xref: /openbmc/linux/drivers/misc/eeprom/at24.c (revision 7dd65feb)
1 /*
2  * at24.c - handle most I2C EEPROMs
3  *
4  * Copyright (C) 2005-2007 David Brownell
5  * Copyright (C) 2008 Wolfram Sang, Pengutronix
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/sysfs.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/log2.h>
21 #include <linux/bitops.h>
22 #include <linux/jiffies.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c/at24.h>
25 
26 /*
27  * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
28  * Differences between different vendor product lines (like Atmel AT24C or
29  * MicroChip 24LC, etc) won't much matter for typical read/write access.
30  * There are also I2C RAM chips, likewise interchangeable. One example
31  * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
32  *
33  * However, misconfiguration can lose data. "Set 16-bit memory address"
34  * to a part with 8-bit addressing will overwrite data. Writing with too
35  * big a page size also loses data. And it's not safe to assume that the
36  * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
37  * uses 0x51, for just one example.
38  *
39  * Accordingly, explicit board-specific configuration data should be used
40  * in almost all cases. (One partial exception is an SMBus used to access
41  * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
42  *
43  * So this driver uses "new style" I2C driver binding, expecting to be
44  * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
45  * similar kernel-resident tables; or, configuration data coming from
46  * a bootloader.
47  *
48  * Other than binding model, current differences from "eeprom" driver are
49  * that this one handles write access and isn't restricted to 24c02 devices.
50  * It also handles larger devices (32 kbit and up) with two-byte addresses,
51  * which won't work on pure SMBus systems.
52  */
53 
54 struct at24_data {
55 	struct at24_platform_data chip;
56 	struct memory_accessor macc;
57 	bool use_smbus;
58 
59 	/*
60 	 * Lock protects against activities from other Linux tasks,
61 	 * but not from changes by other I2C masters.
62 	 */
63 	struct mutex lock;
64 	struct bin_attribute bin;
65 
66 	u8 *writebuf;
67 	unsigned write_max;
68 	unsigned num_addresses;
69 
70 	/*
71 	 * Some chips tie up multiple I2C addresses; dummy devices reserve
72 	 * them for us, and we'll use them with SMBus calls.
73 	 */
74 	struct i2c_client *client[];
75 };
76 
77 /*
78  * This parameter is to help this driver avoid blocking other drivers out
79  * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
80  * clock, one 256 byte read takes about 1/43 second which is excessive;
81  * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
82  * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
83  *
84  * This value is forced to be a power of two so that writes align on pages.
85  */
86 static unsigned io_limit = 128;
87 module_param(io_limit, uint, 0);
88 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
89 
90 /*
91  * Specs often allow 5 msec for a page write, sometimes 20 msec;
92  * it's important to recover from write timeouts.
93  */
94 static unsigned write_timeout = 25;
95 module_param(write_timeout, uint, 0);
96 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
97 
98 #define AT24_SIZE_BYTELEN 5
99 #define AT24_SIZE_FLAGS 8
100 
101 #define AT24_BITMASK(x) (BIT(x) - 1)
102 
103 /* create non-zero magic value for given eeprom parameters */
104 #define AT24_DEVICE_MAGIC(_len, _flags) 		\
105 	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
106 	    << AT24_SIZE_BYTELEN | ilog2(_len))
107 
108 static const struct i2c_device_id at24_ids[] = {
109 	/* needs 8 addresses as A0-A2 are ignored */
110 	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
111 	/* old variants can't be handled with this generic entry! */
112 	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
113 	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
114 	/* spd is a 24c02 in memory DIMMs */
115 	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
116 		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
117 	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
118 	/* 24rf08 quirk is handled at i2c-core */
119 	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
120 	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
121 	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
122 	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
123 	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
124 	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
125 	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
126 	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
127 	{ "at24", 0 },
128 	{ /* END OF LIST */ }
129 };
130 MODULE_DEVICE_TABLE(i2c, at24_ids);
131 
132 /*-------------------------------------------------------------------------*/
133 
134 /*
135  * This routine supports chips which consume multiple I2C addresses. It
136  * computes the addressing information to be used for a given r/w request.
137  * Assumes that sanity checks for offset happened at sysfs-layer.
138  */
139 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
140 		unsigned *offset)
141 {
142 	unsigned i;
143 
144 	if (at24->chip.flags & AT24_FLAG_ADDR16) {
145 		i = *offset >> 16;
146 		*offset &= 0xffff;
147 	} else {
148 		i = *offset >> 8;
149 		*offset &= 0xff;
150 	}
151 
152 	return at24->client[i];
153 }
154 
155 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
156 		unsigned offset, size_t count)
157 {
158 	struct i2c_msg msg[2];
159 	u8 msgbuf[2];
160 	struct i2c_client *client;
161 	unsigned long timeout, read_time;
162 	int status, i;
163 
164 	memset(msg, 0, sizeof(msg));
165 
166 	/*
167 	 * REVISIT some multi-address chips don't rollover page reads to
168 	 * the next slave address, so we may need to truncate the count.
169 	 * Those chips might need another quirk flag.
170 	 *
171 	 * If the real hardware used four adjacent 24c02 chips and that
172 	 * were misconfigured as one 24c08, that would be a similar effect:
173 	 * one "eeprom" file not four, but larger reads would fail when
174 	 * they crossed certain pages.
175 	 */
176 
177 	/*
178 	 * Slave address and byte offset derive from the offset. Always
179 	 * set the byte address; on a multi-master board, another master
180 	 * may have changed the chip's "current" address pointer.
181 	 */
182 	client = at24_translate_offset(at24, &offset);
183 
184 	if (count > io_limit)
185 		count = io_limit;
186 
187 	if (at24->use_smbus) {
188 		/* Smaller eeproms can work given some SMBus extension calls */
189 		if (count > I2C_SMBUS_BLOCK_MAX)
190 			count = I2C_SMBUS_BLOCK_MAX;
191 	} else {
192 		/*
193 		 * When we have a better choice than SMBus calls, use a
194 		 * combined I2C message. Write address; then read up to
195 		 * io_limit data bytes. Note that read page rollover helps us
196 		 * here (unlike writes). msgbuf is u8 and will cast to our
197 		 * needs.
198 		 */
199 		i = 0;
200 		if (at24->chip.flags & AT24_FLAG_ADDR16)
201 			msgbuf[i++] = offset >> 8;
202 		msgbuf[i++] = offset;
203 
204 		msg[0].addr = client->addr;
205 		msg[0].buf = msgbuf;
206 		msg[0].len = i;
207 
208 		msg[1].addr = client->addr;
209 		msg[1].flags = I2C_M_RD;
210 		msg[1].buf = buf;
211 		msg[1].len = count;
212 	}
213 
214 	/*
215 	 * Reads fail if the previous write didn't complete yet. We may
216 	 * loop a few times until this one succeeds, waiting at least
217 	 * long enough for one entire page write to work.
218 	 */
219 	timeout = jiffies + msecs_to_jiffies(write_timeout);
220 	do {
221 		read_time = jiffies;
222 		if (at24->use_smbus) {
223 			status = i2c_smbus_read_i2c_block_data(client, offset,
224 					count, buf);
225 		} else {
226 			status = i2c_transfer(client->adapter, msg, 2);
227 			if (status == 2)
228 				status = count;
229 		}
230 		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
231 				count, offset, status, jiffies);
232 
233 		if (status == count)
234 			return count;
235 
236 		/* REVISIT: at HZ=100, this is sloooow */
237 		msleep(1);
238 	} while (time_before(read_time, timeout));
239 
240 	return -ETIMEDOUT;
241 }
242 
243 static ssize_t at24_read(struct at24_data *at24,
244 		char *buf, loff_t off, size_t count)
245 {
246 	ssize_t retval = 0;
247 
248 	if (unlikely(!count))
249 		return count;
250 
251 	/*
252 	 * Read data from chip, protecting against concurrent updates
253 	 * from this host, but not from other I2C masters.
254 	 */
255 	mutex_lock(&at24->lock);
256 
257 	while (count) {
258 		ssize_t	status;
259 
260 		status = at24_eeprom_read(at24, buf, off, count);
261 		if (status <= 0) {
262 			if (retval == 0)
263 				retval = status;
264 			break;
265 		}
266 		buf += status;
267 		off += status;
268 		count -= status;
269 		retval += status;
270 	}
271 
272 	mutex_unlock(&at24->lock);
273 
274 	return retval;
275 }
276 
277 static ssize_t at24_bin_read(struct kobject *kobj, struct bin_attribute *attr,
278 		char *buf, loff_t off, size_t count)
279 {
280 	struct at24_data *at24;
281 
282 	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
283 	return at24_read(at24, buf, off, count);
284 }
285 
286 
287 /*
288  * Note that if the hardware write-protect pin is pulled high, the whole
289  * chip is normally write protected. But there are plenty of product
290  * variants here, including OTP fuses and partial chip protect.
291  *
292  * We only use page mode writes; the alternative is sloooow. This routine
293  * writes at most one page.
294  */
295 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
296 		unsigned offset, size_t count)
297 {
298 	struct i2c_client *client;
299 	struct i2c_msg msg;
300 	ssize_t status;
301 	unsigned long timeout, write_time;
302 	unsigned next_page;
303 
304 	/* Get corresponding I2C address and adjust offset */
305 	client = at24_translate_offset(at24, &offset);
306 
307 	/* write_max is at most a page */
308 	if (count > at24->write_max)
309 		count = at24->write_max;
310 
311 	/* Never roll over backwards, to the start of this page */
312 	next_page = roundup(offset + 1, at24->chip.page_size);
313 	if (offset + count > next_page)
314 		count = next_page - offset;
315 
316 	/* If we'll use I2C calls for I/O, set up the message */
317 	if (!at24->use_smbus) {
318 		int i = 0;
319 
320 		msg.addr = client->addr;
321 		msg.flags = 0;
322 
323 		/* msg.buf is u8 and casts will mask the values */
324 		msg.buf = at24->writebuf;
325 		if (at24->chip.flags & AT24_FLAG_ADDR16)
326 			msg.buf[i++] = offset >> 8;
327 
328 		msg.buf[i++] = offset;
329 		memcpy(&msg.buf[i], buf, count);
330 		msg.len = i + count;
331 	}
332 
333 	/*
334 	 * Writes fail if the previous one didn't complete yet. We may
335 	 * loop a few times until this one succeeds, waiting at least
336 	 * long enough for one entire page write to work.
337 	 */
338 	timeout = jiffies + msecs_to_jiffies(write_timeout);
339 	do {
340 		write_time = jiffies;
341 		if (at24->use_smbus) {
342 			status = i2c_smbus_write_i2c_block_data(client,
343 					offset, count, buf);
344 			if (status == 0)
345 				status = count;
346 		} else {
347 			status = i2c_transfer(client->adapter, &msg, 1);
348 			if (status == 1)
349 				status = count;
350 		}
351 		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
352 				count, offset, status, jiffies);
353 
354 		if (status == count)
355 			return count;
356 
357 		/* REVISIT: at HZ=100, this is sloooow */
358 		msleep(1);
359 	} while (time_before(write_time, timeout));
360 
361 	return -ETIMEDOUT;
362 }
363 
364 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
365 			  size_t count)
366 {
367 	ssize_t retval = 0;
368 
369 	if (unlikely(!count))
370 		return count;
371 
372 	/*
373 	 * Write data to chip, protecting against concurrent updates
374 	 * from this host, but not from other I2C masters.
375 	 */
376 	mutex_lock(&at24->lock);
377 
378 	while (count) {
379 		ssize_t	status;
380 
381 		status = at24_eeprom_write(at24, buf, off, count);
382 		if (status <= 0) {
383 			if (retval == 0)
384 				retval = status;
385 			break;
386 		}
387 		buf += status;
388 		off += status;
389 		count -= status;
390 		retval += status;
391 	}
392 
393 	mutex_unlock(&at24->lock);
394 
395 	return retval;
396 }
397 
398 static ssize_t at24_bin_write(struct kobject *kobj, struct bin_attribute *attr,
399 		char *buf, loff_t off, size_t count)
400 {
401 	struct at24_data *at24;
402 
403 	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
404 	return at24_write(at24, buf, off, count);
405 }
406 
407 /*-------------------------------------------------------------------------*/
408 
409 /*
410  * This lets other kernel code access the eeprom data. For example, it
411  * might hold a board's Ethernet address, or board-specific calibration
412  * data generated on the manufacturing floor.
413  */
414 
415 static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
416 			 off_t offset, size_t count)
417 {
418 	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
419 
420 	return at24_read(at24, buf, offset, count);
421 }
422 
423 static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
424 			  off_t offset, size_t count)
425 {
426 	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
427 
428 	return at24_write(at24, buf, offset, count);
429 }
430 
431 /*-------------------------------------------------------------------------*/
432 
433 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
434 {
435 	struct at24_platform_data chip;
436 	bool writable;
437 	bool use_smbus = false;
438 	struct at24_data *at24;
439 	int err;
440 	unsigned i, num_addresses;
441 	kernel_ulong_t magic;
442 
443 	if (client->dev.platform_data) {
444 		chip = *(struct at24_platform_data *)client->dev.platform_data;
445 	} else {
446 		if (!id->driver_data) {
447 			err = -ENODEV;
448 			goto err_out;
449 		}
450 		magic = id->driver_data;
451 		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
452 		magic >>= AT24_SIZE_BYTELEN;
453 		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
454 		/*
455 		 * This is slow, but we can't know all eeproms, so we better
456 		 * play safe. Specifying custom eeprom-types via platform_data
457 		 * is recommended anyhow.
458 		 */
459 		chip.page_size = 1;
460 
461 		chip.setup = NULL;
462 		chip.context = NULL;
463 	}
464 
465 	if (!is_power_of_2(chip.byte_len))
466 		dev_warn(&client->dev,
467 			"byte_len looks suspicious (no power of 2)!\n");
468 	if (!is_power_of_2(chip.page_size))
469 		dev_warn(&client->dev,
470 			"page_size looks suspicious (no power of 2)!\n");
471 
472 	/* Use I2C operations unless we're stuck with SMBus extensions. */
473 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
474 		if (chip.flags & AT24_FLAG_ADDR16) {
475 			err = -EPFNOSUPPORT;
476 			goto err_out;
477 		}
478 		if (!i2c_check_functionality(client->adapter,
479 				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
480 			err = -EPFNOSUPPORT;
481 			goto err_out;
482 		}
483 		use_smbus = true;
484 	}
485 
486 	if (chip.flags & AT24_FLAG_TAKE8ADDR)
487 		num_addresses = 8;
488 	else
489 		num_addresses =	DIV_ROUND_UP(chip.byte_len,
490 			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
491 
492 	at24 = kzalloc(sizeof(struct at24_data) +
493 		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
494 	if (!at24) {
495 		err = -ENOMEM;
496 		goto err_out;
497 	}
498 
499 	mutex_init(&at24->lock);
500 	at24->use_smbus = use_smbus;
501 	at24->chip = chip;
502 	at24->num_addresses = num_addresses;
503 
504 	/*
505 	 * Export the EEPROM bytes through sysfs, since that's convenient.
506 	 * By default, only root should see the data (maybe passwords etc)
507 	 */
508 	at24->bin.attr.name = "eeprom";
509 	at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
510 	at24->bin.read = at24_bin_read;
511 	at24->bin.size = chip.byte_len;
512 
513 	at24->macc.read = at24_macc_read;
514 
515 	writable = !(chip.flags & AT24_FLAG_READONLY);
516 	if (writable) {
517 		if (!use_smbus || i2c_check_functionality(client->adapter,
518 				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
519 
520 			unsigned write_max = chip.page_size;
521 
522 			at24->macc.write = at24_macc_write;
523 
524 			at24->bin.write = at24_bin_write;
525 			at24->bin.attr.mode |= S_IWUSR;
526 
527 			if (write_max > io_limit)
528 				write_max = io_limit;
529 			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
530 				write_max = I2C_SMBUS_BLOCK_MAX;
531 			at24->write_max = write_max;
532 
533 			/* buffer (data + address at the beginning) */
534 			at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL);
535 			if (!at24->writebuf) {
536 				err = -ENOMEM;
537 				goto err_struct;
538 			}
539 		} else {
540 			dev_warn(&client->dev,
541 				"cannot write due to controller restrictions.");
542 		}
543 	}
544 
545 	at24->client[0] = client;
546 
547 	/* use dummy devices for multiple-address chips */
548 	for (i = 1; i < num_addresses; i++) {
549 		at24->client[i] = i2c_new_dummy(client->adapter,
550 					client->addr + i);
551 		if (!at24->client[i]) {
552 			dev_err(&client->dev, "address 0x%02x unavailable\n",
553 					client->addr + i);
554 			err = -EADDRINUSE;
555 			goto err_clients;
556 		}
557 	}
558 
559 	err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
560 	if (err)
561 		goto err_clients;
562 
563 	i2c_set_clientdata(client, at24);
564 
565 	dev_info(&client->dev, "%zu byte %s EEPROM %s\n",
566 		at24->bin.size, client->name,
567 		writable ? "(writable)" : "(read-only)");
568 	dev_dbg(&client->dev,
569 		"page_size %d, num_addresses %d, write_max %d%s\n",
570 		chip.page_size, num_addresses,
571 		at24->write_max,
572 		use_smbus ? ", use_smbus" : "");
573 
574 	/* export data to kernel code */
575 	if (chip.setup)
576 		chip.setup(&at24->macc, chip.context);
577 
578 	return 0;
579 
580 err_clients:
581 	for (i = 1; i < num_addresses; i++)
582 		if (at24->client[i])
583 			i2c_unregister_device(at24->client[i]);
584 
585 	kfree(at24->writebuf);
586 err_struct:
587 	kfree(at24);
588 err_out:
589 	dev_dbg(&client->dev, "probe error %d\n", err);
590 	return err;
591 }
592 
593 static int __devexit at24_remove(struct i2c_client *client)
594 {
595 	struct at24_data *at24;
596 	int i;
597 
598 	at24 = i2c_get_clientdata(client);
599 	sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
600 
601 	for (i = 1; i < at24->num_addresses; i++)
602 		i2c_unregister_device(at24->client[i]);
603 
604 	kfree(at24->writebuf);
605 	kfree(at24);
606 	i2c_set_clientdata(client, NULL);
607 	return 0;
608 }
609 
610 /*-------------------------------------------------------------------------*/
611 
612 static struct i2c_driver at24_driver = {
613 	.driver = {
614 		.name = "at24",
615 		.owner = THIS_MODULE,
616 	},
617 	.probe = at24_probe,
618 	.remove = __devexit_p(at24_remove),
619 	.id_table = at24_ids,
620 };
621 
622 static int __init at24_init(void)
623 {
624 	io_limit = rounddown_pow_of_two(io_limit);
625 	return i2c_add_driver(&at24_driver);
626 }
627 module_init(at24_init);
628 
629 static void __exit at24_exit(void)
630 {
631 	i2c_del_driver(&at24_driver);
632 }
633 module_exit(at24_exit);
634 
635 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
636 MODULE_AUTHOR("David Brownell and Wolfram Sang");
637 MODULE_LICENSE("GPL");
638