1 /* 2 * at24.c - handle most I2C EEPROMs 3 * 4 * Copyright (C) 2005-2007 David Brownell 5 * Copyright (C) 2008 Wolfram Sang, Pengutronix 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/delay.h> 17 #include <linux/mutex.h> 18 #include <linux/sysfs.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/log2.h> 21 #include <linux/bitops.h> 22 #include <linux/jiffies.h> 23 #include <linux/i2c.h> 24 #include <linux/i2c/at24.h> 25 26 /* 27 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable. 28 * Differences between different vendor product lines (like Atmel AT24C or 29 * MicroChip 24LC, etc) won't much matter for typical read/write access. 30 * There are also I2C RAM chips, likewise interchangeable. One example 31 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes). 32 * 33 * However, misconfiguration can lose data. "Set 16-bit memory address" 34 * to a part with 8-bit addressing will overwrite data. Writing with too 35 * big a page size also loses data. And it's not safe to assume that the 36 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC 37 * uses 0x51, for just one example. 38 * 39 * Accordingly, explicit board-specific configuration data should be used 40 * in almost all cases. (One partial exception is an SMBus used to access 41 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.) 42 * 43 * So this driver uses "new style" I2C driver binding, expecting to be 44 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or 45 * similar kernel-resident tables; or, configuration data coming from 46 * a bootloader. 47 * 48 * Other than binding model, current differences from "eeprom" driver are 49 * that this one handles write access and isn't restricted to 24c02 devices. 50 * It also handles larger devices (32 kbit and up) with two-byte addresses, 51 * which won't work on pure SMBus systems. 52 */ 53 54 struct at24_data { 55 struct at24_platform_data chip; 56 struct memory_accessor macc; 57 bool use_smbus; 58 59 /* 60 * Lock protects against activities from other Linux tasks, 61 * but not from changes by other I2C masters. 62 */ 63 struct mutex lock; 64 struct bin_attribute bin; 65 66 u8 *writebuf; 67 unsigned write_max; 68 unsigned num_addresses; 69 70 /* 71 * Some chips tie up multiple I2C addresses; dummy devices reserve 72 * them for us, and we'll use them with SMBus calls. 73 */ 74 struct i2c_client *client[]; 75 }; 76 77 /* 78 * This parameter is to help this driver avoid blocking other drivers out 79 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C 80 * clock, one 256 byte read takes about 1/43 second which is excessive; 81 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and 82 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible. 83 * 84 * This value is forced to be a power of two so that writes align on pages. 85 */ 86 static unsigned io_limit = 128; 87 module_param(io_limit, uint, 0); 88 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)"); 89 90 /* 91 * Specs often allow 5 msec for a page write, sometimes 20 msec; 92 * it's important to recover from write timeouts. 93 */ 94 static unsigned write_timeout = 25; 95 module_param(write_timeout, uint, 0); 96 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)"); 97 98 #define AT24_SIZE_BYTELEN 5 99 #define AT24_SIZE_FLAGS 8 100 101 #define AT24_BITMASK(x) (BIT(x) - 1) 102 103 /* create non-zero magic value for given eeprom parameters */ 104 #define AT24_DEVICE_MAGIC(_len, _flags) \ 105 ((1 << AT24_SIZE_FLAGS | (_flags)) \ 106 << AT24_SIZE_BYTELEN | ilog2(_len)) 107 108 static const struct i2c_device_id at24_ids[] = { 109 /* needs 8 addresses as A0-A2 are ignored */ 110 { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) }, 111 /* old variants can't be handled with this generic entry! */ 112 { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) }, 113 { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) }, 114 /* spd is a 24c02 in memory DIMMs */ 115 { "spd", AT24_DEVICE_MAGIC(2048 / 8, 116 AT24_FLAG_READONLY | AT24_FLAG_IRUGO) }, 117 { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) }, 118 /* 24rf08 quirk is handled at i2c-core */ 119 { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) }, 120 { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) }, 121 { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) }, 122 { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) }, 123 { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) }, 124 { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) }, 125 { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) }, 126 { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) }, 127 { "at24", 0 }, 128 { /* END OF LIST */ } 129 }; 130 MODULE_DEVICE_TABLE(i2c, at24_ids); 131 132 /*-------------------------------------------------------------------------*/ 133 134 /* 135 * This routine supports chips which consume multiple I2C addresses. It 136 * computes the addressing information to be used for a given r/w request. 137 * Assumes that sanity checks for offset happened at sysfs-layer. 138 */ 139 static struct i2c_client *at24_translate_offset(struct at24_data *at24, 140 unsigned *offset) 141 { 142 unsigned i; 143 144 if (at24->chip.flags & AT24_FLAG_ADDR16) { 145 i = *offset >> 16; 146 *offset &= 0xffff; 147 } else { 148 i = *offset >> 8; 149 *offset &= 0xff; 150 } 151 152 return at24->client[i]; 153 } 154 155 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf, 156 unsigned offset, size_t count) 157 { 158 struct i2c_msg msg[2]; 159 u8 msgbuf[2]; 160 struct i2c_client *client; 161 unsigned long timeout, read_time; 162 int status, i; 163 164 memset(msg, 0, sizeof(msg)); 165 166 /* 167 * REVISIT some multi-address chips don't rollover page reads to 168 * the next slave address, so we may need to truncate the count. 169 * Those chips might need another quirk flag. 170 * 171 * If the real hardware used four adjacent 24c02 chips and that 172 * were misconfigured as one 24c08, that would be a similar effect: 173 * one "eeprom" file not four, but larger reads would fail when 174 * they crossed certain pages. 175 */ 176 177 /* 178 * Slave address and byte offset derive from the offset. Always 179 * set the byte address; on a multi-master board, another master 180 * may have changed the chip's "current" address pointer. 181 */ 182 client = at24_translate_offset(at24, &offset); 183 184 if (count > io_limit) 185 count = io_limit; 186 187 if (at24->use_smbus) { 188 /* Smaller eeproms can work given some SMBus extension calls */ 189 if (count > I2C_SMBUS_BLOCK_MAX) 190 count = I2C_SMBUS_BLOCK_MAX; 191 } else { 192 /* 193 * When we have a better choice than SMBus calls, use a 194 * combined I2C message. Write address; then read up to 195 * io_limit data bytes. Note that read page rollover helps us 196 * here (unlike writes). msgbuf is u8 and will cast to our 197 * needs. 198 */ 199 i = 0; 200 if (at24->chip.flags & AT24_FLAG_ADDR16) 201 msgbuf[i++] = offset >> 8; 202 msgbuf[i++] = offset; 203 204 msg[0].addr = client->addr; 205 msg[0].buf = msgbuf; 206 msg[0].len = i; 207 208 msg[1].addr = client->addr; 209 msg[1].flags = I2C_M_RD; 210 msg[1].buf = buf; 211 msg[1].len = count; 212 } 213 214 /* 215 * Reads fail if the previous write didn't complete yet. We may 216 * loop a few times until this one succeeds, waiting at least 217 * long enough for one entire page write to work. 218 */ 219 timeout = jiffies + msecs_to_jiffies(write_timeout); 220 do { 221 read_time = jiffies; 222 if (at24->use_smbus) { 223 status = i2c_smbus_read_i2c_block_data(client, offset, 224 count, buf); 225 } else { 226 status = i2c_transfer(client->adapter, msg, 2); 227 if (status == 2) 228 status = count; 229 } 230 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n", 231 count, offset, status, jiffies); 232 233 if (status == count) 234 return count; 235 236 /* REVISIT: at HZ=100, this is sloooow */ 237 msleep(1); 238 } while (time_before(read_time, timeout)); 239 240 return -ETIMEDOUT; 241 } 242 243 static ssize_t at24_read(struct at24_data *at24, 244 char *buf, loff_t off, size_t count) 245 { 246 ssize_t retval = 0; 247 248 if (unlikely(!count)) 249 return count; 250 251 /* 252 * Read data from chip, protecting against concurrent updates 253 * from this host, but not from other I2C masters. 254 */ 255 mutex_lock(&at24->lock); 256 257 while (count) { 258 ssize_t status; 259 260 status = at24_eeprom_read(at24, buf, off, count); 261 if (status <= 0) { 262 if (retval == 0) 263 retval = status; 264 break; 265 } 266 buf += status; 267 off += status; 268 count -= status; 269 retval += status; 270 } 271 272 mutex_unlock(&at24->lock); 273 274 return retval; 275 } 276 277 static ssize_t at24_bin_read(struct kobject *kobj, struct bin_attribute *attr, 278 char *buf, loff_t off, size_t count) 279 { 280 struct at24_data *at24; 281 282 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); 283 return at24_read(at24, buf, off, count); 284 } 285 286 287 /* 288 * Note that if the hardware write-protect pin is pulled high, the whole 289 * chip is normally write protected. But there are plenty of product 290 * variants here, including OTP fuses and partial chip protect. 291 * 292 * We only use page mode writes; the alternative is sloooow. This routine 293 * writes at most one page. 294 */ 295 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf, 296 unsigned offset, size_t count) 297 { 298 struct i2c_client *client; 299 struct i2c_msg msg; 300 ssize_t status; 301 unsigned long timeout, write_time; 302 unsigned next_page; 303 304 /* Get corresponding I2C address and adjust offset */ 305 client = at24_translate_offset(at24, &offset); 306 307 /* write_max is at most a page */ 308 if (count > at24->write_max) 309 count = at24->write_max; 310 311 /* Never roll over backwards, to the start of this page */ 312 next_page = roundup(offset + 1, at24->chip.page_size); 313 if (offset + count > next_page) 314 count = next_page - offset; 315 316 /* If we'll use I2C calls for I/O, set up the message */ 317 if (!at24->use_smbus) { 318 int i = 0; 319 320 msg.addr = client->addr; 321 msg.flags = 0; 322 323 /* msg.buf is u8 and casts will mask the values */ 324 msg.buf = at24->writebuf; 325 if (at24->chip.flags & AT24_FLAG_ADDR16) 326 msg.buf[i++] = offset >> 8; 327 328 msg.buf[i++] = offset; 329 memcpy(&msg.buf[i], buf, count); 330 msg.len = i + count; 331 } 332 333 /* 334 * Writes fail if the previous one didn't complete yet. We may 335 * loop a few times until this one succeeds, waiting at least 336 * long enough for one entire page write to work. 337 */ 338 timeout = jiffies + msecs_to_jiffies(write_timeout); 339 do { 340 write_time = jiffies; 341 if (at24->use_smbus) { 342 status = i2c_smbus_write_i2c_block_data(client, 343 offset, count, buf); 344 if (status == 0) 345 status = count; 346 } else { 347 status = i2c_transfer(client->adapter, &msg, 1); 348 if (status == 1) 349 status = count; 350 } 351 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n", 352 count, offset, status, jiffies); 353 354 if (status == count) 355 return count; 356 357 /* REVISIT: at HZ=100, this is sloooow */ 358 msleep(1); 359 } while (time_before(write_time, timeout)); 360 361 return -ETIMEDOUT; 362 } 363 364 static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off, 365 size_t count) 366 { 367 ssize_t retval = 0; 368 369 if (unlikely(!count)) 370 return count; 371 372 /* 373 * Write data to chip, protecting against concurrent updates 374 * from this host, but not from other I2C masters. 375 */ 376 mutex_lock(&at24->lock); 377 378 while (count) { 379 ssize_t status; 380 381 status = at24_eeprom_write(at24, buf, off, count); 382 if (status <= 0) { 383 if (retval == 0) 384 retval = status; 385 break; 386 } 387 buf += status; 388 off += status; 389 count -= status; 390 retval += status; 391 } 392 393 mutex_unlock(&at24->lock); 394 395 return retval; 396 } 397 398 static ssize_t at24_bin_write(struct kobject *kobj, struct bin_attribute *attr, 399 char *buf, loff_t off, size_t count) 400 { 401 struct at24_data *at24; 402 403 at24 = dev_get_drvdata(container_of(kobj, struct device, kobj)); 404 return at24_write(at24, buf, off, count); 405 } 406 407 /*-------------------------------------------------------------------------*/ 408 409 /* 410 * This lets other kernel code access the eeprom data. For example, it 411 * might hold a board's Ethernet address, or board-specific calibration 412 * data generated on the manufacturing floor. 413 */ 414 415 static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf, 416 off_t offset, size_t count) 417 { 418 struct at24_data *at24 = container_of(macc, struct at24_data, macc); 419 420 return at24_read(at24, buf, offset, count); 421 } 422 423 static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf, 424 off_t offset, size_t count) 425 { 426 struct at24_data *at24 = container_of(macc, struct at24_data, macc); 427 428 return at24_write(at24, buf, offset, count); 429 } 430 431 /*-------------------------------------------------------------------------*/ 432 433 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id) 434 { 435 struct at24_platform_data chip; 436 bool writable; 437 bool use_smbus = false; 438 struct at24_data *at24; 439 int err; 440 unsigned i, num_addresses; 441 kernel_ulong_t magic; 442 443 if (client->dev.platform_data) { 444 chip = *(struct at24_platform_data *)client->dev.platform_data; 445 } else { 446 if (!id->driver_data) { 447 err = -ENODEV; 448 goto err_out; 449 } 450 magic = id->driver_data; 451 chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN)); 452 magic >>= AT24_SIZE_BYTELEN; 453 chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS); 454 /* 455 * This is slow, but we can't know all eeproms, so we better 456 * play safe. Specifying custom eeprom-types via platform_data 457 * is recommended anyhow. 458 */ 459 chip.page_size = 1; 460 461 chip.setup = NULL; 462 chip.context = NULL; 463 } 464 465 if (!is_power_of_2(chip.byte_len)) 466 dev_warn(&client->dev, 467 "byte_len looks suspicious (no power of 2)!\n"); 468 if (!is_power_of_2(chip.page_size)) 469 dev_warn(&client->dev, 470 "page_size looks suspicious (no power of 2)!\n"); 471 472 /* Use I2C operations unless we're stuck with SMBus extensions. */ 473 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 474 if (chip.flags & AT24_FLAG_ADDR16) { 475 err = -EPFNOSUPPORT; 476 goto err_out; 477 } 478 if (!i2c_check_functionality(client->adapter, 479 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) { 480 err = -EPFNOSUPPORT; 481 goto err_out; 482 } 483 use_smbus = true; 484 } 485 486 if (chip.flags & AT24_FLAG_TAKE8ADDR) 487 num_addresses = 8; 488 else 489 num_addresses = DIV_ROUND_UP(chip.byte_len, 490 (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256); 491 492 at24 = kzalloc(sizeof(struct at24_data) + 493 num_addresses * sizeof(struct i2c_client *), GFP_KERNEL); 494 if (!at24) { 495 err = -ENOMEM; 496 goto err_out; 497 } 498 499 mutex_init(&at24->lock); 500 at24->use_smbus = use_smbus; 501 at24->chip = chip; 502 at24->num_addresses = num_addresses; 503 504 /* 505 * Export the EEPROM bytes through sysfs, since that's convenient. 506 * By default, only root should see the data (maybe passwords etc) 507 */ 508 at24->bin.attr.name = "eeprom"; 509 at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR; 510 at24->bin.read = at24_bin_read; 511 at24->bin.size = chip.byte_len; 512 513 at24->macc.read = at24_macc_read; 514 515 writable = !(chip.flags & AT24_FLAG_READONLY); 516 if (writable) { 517 if (!use_smbus || i2c_check_functionality(client->adapter, 518 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) { 519 520 unsigned write_max = chip.page_size; 521 522 at24->macc.write = at24_macc_write; 523 524 at24->bin.write = at24_bin_write; 525 at24->bin.attr.mode |= S_IWUSR; 526 527 if (write_max > io_limit) 528 write_max = io_limit; 529 if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX) 530 write_max = I2C_SMBUS_BLOCK_MAX; 531 at24->write_max = write_max; 532 533 /* buffer (data + address at the beginning) */ 534 at24->writebuf = kmalloc(write_max + 2, GFP_KERNEL); 535 if (!at24->writebuf) { 536 err = -ENOMEM; 537 goto err_struct; 538 } 539 } else { 540 dev_warn(&client->dev, 541 "cannot write due to controller restrictions."); 542 } 543 } 544 545 at24->client[0] = client; 546 547 /* use dummy devices for multiple-address chips */ 548 for (i = 1; i < num_addresses; i++) { 549 at24->client[i] = i2c_new_dummy(client->adapter, 550 client->addr + i); 551 if (!at24->client[i]) { 552 dev_err(&client->dev, "address 0x%02x unavailable\n", 553 client->addr + i); 554 err = -EADDRINUSE; 555 goto err_clients; 556 } 557 } 558 559 err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin); 560 if (err) 561 goto err_clients; 562 563 i2c_set_clientdata(client, at24); 564 565 dev_info(&client->dev, "%zu byte %s EEPROM %s\n", 566 at24->bin.size, client->name, 567 writable ? "(writable)" : "(read-only)"); 568 dev_dbg(&client->dev, 569 "page_size %d, num_addresses %d, write_max %d%s\n", 570 chip.page_size, num_addresses, 571 at24->write_max, 572 use_smbus ? ", use_smbus" : ""); 573 574 /* export data to kernel code */ 575 if (chip.setup) 576 chip.setup(&at24->macc, chip.context); 577 578 return 0; 579 580 err_clients: 581 for (i = 1; i < num_addresses; i++) 582 if (at24->client[i]) 583 i2c_unregister_device(at24->client[i]); 584 585 kfree(at24->writebuf); 586 err_struct: 587 kfree(at24); 588 err_out: 589 dev_dbg(&client->dev, "probe error %d\n", err); 590 return err; 591 } 592 593 static int __devexit at24_remove(struct i2c_client *client) 594 { 595 struct at24_data *at24; 596 int i; 597 598 at24 = i2c_get_clientdata(client); 599 sysfs_remove_bin_file(&client->dev.kobj, &at24->bin); 600 601 for (i = 1; i < at24->num_addresses; i++) 602 i2c_unregister_device(at24->client[i]); 603 604 kfree(at24->writebuf); 605 kfree(at24); 606 i2c_set_clientdata(client, NULL); 607 return 0; 608 } 609 610 /*-------------------------------------------------------------------------*/ 611 612 static struct i2c_driver at24_driver = { 613 .driver = { 614 .name = "at24", 615 .owner = THIS_MODULE, 616 }, 617 .probe = at24_probe, 618 .remove = __devexit_p(at24_remove), 619 .id_table = at24_ids, 620 }; 621 622 static int __init at24_init(void) 623 { 624 io_limit = rounddown_pow_of_two(io_limit); 625 return i2c_add_driver(&at24_driver); 626 } 627 module_init(at24_init); 628 629 static void __exit at24_exit(void) 630 { 631 i2c_del_driver(&at24_driver); 632 } 633 module_exit(at24_exit); 634 635 MODULE_DESCRIPTION("Driver for most I2C EEPROMs"); 636 MODULE_AUTHOR("David Brownell and Wolfram Sang"); 637 MODULE_LICENSE("GPL"); 638