xref: /openbmc/linux/drivers/misc/eeprom/at24.c (revision 5d13c731)
1 /*
2  * at24.c - handle most I2C EEPROMs
3  *
4  * Copyright (C) 2005-2007 David Brownell
5  * Copyright (C) 2008 Wolfram Sang, Pengutronix
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/mutex.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/log2.h>
21 #include <linux/bitops.h>
22 #include <linux/jiffies.h>
23 #include <linux/property.h>
24 #include <linux/acpi.h>
25 #include <linux/i2c.h>
26 #include <linux/nvmem-provider.h>
27 #include <linux/platform_data/at24.h>
28 #include <linux/pm_runtime.h>
29 
30 /*
31  * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
32  * Differences between different vendor product lines (like Atmel AT24C or
33  * MicroChip 24LC, etc) won't much matter for typical read/write access.
34  * There are also I2C RAM chips, likewise interchangeable. One example
35  * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
36  *
37  * However, misconfiguration can lose data. "Set 16-bit memory address"
38  * to a part with 8-bit addressing will overwrite data. Writing with too
39  * big a page size also loses data. And it's not safe to assume that the
40  * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
41  * uses 0x51, for just one example.
42  *
43  * Accordingly, explicit board-specific configuration data should be used
44  * in almost all cases. (One partial exception is an SMBus used to access
45  * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
46  *
47  * So this driver uses "new style" I2C driver binding, expecting to be
48  * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
49  * similar kernel-resident tables; or, configuration data coming from
50  * a bootloader.
51  *
52  * Other than binding model, current differences from "eeprom" driver are
53  * that this one handles write access and isn't restricted to 24c02 devices.
54  * It also handles larger devices (32 kbit and up) with two-byte addresses,
55  * which won't work on pure SMBus systems.
56  */
57 
58 struct at24_data {
59 	struct at24_platform_data chip;
60 	int use_smbus;
61 	int use_smbus_write;
62 
63 	ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
64 	ssize_t (*write_func)(struct at24_data *,
65 			      const char *, unsigned int, size_t);
66 
67 	/*
68 	 * Lock protects against activities from other Linux tasks,
69 	 * but not from changes by other I2C masters.
70 	 */
71 	struct mutex lock;
72 
73 	u8 *writebuf;
74 	unsigned write_max;
75 	unsigned num_addresses;
76 
77 	struct nvmem_config nvmem_config;
78 	struct nvmem_device *nvmem;
79 
80 	/*
81 	 * Some chips tie up multiple I2C addresses; dummy devices reserve
82 	 * them for us, and we'll use them with SMBus calls.
83 	 */
84 	struct i2c_client *client[];
85 };
86 
87 /*
88  * This parameter is to help this driver avoid blocking other drivers out
89  * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
90  * clock, one 256 byte read takes about 1/43 second which is excessive;
91  * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
92  * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
93  *
94  * This value is forced to be a power of two so that writes align on pages.
95  */
96 static unsigned io_limit = 128;
97 module_param(io_limit, uint, 0);
98 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
99 
100 /*
101  * Specs often allow 5 msec for a page write, sometimes 20 msec;
102  * it's important to recover from write timeouts.
103  */
104 static unsigned write_timeout = 25;
105 module_param(write_timeout, uint, 0);
106 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
107 
108 #define AT24_SIZE_BYTELEN 5
109 #define AT24_SIZE_FLAGS 8
110 
111 #define AT24_BITMASK(x) (BIT(x) - 1)
112 
113 /* create non-zero magic value for given eeprom parameters */
114 #define AT24_DEVICE_MAGIC(_len, _flags) 		\
115 	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
116 	    << AT24_SIZE_BYTELEN | ilog2(_len))
117 
118 /*
119  * Both reads and writes fail if the previous write didn't complete yet. This
120  * macro loops a few times waiting at least long enough for one entire page
121  * write to work while making sure that at least one iteration is run before
122  * checking the break condition.
123  *
124  * It takes two parameters: a variable in which the future timeout in jiffies
125  * will be stored and a temporary variable holding the time of the last
126  * iteration of processing the request. Both should be unsigned integers
127  * holding at least 32 bits.
128  */
129 #define loop_until_timeout(tout, op_time)				\
130 	for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
131 	     op_time ? time_before(op_time, tout) : true;		\
132 	     usleep_range(1000, 1500), op_time = jiffies)
133 
134 static const struct i2c_device_id at24_ids[] = {
135 	/* needs 8 addresses as A0-A2 are ignored */
136 	{ "24c00",	AT24_DEVICE_MAGIC(128 / 8,	AT24_FLAG_TAKE8ADDR) },
137 	/* old variants can't be handled with this generic entry! */
138 	{ "24c01",	AT24_DEVICE_MAGIC(1024 / 8,	0) },
139 	{ "24cs01",	AT24_DEVICE_MAGIC(16,
140 				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
141 	{ "24c02",	AT24_DEVICE_MAGIC(2048 / 8,	0) },
142 	{ "24cs02",	AT24_DEVICE_MAGIC(16,
143 				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
144 	{ "24mac402",	AT24_DEVICE_MAGIC(48 / 8,
145 				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
146 	{ "24mac602",	AT24_DEVICE_MAGIC(64 / 8,
147 				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
148 	/* spd is a 24c02 in memory DIMMs */
149 	{ "spd",	AT24_DEVICE_MAGIC(2048 / 8,
150 				AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
151 	{ "24c04",	AT24_DEVICE_MAGIC(4096 / 8,	0) },
152 	{ "24cs04",	AT24_DEVICE_MAGIC(16,
153 				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
154 	/* 24rf08 quirk is handled at i2c-core */
155 	{ "24c08",	AT24_DEVICE_MAGIC(8192 / 8,	0) },
156 	{ "24cs08",	AT24_DEVICE_MAGIC(16,
157 				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
158 	{ "24c16",	AT24_DEVICE_MAGIC(16384 / 8,	0) },
159 	{ "24cs16",	AT24_DEVICE_MAGIC(16,
160 				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
161 	{ "24c32",	AT24_DEVICE_MAGIC(32768 / 8,	AT24_FLAG_ADDR16) },
162 	{ "24cs32",	AT24_DEVICE_MAGIC(16,
163 				AT24_FLAG_ADDR16 |
164 				AT24_FLAG_SERIAL |
165 				AT24_FLAG_READONLY) },
166 	{ "24c64",	AT24_DEVICE_MAGIC(65536 / 8,	AT24_FLAG_ADDR16) },
167 	{ "24cs64",	AT24_DEVICE_MAGIC(16,
168 				AT24_FLAG_ADDR16 |
169 				AT24_FLAG_SERIAL |
170 				AT24_FLAG_READONLY) },
171 	{ "24c128",	AT24_DEVICE_MAGIC(131072 / 8,	AT24_FLAG_ADDR16) },
172 	{ "24c256",	AT24_DEVICE_MAGIC(262144 / 8,	AT24_FLAG_ADDR16) },
173 	{ "24c512",	AT24_DEVICE_MAGIC(524288 / 8,	AT24_FLAG_ADDR16) },
174 	{ "24c1024",	AT24_DEVICE_MAGIC(1048576 / 8,	AT24_FLAG_ADDR16) },
175 	{ "at24", 0 },
176 	{ /* END OF LIST */ }
177 };
178 MODULE_DEVICE_TABLE(i2c, at24_ids);
179 
180 static const struct of_device_id at24_of_match[] = {
181 	{
182 		.compatible = "atmel,24c00",
183 		.data = (void *)AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR)
184 	},
185 	{
186 		.compatible = "atmel,24c01",
187 		.data = (void *)AT24_DEVICE_MAGIC(1024 / 8, 0)
188 	},
189 	{
190 		.compatible = "atmel,24c02",
191 		.data = (void *)AT24_DEVICE_MAGIC(2048 / 8, 0)
192 	},
193 	{
194 		.compatible = "atmel,spd",
195 		.data = (void *)AT24_DEVICE_MAGIC(2048 / 8,
196 				AT24_FLAG_READONLY | AT24_FLAG_IRUGO)
197 	},
198 	{
199 		.compatible = "atmel,24c04",
200 		.data = (void *)AT24_DEVICE_MAGIC(4096 / 8, 0)
201 	},
202 	{
203 		.compatible = "atmel,24c08",
204 		.data = (void *)AT24_DEVICE_MAGIC(8192 / 8, 0)
205 	},
206 	{
207 		.compatible = "atmel,24c16",
208 		.data = (void *)AT24_DEVICE_MAGIC(16384 / 8, 0)
209 	},
210 	{
211 		.compatible = "atmel,24c32",
212 		.data = (void *)AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16)
213 	},
214 	{
215 		.compatible = "atmel,24c64",
216 		.data = (void *)AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16)
217 	},
218 	{
219 		.compatible = "atmel,24c128",
220 		.data = (void *)AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16)
221 	},
222 	{
223 		.compatible = "atmel,24c256",
224 		.data = (void *)AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16)
225 	},
226 	{
227 		.compatible = "atmel,24c512",
228 		.data = (void *)AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16)
229 	},
230 	{
231 		.compatible = "atmel,24c1024",
232 		.data = (void *)AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16)
233 	},
234 	{ },
235 };
236 MODULE_DEVICE_TABLE(of, at24_of_match);
237 
238 static const struct acpi_device_id at24_acpi_ids[] = {
239 	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
240 	{ }
241 };
242 MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
243 
244 /*-------------------------------------------------------------------------*/
245 
246 /*
247  * This routine supports chips which consume multiple I2C addresses. It
248  * computes the addressing information to be used for a given r/w request.
249  * Assumes that sanity checks for offset happened at sysfs-layer.
250  *
251  * Slave address and byte offset derive from the offset. Always
252  * set the byte address; on a multi-master board, another master
253  * may have changed the chip's "current" address pointer.
254  *
255  * REVISIT some multi-address chips don't rollover page reads to
256  * the next slave address, so we may need to truncate the count.
257  * Those chips might need another quirk flag.
258  *
259  * If the real hardware used four adjacent 24c02 chips and that
260  * were misconfigured as one 24c08, that would be a similar effect:
261  * one "eeprom" file not four, but larger reads would fail when
262  * they crossed certain pages.
263  */
264 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
265 						unsigned int *offset)
266 {
267 	unsigned i;
268 
269 	if (at24->chip.flags & AT24_FLAG_ADDR16) {
270 		i = *offset >> 16;
271 		*offset &= 0xffff;
272 	} else {
273 		i = *offset >> 8;
274 		*offset &= 0xff;
275 	}
276 
277 	return at24->client[i];
278 }
279 
280 static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
281 				      unsigned int offset, size_t count)
282 {
283 	unsigned long timeout, read_time;
284 	struct i2c_client *client;
285 	int status;
286 
287 	client = at24_translate_offset(at24, &offset);
288 
289 	if (count > io_limit)
290 		count = io_limit;
291 
292 	/* Smaller eeproms can work given some SMBus extension calls */
293 	if (count > I2C_SMBUS_BLOCK_MAX)
294 		count = I2C_SMBUS_BLOCK_MAX;
295 
296 	loop_until_timeout(timeout, read_time) {
297 		status = i2c_smbus_read_i2c_block_data_or_emulated(client,
298 								   offset,
299 								   count, buf);
300 
301 		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
302 				count, offset, status, jiffies);
303 
304 		if (status == count)
305 			return count;
306 	}
307 
308 	return -ETIMEDOUT;
309 }
310 
311 static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
312 				    unsigned int offset, size_t count)
313 {
314 	unsigned long timeout, read_time;
315 	struct i2c_client *client;
316 	struct i2c_msg msg[2];
317 	int status, i;
318 	u8 msgbuf[2];
319 
320 	memset(msg, 0, sizeof(msg));
321 	client = at24_translate_offset(at24, &offset);
322 
323 	if (count > io_limit)
324 		count = io_limit;
325 
326 	/*
327 	 * When we have a better choice than SMBus calls, use a combined I2C
328 	 * message. Write address; then read up to io_limit data bytes. Note
329 	 * that read page rollover helps us here (unlike writes). msgbuf is
330 	 * u8 and will cast to our needs.
331 	 */
332 	i = 0;
333 	if (at24->chip.flags & AT24_FLAG_ADDR16)
334 		msgbuf[i++] = offset >> 8;
335 	msgbuf[i++] = offset;
336 
337 	msg[0].addr = client->addr;
338 	msg[0].buf = msgbuf;
339 	msg[0].len = i;
340 
341 	msg[1].addr = client->addr;
342 	msg[1].flags = I2C_M_RD;
343 	msg[1].buf = buf;
344 	msg[1].len = count;
345 
346 	loop_until_timeout(timeout, read_time) {
347 		status = i2c_transfer(client->adapter, msg, 2);
348 		if (status == 2)
349 			status = count;
350 
351 		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
352 				count, offset, status, jiffies);
353 
354 		if (status == count)
355 			return count;
356 	}
357 
358 	return -ETIMEDOUT;
359 }
360 
361 static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
362 				       unsigned int offset, size_t count)
363 {
364 	unsigned long timeout, read_time;
365 	struct i2c_client *client;
366 	struct i2c_msg msg[2];
367 	u8 addrbuf[2];
368 	int status;
369 
370 	client = at24_translate_offset(at24, &offset);
371 
372 	memset(msg, 0, sizeof(msg));
373 	msg[0].addr = client->addr;
374 	msg[0].buf = addrbuf;
375 
376 	/*
377 	 * The address pointer of the device is shared between the regular
378 	 * EEPROM array and the serial number block. The dummy write (part of
379 	 * the sequential read protocol) ensures the address pointer is reset
380 	 * to the desired position.
381 	 */
382 	if (at24->chip.flags & AT24_FLAG_ADDR16) {
383 		/*
384 		 * For 16 bit address pointers, the word address must contain
385 		 * a '10' sequence in bits 11 and 10 regardless of the
386 		 * intended position of the address pointer.
387 		 */
388 		addrbuf[0] = 0x08;
389 		addrbuf[1] = offset;
390 		msg[0].len = 2;
391 	} else {
392 		/*
393 		 * Otherwise the word address must begin with a '10' sequence,
394 		 * regardless of the intended address.
395 		 */
396 		addrbuf[0] = 0x80 + offset;
397 		msg[0].len = 1;
398 	}
399 
400 	msg[1].addr = client->addr;
401 	msg[1].flags = I2C_M_RD;
402 	msg[1].buf = buf;
403 	msg[1].len = count;
404 
405 	loop_until_timeout(timeout, read_time) {
406 		status = i2c_transfer(client->adapter, msg, 2);
407 		if (status == 2)
408 			return count;
409 	}
410 
411 	return -ETIMEDOUT;
412 }
413 
414 static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
415 				    unsigned int offset, size_t count)
416 {
417 	unsigned long timeout, read_time;
418 	struct i2c_client *client;
419 	struct i2c_msg msg[2];
420 	u8 addrbuf[2];
421 	int status;
422 
423 	client = at24_translate_offset(at24, &offset);
424 
425 	memset(msg, 0, sizeof(msg));
426 	msg[0].addr = client->addr;
427 	msg[0].buf = addrbuf;
428 	/* EUI-48 starts from 0x9a, EUI-64 from 0x98 */
429 	addrbuf[0] = 0xa0 - at24->chip.byte_len + offset;
430 	msg[0].len = 1;
431 	msg[1].addr = client->addr;
432 	msg[1].flags = I2C_M_RD;
433 	msg[1].buf = buf;
434 	msg[1].len = count;
435 
436 	loop_until_timeout(timeout, read_time) {
437 		status = i2c_transfer(client->adapter, msg, 2);
438 		if (status == 2)
439 			return count;
440 	}
441 
442 	return -ETIMEDOUT;
443 }
444 
445 /*
446  * Note that if the hardware write-protect pin is pulled high, the whole
447  * chip is normally write protected. But there are plenty of product
448  * variants here, including OTP fuses and partial chip protect.
449  *
450  * We only use page mode writes; the alternative is sloooow. These routines
451  * write at most one page.
452  */
453 
454 static size_t at24_adjust_write_count(struct at24_data *at24,
455 				      unsigned int offset, size_t count)
456 {
457 	unsigned next_page;
458 
459 	/* write_max is at most a page */
460 	if (count > at24->write_max)
461 		count = at24->write_max;
462 
463 	/* Never roll over backwards, to the start of this page */
464 	next_page = roundup(offset + 1, at24->chip.page_size);
465 	if (offset + count > next_page)
466 		count = next_page - offset;
467 
468 	return count;
469 }
470 
471 static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
472 					     const char *buf,
473 					     unsigned int offset, size_t count)
474 {
475 	unsigned long timeout, write_time;
476 	struct i2c_client *client;
477 	ssize_t status = 0;
478 
479 	client = at24_translate_offset(at24, &offset);
480 	count = at24_adjust_write_count(at24, offset, count);
481 
482 	loop_until_timeout(timeout, write_time) {
483 		status = i2c_smbus_write_i2c_block_data(client,
484 							offset, count, buf);
485 		if (status == 0)
486 			status = count;
487 
488 		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
489 				count, offset, status, jiffies);
490 
491 		if (status == count)
492 			return count;
493 	}
494 
495 	return -ETIMEDOUT;
496 }
497 
498 static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
499 					    const char *buf,
500 					    unsigned int offset, size_t count)
501 {
502 	unsigned long timeout, write_time;
503 	struct i2c_client *client;
504 	ssize_t status = 0;
505 
506 	client = at24_translate_offset(at24, &offset);
507 
508 	loop_until_timeout(timeout, write_time) {
509 		status = i2c_smbus_write_byte_data(client, offset, buf[0]);
510 		if (status == 0)
511 			status = count;
512 
513 		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
514 				count, offset, status, jiffies);
515 
516 		if (status == count)
517 			return count;
518 	}
519 
520 	return -ETIMEDOUT;
521 }
522 
523 static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
524 				     unsigned int offset, size_t count)
525 {
526 	unsigned long timeout, write_time;
527 	struct i2c_client *client;
528 	struct i2c_msg msg;
529 	ssize_t status = 0;
530 	int i = 0;
531 
532 	client = at24_translate_offset(at24, &offset);
533 	count = at24_adjust_write_count(at24, offset, count);
534 
535 	msg.addr = client->addr;
536 	msg.flags = 0;
537 
538 	/* msg.buf is u8 and casts will mask the values */
539 	msg.buf = at24->writebuf;
540 	if (at24->chip.flags & AT24_FLAG_ADDR16)
541 		msg.buf[i++] = offset >> 8;
542 
543 	msg.buf[i++] = offset;
544 	memcpy(&msg.buf[i], buf, count);
545 	msg.len = i + count;
546 
547 	loop_until_timeout(timeout, write_time) {
548 		status = i2c_transfer(client->adapter, &msg, 1);
549 		if (status == 1)
550 			status = count;
551 
552 		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
553 				count, offset, status, jiffies);
554 
555 		if (status == count)
556 			return count;
557 	}
558 
559 	return -ETIMEDOUT;
560 }
561 
562 static int at24_read(void *priv, unsigned int off, void *val, size_t count)
563 {
564 	struct at24_data *at24 = priv;
565 	struct device *dev = &at24->client[0]->dev;
566 	char *buf = val;
567 	int ret;
568 
569 	if (unlikely(!count))
570 		return count;
571 
572 	if (off + count > at24->chip.byte_len)
573 		return -EINVAL;
574 
575 	ret = pm_runtime_get_sync(dev);
576 	if (ret < 0) {
577 		pm_runtime_put_noidle(dev);
578 		return ret;
579 	}
580 
581 	/*
582 	 * Read data from chip, protecting against concurrent updates
583 	 * from this host, but not from other I2C masters.
584 	 */
585 	mutex_lock(&at24->lock);
586 
587 	while (count) {
588 		int	status;
589 
590 		status = at24->read_func(at24, buf, off, count);
591 		if (status < 0) {
592 			mutex_unlock(&at24->lock);
593 			pm_runtime_put(dev);
594 			return status;
595 		}
596 		buf += status;
597 		off += status;
598 		count -= status;
599 	}
600 
601 	mutex_unlock(&at24->lock);
602 
603 	pm_runtime_put(dev);
604 
605 	return 0;
606 }
607 
608 static int at24_write(void *priv, unsigned int off, void *val, size_t count)
609 {
610 	struct at24_data *at24 = priv;
611 	struct device *dev = &at24->client[0]->dev;
612 	char *buf = val;
613 	int ret;
614 
615 	if (unlikely(!count))
616 		return -EINVAL;
617 
618 	if (off + count > at24->chip.byte_len)
619 		return -EINVAL;
620 
621 	ret = pm_runtime_get_sync(dev);
622 	if (ret < 0) {
623 		pm_runtime_put_noidle(dev);
624 		return ret;
625 	}
626 
627 	/*
628 	 * Write data to chip, protecting against concurrent updates
629 	 * from this host, but not from other I2C masters.
630 	 */
631 	mutex_lock(&at24->lock);
632 
633 	while (count) {
634 		int status;
635 
636 		status = at24->write_func(at24, buf, off, count);
637 		if (status < 0) {
638 			mutex_unlock(&at24->lock);
639 			pm_runtime_put(dev);
640 			return status;
641 		}
642 		buf += status;
643 		off += status;
644 		count -= status;
645 	}
646 
647 	mutex_unlock(&at24->lock);
648 
649 	pm_runtime_put(dev);
650 
651 	return 0;
652 }
653 
654 static void at24_get_pdata(struct device *dev, struct at24_platform_data *chip)
655 {
656 	int err;
657 	u32 val;
658 
659 	if (device_property_present(dev, "read-only"))
660 		chip->flags |= AT24_FLAG_READONLY;
661 
662 	err = device_property_read_u32(dev, "size", &val);
663 	if (!err)
664 		chip->byte_len = val;
665 
666 	err = device_property_read_u32(dev, "pagesize", &val);
667 	if (!err) {
668 		chip->page_size = val;
669 	} else {
670 		/*
671 		 * This is slow, but we can't know all eeproms, so we better
672 		 * play safe. Specifying custom eeprom-types via platform_data
673 		 * is recommended anyhow.
674 		 */
675 		chip->page_size = 1;
676 	}
677 }
678 
679 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
680 {
681 	struct at24_platform_data chip;
682 	kernel_ulong_t magic = 0;
683 	bool writable;
684 	int use_smbus = 0;
685 	int use_smbus_write = 0;
686 	struct at24_data *at24;
687 	int err;
688 	unsigned i, num_addresses;
689 	u8 test_byte;
690 
691 	if (client->dev.platform_data) {
692 		chip = *(struct at24_platform_data *)client->dev.platform_data;
693 	} else {
694 		/*
695 		 * The I2C core allows OF nodes compatibles to match against the
696 		 * I2C device ID table as a fallback, so check not only if an OF
697 		 * node is present but also if it matches an OF device ID entry.
698 		 */
699 		if (client->dev.of_node &&
700 		    of_match_device(at24_of_match, &client->dev)) {
701 			magic = (kernel_ulong_t)
702 				of_device_get_match_data(&client->dev);
703 		} else if (id) {
704 			magic = id->driver_data;
705 		} else {
706 			const struct acpi_device_id *aid;
707 
708 			aid = acpi_match_device(at24_acpi_ids, &client->dev);
709 			if (aid)
710 				magic = aid->driver_data;
711 		}
712 		if (!magic)
713 			return -ENODEV;
714 
715 		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
716 		magic >>= AT24_SIZE_BYTELEN;
717 		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
718 
719 		at24_get_pdata(&client->dev, &chip);
720 
721 		chip.setup = NULL;
722 		chip.context = NULL;
723 	}
724 
725 	if (!is_power_of_2(chip.byte_len))
726 		dev_warn(&client->dev,
727 			"byte_len looks suspicious (no power of 2)!\n");
728 	if (!chip.page_size) {
729 		dev_err(&client->dev, "page_size must not be 0!\n");
730 		return -EINVAL;
731 	}
732 	if (!is_power_of_2(chip.page_size))
733 		dev_warn(&client->dev,
734 			"page_size looks suspicious (no power of 2)!\n");
735 
736 	/*
737 	 * REVISIT: the size of the EUI-48 byte array is 6 in at24mac402, while
738 	 * the call to ilog2() in AT24_DEVICE_MAGIC() rounds it down to 4.
739 	 *
740 	 * Eventually we'll get rid of the magic values altoghether in favor of
741 	 * real structs, but for now just manually set the right size.
742 	 */
743 	if (chip.flags & AT24_FLAG_MAC && chip.byte_len == 4)
744 		chip.byte_len = 6;
745 
746 	/* Use I2C operations unless we're stuck with SMBus extensions. */
747 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
748 		if (chip.flags & AT24_FLAG_ADDR16)
749 			return -EPFNOSUPPORT;
750 
751 		if (i2c_check_functionality(client->adapter,
752 				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
753 			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
754 		} else if (i2c_check_functionality(client->adapter,
755 				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
756 			use_smbus = I2C_SMBUS_WORD_DATA;
757 		} else if (i2c_check_functionality(client->adapter,
758 				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
759 			use_smbus = I2C_SMBUS_BYTE_DATA;
760 		} else {
761 			return -EPFNOSUPPORT;
762 		}
763 
764 		if (i2c_check_functionality(client->adapter,
765 				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
766 			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
767 		} else if (i2c_check_functionality(client->adapter,
768 				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
769 			use_smbus_write = I2C_SMBUS_BYTE_DATA;
770 			chip.page_size = 1;
771 		}
772 	}
773 
774 	if (chip.flags & AT24_FLAG_TAKE8ADDR)
775 		num_addresses = 8;
776 	else
777 		num_addresses =	DIV_ROUND_UP(chip.byte_len,
778 			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
779 
780 	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
781 		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
782 	if (!at24)
783 		return -ENOMEM;
784 
785 	mutex_init(&at24->lock);
786 	at24->use_smbus = use_smbus;
787 	at24->use_smbus_write = use_smbus_write;
788 	at24->chip = chip;
789 	at24->num_addresses = num_addresses;
790 
791 	if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
792 		dev_err(&client->dev,
793 			"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
794 		return -EINVAL;
795 	}
796 
797 	if (chip.flags & AT24_FLAG_SERIAL) {
798 		at24->read_func = at24_eeprom_read_serial;
799 	} else if (chip.flags & AT24_FLAG_MAC) {
800 		at24->read_func = at24_eeprom_read_mac;
801 	} else {
802 		at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
803 						  : at24_eeprom_read_i2c;
804 	}
805 
806 	if (at24->use_smbus) {
807 		if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
808 			at24->write_func = at24_eeprom_write_smbus_block;
809 		else
810 			at24->write_func = at24_eeprom_write_smbus_byte;
811 	} else {
812 		at24->write_func = at24_eeprom_write_i2c;
813 	}
814 
815 	writable = !(chip.flags & AT24_FLAG_READONLY);
816 	if (writable) {
817 		if (!use_smbus || use_smbus_write) {
818 
819 			unsigned write_max = chip.page_size;
820 
821 			if (write_max > io_limit)
822 				write_max = io_limit;
823 			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
824 				write_max = I2C_SMBUS_BLOCK_MAX;
825 			at24->write_max = write_max;
826 
827 			/* buffer (data + address at the beginning) */
828 			at24->writebuf = devm_kzalloc(&client->dev,
829 				write_max + 2, GFP_KERNEL);
830 			if (!at24->writebuf)
831 				return -ENOMEM;
832 		} else {
833 			dev_warn(&client->dev,
834 				"cannot write due to controller restrictions.");
835 		}
836 	}
837 
838 	at24->client[0] = client;
839 
840 	/* use dummy devices for multiple-address chips */
841 	for (i = 1; i < num_addresses; i++) {
842 		at24->client[i] = i2c_new_dummy(client->adapter,
843 					client->addr + i);
844 		if (!at24->client[i]) {
845 			dev_err(&client->dev, "address 0x%02x unavailable\n",
846 					client->addr + i);
847 			err = -EADDRINUSE;
848 			goto err_clients;
849 		}
850 	}
851 
852 	i2c_set_clientdata(client, at24);
853 
854 	/* enable runtime pm */
855 	pm_runtime_set_active(&client->dev);
856 	pm_runtime_enable(&client->dev);
857 
858 	/*
859 	 * Perform a one-byte test read to verify that the
860 	 * chip is functional.
861 	 */
862 	err = at24_read(at24, 0, &test_byte, 1);
863 	pm_runtime_idle(&client->dev);
864 	if (err) {
865 		err = -ENODEV;
866 		goto err_clients;
867 	}
868 
869 	at24->nvmem_config.name = dev_name(&client->dev);
870 	at24->nvmem_config.dev = &client->dev;
871 	at24->nvmem_config.read_only = !writable;
872 	at24->nvmem_config.root_only = true;
873 	at24->nvmem_config.owner = THIS_MODULE;
874 	at24->nvmem_config.compat = true;
875 	at24->nvmem_config.base_dev = &client->dev;
876 	at24->nvmem_config.reg_read = at24_read;
877 	at24->nvmem_config.reg_write = at24_write;
878 	at24->nvmem_config.priv = at24;
879 	at24->nvmem_config.stride = 1;
880 	at24->nvmem_config.word_size = 1;
881 	at24->nvmem_config.size = chip.byte_len;
882 
883 	at24->nvmem = nvmem_register(&at24->nvmem_config);
884 
885 	if (IS_ERR(at24->nvmem)) {
886 		err = PTR_ERR(at24->nvmem);
887 		goto err_clients;
888 	}
889 
890 	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
891 		chip.byte_len, client->name,
892 		writable ? "writable" : "read-only", at24->write_max);
893 	if (use_smbus == I2C_SMBUS_WORD_DATA ||
894 	    use_smbus == I2C_SMBUS_BYTE_DATA) {
895 		dev_notice(&client->dev, "Falling back to %s reads, "
896 			   "performance will suffer\n", use_smbus ==
897 			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
898 	}
899 
900 	/* export data to kernel code */
901 	if (chip.setup)
902 		chip.setup(at24->nvmem, chip.context);
903 
904 	return 0;
905 
906 err_clients:
907 	for (i = 1; i < num_addresses; i++)
908 		if (at24->client[i])
909 			i2c_unregister_device(at24->client[i]);
910 
911 	pm_runtime_disable(&client->dev);
912 
913 	return err;
914 }
915 
916 static int at24_remove(struct i2c_client *client)
917 {
918 	struct at24_data *at24;
919 	int i;
920 
921 	at24 = i2c_get_clientdata(client);
922 
923 	nvmem_unregister(at24->nvmem);
924 
925 	for (i = 1; i < at24->num_addresses; i++)
926 		i2c_unregister_device(at24->client[i]);
927 
928 	pm_runtime_disable(&client->dev);
929 	pm_runtime_set_suspended(&client->dev);
930 
931 	return 0;
932 }
933 
934 /*-------------------------------------------------------------------------*/
935 
936 static struct i2c_driver at24_driver = {
937 	.driver = {
938 		.name = "at24",
939 		.of_match_table = at24_of_match,
940 		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
941 	},
942 	.probe = at24_probe,
943 	.remove = at24_remove,
944 	.id_table = at24_ids,
945 };
946 
947 static int __init at24_init(void)
948 {
949 	if (!io_limit) {
950 		pr_err("at24: io_limit must not be 0!\n");
951 		return -EINVAL;
952 	}
953 
954 	io_limit = rounddown_pow_of_two(io_limit);
955 	return i2c_add_driver(&at24_driver);
956 }
957 module_init(at24_init);
958 
959 static void __exit at24_exit(void)
960 {
961 	i2c_del_driver(&at24_driver);
962 }
963 module_exit(at24_exit);
964 
965 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
966 MODULE_AUTHOR("David Brownell and Wolfram Sang");
967 MODULE_LICENSE("GPL");
968