet address, or board-specific calibration
398  * data generated on the manufacturing floor.
399  */
400 
401 static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
402 			 off_t offset, size_t count)
403 {
404 	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
405 
406 	return at24_read(at24, buf, offset, count);
407 }
408 
409 static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
410 			  off_t offset, size_t count)
411 {
412 	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
413 
414 	return at24_write(at24, buf, offset, count);
415 }
416 
417 /*-------------------------------------------------------------------------*/
418 
419 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
420 {
421 	struct at24_platform_data chip;
422 	bool writable;
423 	bool use_smbus = false;
424 	struct at24_data *at24;
425 	int err;
426 	unsigned i, num_addresses;
427 	kernel_ulong_t magic;
428 
429 	if (client->dev.platform_data) {
430 		chip = *(struct at24_platform_data *)client->dev.platform_data;
431 	} else {
432 		if (!id->driver_data) {
433 			err = -ENODEV;
434 			goto err_out;
435 		}
436 		magic = id->driver_data;
437 		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
438 		magic >>= AT24_SIZE_BYTELEN;
439 		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
440 		/*
441 		 * This is slow, but we can't know all eeproms, so we better
442 		 * play safe. Specifying custom eeprom-types via platform_data
443 		 * is recommended anyhow.
444 		 */
445 		chip.page_size = 1;
446 
447 		chip.setup = NULL;
448 		chip.context = NULL;
449 	}
450 
451 	if (!is_power_of_2(chip.byte_len))
452 		dev_warn(&client->dev,
453 			"byte_len looks suspicious (no power of 2)!\n");
454 	if (!is_power_of_2(chip.page_size))
455 		dev_warn(&client->dev,
456 			"page_size looks suspicious (no power of 2)!\n");
457 
458 	/* Use I2C operations unless we're stuck with SMBus extensions. */
459 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
460 		if (chip.flags & AT24_FLAG_ADDR16) {
461 			err = -EPFNOSUPPORT;
462 			goto err_out;
463 		}
464 		if (!i2c_check_functionality(client->adapter,
465 				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
466 			err = -EPFNOSUPPORT;
467 			goto err_out;
468 		}
469 		use_smbus = true;
470 	}
471 
472 	if (chip.flags & AT24_FLAG_TAKE8ADDR)
473 		num_addresses = 8;
474 	else
475 		num_addresses =	DIV_ROUND_UP(chip.byte_len,
476 			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
477 
478 	at24 = kzalloc(sizeof(struct at24_data) +
479 		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
480 	if (!at24) {
481 		err = -ENOMEM;
482 		goto err_out;
483 	}
484 
485 	mutex_init(&at24->lock);
486 	at24->use_smbus = use_smbus;
487 	at24->chip = chip;
488 	at24->num_addresses = num_addresses;
489 
490 	/*
491 	 * Export the EEPROM bytes through sysfs, since that's convenient.
492 	 * By default, only root should see the data (maybe passwords etc)
493 	 */
494 	at24->bin.attr.name = "eeprom";
495 	at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
496 	at24->bin.read = at24_bin_read;
497 	at24->bin.size = chip.byte_len;
498 
499 	at24->macc.read = at24_macc_read;
500 
501 	writable = !(chip.flags & AT24_FLAG_READONLY);
502 	if (writable) {
503 		if (!use_smbus || i2c_check_functionality(client->adapter,
504 				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
505 
506 			unsigned write_max = chip.page_size;
507 
508 			at24->macc.write = at24_macc_write;
509 
510 			at24->bin.write = at24_bin_write;
511 			at24->bin.attr.mode |= S_IWUSR;
512 
513 			if (write_max > io_limit)
514 				write_max = io_limit;
515 			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
516 				write_max = I2C_SMBUS_BLOCK_MAX;
517 			at24->write_max = write_max;
518 
519 			/* buffer (data + address at the beginning) */
520 			at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
521 			if (!at24->writebuf) {
522 				err = -ENOMEM;
523 				goto err_struct;
524 			}
525 		} else {
526 			dev_warn(&client->dev,
527 				"cannot write due to controller restrictions.");
528 		}
529 	}
530 
531 	at24->client[0] = client;
532 
533 	/* use dummy devices for multiple-address chips */
534 	for (i = 1; i < num_addresses; i++) {
535 		at24->client[i] = i2c_new_dummy(client->adapter,
536 					client->addr + i);
537 		if (!at24->client[i]) {
538 			dev_err(&client->dev, "address 0x%02x unavailable\n",
539 					client->addr + i);
540 			err = -EADDRINUSE;
541 			goto err_clients;
542 		}
543 	}
544 
545 	err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
546 	if (err)
547 		goto err_clients;
548 
549 	i2c_set_clientdata(client, at24);
550 
551 	dev_info(&client->dev, "%zu byte %s EEPROM %s\n",
552 		at24->bin.size, client->name,
553 		writable ? "(writable)" : "(read-only)");
554 	dev_dbg(&client->dev,
555 		"page_size %d, num_addresses %d, write_max %d%s\n",
556 		chip.page_size, num_addresses,
557 		at24->write_max,
558 		use_smbus ? ", use_smbus" : "");
559 
560 	/* export data to kernel code */
561 	if (chip.setup)
562 		chip.setup(&at24->macc, chip.context);
563 
564 	return 0;
565 
566 err_clients:
567 	for (i = 1; i < num_addresses; i++)
568 		if (at24->client[i])
569 			i2c_unregister_device(at24->client[i]);
570 
571 	kfree(at24->writebuf);
572 err_struct:
573 	kfree(at24);
574 err_out:
575 	dev_dbg(&client->dev, "probe error %d\n", err);
576 	return err;
577 }
578 
579 static int __devexit at24_remove(struct i2c_client *client)
580 {
581 	struct at24_data *at24;
582 	int i;
583 
584 	at24 = i2c_get_clientdata(client);
585 	sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
586 
587 	for (i = 1; i < at24->num_addresses; i++)
588 		i2c_unregister_device(at24->client[i]);
589 
590 	kfree(at24->writebuf);
591 	kfree(at24);
592 	i2c_set_clientdata(client, NULL);
593 	return 0;
594 }
595 
596 /*-------------------------------------------------------------------------*/
597 
598 static struct i2c_driver at24_driver = {
599 	.driver = {
600 		.name = "at24",
601 		.owner = THIS_MODULE,
602 	},
603 	.probe = at24_probe,
604 	.remove = __devexit_p(at24_remove),
605 	.id_table = at24_ids,
606 };
607 
608 static int __init at24_init(void)
609 {
610 	io_limit = rounddown_pow_of_two(io_limit);
611 	return i2c_add_driver(&at24_driver);
612 }
613 module_init(at24_init);
614 
615 static void __exit at24_exit(void)
616 {
617 	i2c_del_driver(&at24_driver);
618 }
619 module_exit(at24_exit);
620 
621 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
622 MODULE_AUTHOR("David Brownell and Wolfram Sang");
623 MODULE_LICENSE("GPL");
624